php/2adic.php 0000644 0001751 0001751 00000001446 12747025543 012352 0 ustar keith keith
\n";
print "Return to main page
\n";
?>
php/3x+1.html 0000644 0001751 0001751 00000002756 13772246606 012244 0 ustar keith keith
It is conjectured that every trajectory starting from a non-zero integer will end in one of the (non-zero) numbers in this list and subsequently cycle:
1,2,1;
-1,-1;
-5,-7,-10,-5;
-17,-25,-37,-55,-82,-41,-61,-91,-136,-68,-34,-17.
Also see Generalized 3x+1 functions and Markov matrices.
Last modified 2nd February 2006
Return to main page
php/3x+1_.php 0000644 0001751 0001751 00000003111 11620071521 012166 0 ustar keith keith ="0";$i=bcadd($i,"1")){
print "i=$i: $x\n
";
if(bccomp($x,"0")==0){
print "starting number = $y\n
";
flush();
print "the number of iterations taken to reach 0 is $i\n
";
flush();
return;
}
if(bccomp($x,"1")==0){
print "starting number = $y\n
";
flush();
print "the number of iterations taken to reach 1 is $i\n
";
flush();
return;
}
if(bccomp($x,"-1")==0){
print "starting number = $y\n
";
flush();
print "the number of iterations taken to reach -1 is $i\n
";
flush();
return;
}
if(bccomp($x,"-5")==0){
print "starting number = $y\n
";
flush();
print "the number of iterations taken to reach -5 is $i\n
";
flush();
return;
}
if(bccomp($x,"-17")==0){
print "starting number = $y\n
";
flush();
print "the number of iterations taken to reach -17 is $i\n
";
flush();
return;
}
$x=collatzt($x);
flush();
}
}
?>
php/3x+1.php 0000644 0001751 0001751 00000000707 12747107542 012055 0 ustar keith keith
\n";
print "Return to main page
\n";
auditfin();
?>
php/3x+371.html 0000644 0001751 0001751 00000003540 11625274515 012401 0 ustar keith keith
t(x) | = | x/2 | if x is even, |
t(x) | = | (3x+371)/2 | if x is odd, |
It is conjectured (by Keith Matthews) that every trajectory starting from a non-zero integer will end in one of the numbers in this list and subsequently cycle. (The cycle lengths are printed in bold type.):
Last modified 15th May 2010
Return to main page
php/3x+371_.php 0000644 0001751 0001751 00000004712 10436606720 012361 0 ustar keith keith $y\n
";
flush();
$x=$y;
for($i="0";gezero($i);$i=bcadd($i,"1")){
if(eq($x,"721")){
print "starting number = $y\n
";
flush();
print "the number of iterations taken to reach 721 is $i\n
";
flush();
return;
}
if(eq($x,"371")){
print "starting number = $y\n
";
flush();
print "the number of iterations taken to reach 371 is $i\n
";
flush();
return;
}
if(eq($x,"265")){
print "starting number = $y\n
";
flush();
print "the number of iterations taken to reach 265 is $i\n
";
flush();
return;
}
if(eq($x,"25")){
print "starting number = $y
\n";
flush();
print "the number of iterations taken to reach 25 is $i
\n";
flush();
return;
}
if(ezero($x)){
print "starting number = $y\n
";
flush();
print "the number of iterations taken to reach 0 is $i\n
";
flush();
return;
}
if(eq($x,"-371")){
print "starting number = $y\n
";
flush();
print "the number of iterations taken to reach -371 is $i\n
";
flush();
return;
}
if(eq($x,"-563")){
print "starting number = $y\n
";
flush();
print "the number of iterations taken to reach -563 is $i\n
";
flush();
return;
}
if(eq($x,"-1855")){
print "starting number = $y\n
";
flush();
print "the number of iterations taken to reach -1855 is $i\n
";
flush();
return;
}
if(eq($x,"-6307")){
print "starting number = $y\n
";
flush();
print "the number of iterations taken to reach -6307 is $i\n
";
flush();
return;
}
$x=t($x);
print "$x\n
";
flush();
}
}
?>
php/3x+371.php 0000644 0001751 0001751 00000000734 12747107637 012234 0 ustar keith keith
\n";
print "Return to main page
\n";
?>
php/6branch.html 0000644 0001751 0001751 00000010057 13241441046 013054 0 ustar keith keith
