BCMATH programs for some number theory functions

  1. Calculating Euler's function φ(n), the divisor sum σ(n), the number of prime factors ω(n), the number of divisors d(n) and the Möbius function μ(n), all for small n.
  2. Listing the divisors of a positive integer.
  3. Solving φ(x)=n, where φ(x) is Euler's totient function - testing Carmichael's conjecture.
  4. Calculating σk(n).
  5. Calculating Ramanujan's tau function τ(n).
  6. Calculating Fibonacci numbers Fn.
  7. Calculating the minimal multiplier vector for a sequence of r consecutive Fibonacci numbers Fn,...,Fn+r-1.
  8. Calculating Lucas numbers Ln.
  9. Calculating tangent numbers Tn.
  10. Calculating Bernoulli numbers Bn.
  11. Calculating p(n), the number of partitions of n.

Last modified 30th April 2013
Return to main page