Gonçalves - Greenfield - Madrid 12-branched generalized 3x+1 conjecture

We consider the d-branched mapping \(T: \mathbb{Z}\to\mathbb{Z}\) given by \(\displaystyle T(x) = \left\lfloor\frac{m_ix}{d}\right\rfloor + x_i, \mbox{ if $x \equiv i \pmod d$}, \)
with \(m_0=1, m_i=15, 1\le i\le11; x_0=0, x_1=6, x_2=4, x_3=3, x_4=-2, x_5=6, x_6=5, x_7=0, x_8=3, x_9=-1, x_{10}=0, x_{11}=-1\):
\[ T(x)= \small \left\{ \begin{array}{cl} \frac{x}{12} & \mbox{ if $x\equiv 0\pmod{12}$}\\ \frac{5x+23}{4} & \mbox{ if $x\equiv 1\pmod{12}$}\\ \frac{5x+14}{4} & \mbox{ if $x\equiv 2\pmod{12}$}\\ \frac{5x+9}{4} & \mbox{ if $x\equiv 3\pmod{12}$}\\ \frac{5x-8}{4} & \mbox{ if $x\equiv 4\pmod{12}$}\\ \frac{5x+23}{4} & \mbox{ if $x\equiv 5\pmod{12}$}\\ \frac{5x+18}{4} & \mbox{ if $x\equiv 6\pmod{12}$}\\ \frac{5x-3}{4} & \mbox{ if $x\equiv 7\pmod{12}$}\\ \frac{5x+12}{4} & \mbox{ if $x\equiv 8\pmod{12}$}\\ \frac{5x-5}{4} & \mbox{ if $x\equiv 9\pmod{12}$}\\ \frac{5x-2}{4} & \mbox{ if $x\equiv 10\pmod{12}$}\\ \frac{5x-7}{4} & \mbox{ if $x\equiv 11\pmod{12}$} \end{array} \right. \] The iterates \(x, T(X), T(T(x)),\ldots\) of the mapping are conjectured to eventually reach one of the cycles (This mapping is equivalent to one on page 32 of the paper https://arxiv.org/pdf/2111.06170.pdf.)

The mapping can be regarded as a 12-branched example of type (b).

The associated Markov matrix \[ Q(12)= \small \left[ \begin{array}{cccccccccccc} 1/12& 1/12& 1/12& 1/12 & 1/12& 1/12& 1/12& 1/12& 1/12& 1/12& 1/12& 1/12\\ 0 & 1/4 & 1/4 & 0 & 0 & 0 & 0 & 1/4 & 0 & 0 & 1/4 & 0\\ 1/4 & 0 & 0 & 0 & 1/4 & 0 & 1/4 & 0 & 0 & 1/4 & 0 & 0\\ 1/4 & 0 & 0 & 0 & 1/4 & 0 & 1/4 & 0 & 0 & 1/4 & 0 & 0\\ 1/4 & 0 & 0 & 0 & 1/4 & 0 & 1/4 & 0 & 0 & 1/4 & 0 & 0\\ 1/4 & 0 & 0 & 0 & 1/4 & 0 & 1/4 & 0 & 0 & 1/4 & 0 & 0\\ 1/4 & 0 & 0 & 0 & 1/4 & 0 & 1/4 & 0 & 0 & 1/4 & 0 & 0\\ 0 & 0 & 0 & 1/4 & 0 & 1/4 & 0 & 0 & 1/4 & 0 & 0 & 1/4\\ 0 & 1/4 & 1/4 & 0 & 0 & 0 & 0 & 1/4 & 0 & 0 & 1/4 & 0\\ 0 & 1/4 & 1/4 & 0 & 0 & 0 & 0 & 1/4 & 0 & 0 & 1/4 & 0\\ 1/4 & 0 & 0 & 0 & 1/4 & 0 & 1/4 & 0 & 0 & 1/4 & 0 & 0\\ 1/4 & 0 & 0 & 0 & 1/4 & 0 & 1/4 & 0 & 0 & 1/4 & 0 & 0 \end{array} \right] \] has stationary vector \(p = \small\frac{1}{228}(33, 17, 17, 7, 33, 7, 33, 17, 7, 33, 17, 7)\) and we have the inequality

\[ \prod_{i=0}^{11}\left(\frac{m_i}{12}\right)^{p_i}=\left(\frac{1}{12}\right)^{33/228}\left(\frac{15}{12}\right)^{1-33/228}=\frac{15^{195/228}}{12}<1, \] thereby predicting everywhere eventual cycling.

Enter x (≠ 0):

Last modified 8th March 2023
Return to main page