t(x) | = | x/6 | if x ≡ 0 (mod 6), |
t(x) | = | (7x+1)/2 | if x ≡ 1 (mod 6), |
t(x) | = | x/2 | if x ≡ 2 (mod 6), |
t(x) | = | x/3 | if x ≡ 3 (mod 6), |
t(x) | = | x/2 | if x ≡ 4 (mod 6), |
t(x) | = | (7x+1)/6 | if x ≡ 5 (mod 6), |
This mapping is of type (b) in Generalized 3x+1 mappings with Markov matrix
1/6 | 1/6 | 1/6 | 1/6 | 1/6 | 1/6 |
0 | 1/2 | 1/2 | 0 | 0 | 0 |
0 | 0 | 0 | 1/2 | 1/2 | 0 |
0 | 1/2 | 1/2 | 0 | 0 | 0 |
1/6 | 1/6 | 1/6 | 1/6 | 1/6 | 1/6 |
0 | 1/3 | 0 | 0 | 1/3 | 1/3 |
(1/6)2/53(21/6)15/53(3/6)14/53(2/6)9/53(3/6)10/53(7/6)3/53 < 1,
it is conjectured by Keith Matthews that every trajectory will end in one of the numbers in this list and subsequently cycle. (The cycle lengths are printed in bold type.):
Last modified 17th July 2017
Return to main page
php/6branch_.php 0000644 0001751 0001751 00000004217 13133024131 013027 0 ustar keith keith $y\n
";
flush();
$x=$y;
for($i="0";gezero($i);$i=bcadd($i,"1")){
if(eq($x,"0")){
print "starting number = $y\n
";
flush();
print "the number of iterations taken to reach 0 is $i\n
";
flush();
return;
}
if(eq($x,"1")){
print "starting number = $y\n
";
flush();
print "the number of iterations taken to reach 1 is $i\n
";
flush();
return;
}
if(eq($x,"19")){
print "starting number = $y\n
";
flush();
print "the number of iterations taken to reach 19 is $i\n
";
flush();
return;
}
if(eq($x,"-1")){
print "starting number = $y
\n";
flush();
print "the number of iterations taken to reach -1 is $i
\n";
flush();
return;
}
if(eq($x,"-5")){
print "starting number = $y
\n";
flush();
print "the number of iterations taken to reach -5 is $i
\n";
flush();
return;
}
if(eq($x,"-11")){
print "starting number = $y
\n";
flush();
print "the number of iterations taken to reach -11 is $i
\n";
flush();
return;
}
$x=t($x);
print "$x\n
";
flush();
}
}
?>
php/6branch.php 0000644 0001751 0001751 00000000737 13133024111 012671 0 ustar keith keith
\n";
print "Return to main page
\n";
?>
php/aaa.html 0000644 0001751 0001751 00000002725 12574426331 012266 0 ustar keith keith
The program is a BCMath version of BC function aa2().
Last modified 11th September 2015
Return to main page
php/aaa.php 0000644 0001751 0001751 00000002647 12747032715 012115 0 ustar keith keith
\n";
print "Return to main page
\n";
?>
php/aa.html 0000644 0001751 0001751 00000004030 13763565331 012121 0 ustar keith keith
x = (α/a)u + bβv, y = βu + α v,
where u and v are integers satisfying the equation u2 - Dv2 = 1.The method works for ac with up to say 20 digits, due to the limitations of the program used to factor c.
The program is a BCMath version of BC function aa1().
Last modified 8th December 2015
Return to main page
php/aa.php 0000644 0001751 0001751 00000002126 12747033114 011736 0 ustar keith keith
\n";
print "Return to main page
\n";
?>
php/ap2-bq2_.php 0000644 0001751 0001751 00000015331 12464134403 012661 0 ustar keith keith
\n";
print "Initial segment of the continued fraction for √($b/$a):
\n";
for($i="0";le($i,$h);$i=bcadd($i,"1")){
print "a[$i]=$aa[$i], P[$i]=$pcap[$i], Q[$i]=$qcap[$i], A[$i]/B[$i]=$pu[$i]/$qv[$i]
\n";
}
print "period length = $h
\n";
if(gt($count,"2")){
print "More than one exceptional solution! Please contact Keith Matthews
\n";
return("0");
}else{
print "(x,y)=($xx[0], $yy[0]) is an exceptional solution of x2 – $d y2 = $kksquared.
\n";
print "(x,y)=($xx[1], $yy[1]) is the smallest positive solution in the conjugate class to ($xx[0], $yy[0]).
\n";
print "All positive solutions of x2 – $d y2 = $kksquared are given by the formulae
\n";
print "x + y√$d = ($xx[0] + $yy[0]√$d)($twokksquaredplusone + $twok√$d)n, n ≥ 0,
\n";
print "x + y√$d = ($xx[1] + $yy[1]√$d)($twokksquaredplusone + $twok√$d)n, n ≥ 0.
