Another 6-branched generalized-Collatz mapping

Consider the function T: \[ T(x)=\left\{\begin{array}{ccc} \frac{x}{6} &\mbox{if $x ≡ 0 \pmod{6}$}\\ \frac{7x-1}{2} &\mbox{if $x ≡ 1 \pmod{6}$}\\ \frac{x}{2} &\mbox{if $x ≡ 2 \pmod{6}$}\\ \frac{2x}{3} &\mbox{if $x ≡ 3 \pmod{6}$}\\ 2x &\mbox{if $x ≡ 4 \pmod{6}$}\\ \frac{9x-1}{2} &\mbox{if $x ≡ 5 \pmod{6}$}. \end{array} \right. \] It is seems likely (see link) that trajectories seem certain to enter one of the cycles \[ \begin{array}{c} 0\to0\\ 1\to3\to2\to1\\ 11\to49\to171\to114\to19\to66\to11\\ 6k+4\to12k+8\to6k+4, k\in\mathbb{Z}. \end{array} \]
Enter y:
Last modified 13th April 2023
Return to main page