Conjecture of Pruthviraj Hajari

The iterates x, t(x), t(t(x)),... of the mapping
\[ t(x)=\left\{\begin{array}{cl} 8x & \mbox{ if $x$ is odd,}\\ \left\lfloor x/3\right\rfloor & \mbox{ if $x$ is even,} \end{array} \right. \] where \(\lfloor\quad\rfloor\) denotes the floor function.

Equivalently \[ t(x)=\left\{\begin{array}{cl} 8x & \mbox{ if $x$ is odd,}\\ x/3 & \mbox{ if $x\equiv 0\pmod{6}$,}\\ (x-2)/3 & \mbox{ if $x\equiv 2\pmod{6}$,}\\ (x-1)/3 & \mbox{ if $x\equiv 4\pmod{6}$.} \end{array} \right. \] All trajectories are conjectured by Pruthviraj Hajari to eventually reach 0 if x ≥ 0. (See MathOverflow question.)

It seems certain that if x < 0, then tn(x) will eventually reach one of the cycles -3 → -24 → -8 → -3, or -5 → -40 → -14 → -5 → -3.

Enter x :

Last modified 10th December 2020
Return to main page