\n";
}
}
return($flag);
}
$l=$k;$m=$n;
$k=$u;$n=$v;
$p=bcsub(bcmul($y,$q),$p);
$e=$q;
$q=bcdiv(bcsub($d,bcmul($p,$p)),$q);
if(eq($dd,"1")){
$temp=bcsub($e,$q);
$temp=aplusbc($temp,"2",$p);
$t1=bcabs($temp);
if(eq($t1,$twok)){
if(ezero($count)){
print "k=$kk, d=$dd, a=$a, b=$b
\n";
}
$temp=bcadd($u,$l);
$temq=bcadd($v,$m);
$hplus1=bcadd($h,"1");
$hminus1=bcsub($h,"1");
print "| Q[$h] – Q[$hplus1] + 2P[$hplus1] | = $twok = 2k, (A[$h] + A[$hminus1])/(B[$h] + B[$hminus1]) = $temp/$temq = p/q
\n";
$tempa=bcmul3($a,$temp,$temp);
$tempb=bcmul3($b,$temq,$temq);
$tempc=bcadd($tempa,$tempb);
$tempc=bcmul($tempc,$dd);
$tempc=bcdiv($tempc,"2");
$tempd=bcsub($tempa,$tempb);
$t=bcmul3($dd,$temp,$temq);
print "give the smallest positive solution of ap2 – bq2 = $tempd
\n";
$xx[$count]=$tempc;
$yy[$count]=$t;
print " and produce x[$count]=$tempc, y[$count]=$t, a solution of x2 – $d y2 = $kksquared.
\n";
$count=bcadd($count,"1");
$flag="1";
}
$temp=bcsub($e,$q);
$temp=aminusbc($temp,"2",$p);
$t2=bcabs($temp);
if(eq($t2,$twok)){
if(ezero($count)){
print "k=$kk, d=$dd, a=$a, b=$b
\n";
}
$temp=bcsub($u,$l);
$temq=bcsub($v,$m);
$hplus1=bcadd($h,"1");
$hminus1=bcsub($h,"1");
print "| Q[$h] – Q[$hplus1] – 2P[$hplus1] | = $twok = 2k and (A[$h] – A[$hminus1])/(B[$h] – B[$hminus1]) = $temp/$temq = p/q
\n";
$tempa=bcmul3($a,$temp,$temp);
$tempb=bcmul3($b,$temq,$temq);
$tempc=bcadd($tempa,$tempb);
$tempc=bcmul($tempc,$dd);
$tempc=bcdiv($tempc,"2");
$tempd=bcsub($tempa,$tempb);
$t=bcmul3($dd,$temp,$temq);
print "give the smallest positive solution of ap2 – bq2 = $tempd
\n";
$xx[$count]=$tempc;
$yy[$count]=$t;
print " and produce x[$count]=$tempc, y[$count]=$t, a solution of x2 – $d y2 = $kksquared.
\n";
$count=bcadd($count,"1");
$flag="1";
}
}
if(eq($q,$twokoverd)){
if(ezero($count)){
print "k=$kk, d=$dd, a=$a, b=$b
\n";
}
$hplus1=bcadd($h,"1");
print "Q[$hplus1]= $q = 2k/d and A[$h]/B[$h] = $u/$v = p/q
\n";
$tempa=bcmul3($a,$u,$u);
$tempb=bcmul3($b,$v,$v);
$tempc=bcadd($tempa,$tempb);
$tempc=bcmul($tempc,$dd);
$tempc=bcdiv($tempc,"2");
$tempd=bcsub($tempa,$tempb);
print "give the smallest positive solution of ap2 – bq2 = $tempd
\n";
$t=bcmul3($dd,$u,$v);
print " and produce x[$count]=$tempc, y[$count]=$t, a solution of x2 – $d y2 = $kksquared.
\n";
$xx[$count]=$tempc;
$yy[$count]=$t;
$count=bcadd($count,"1");
$flag="1";
}
}
}
function dujellacfractest($m,$n){
for($k=$m;le($k,$n);$k=bcadd($k,"1")){
$t=dujellatest($k);
if(ezero($t)){
continue;
}
}
}
function dujellatest($k){
global $divisor;
$kk=aplusbc("1",$k,$k);
$twok=bcmul("2",$k);
$div2k=divisors($twok,"0");
for($s="0";lt($s,$div2k);$s=bcadd($s,"1")){
$divisor2k[$s]=$divisor[$s];
}
$flag="0";
for($s="0";lt($s,$div2k);$s=bcadd($s,"1")){
$d=$divisor2k[$s];
if(eq($d,$k) || eq($d,$twok)){
continue;
}
$temp1=bcmod($k,"2");
$temp2=bcmod($d,"2");
if(neqzero($temp1) && neqzero($temp2)){
continue;
}
$divkk=divisors($kk,"0");
for($ss="0";lt($ss,$divkk);$ss=bcadd($ss,"1")){
$b=$divisor[$ss];
$a=bcdiv($kk,$b);
if(le($a,"2") || le($b,"2") || ge($a,$b)){
continue;
}
$t=gcd($a,$b);
if(eq($t,"1")){
$g=rootdovera($a,$k,$d);
if(neqzero($g)){
# print "k=$k, d=$d, a=$a, b=$b
\n";
#print "
Last modified 27th February 2004
Return to main page
php/arithmeticm.html 0000644 0001751 0001751 00000002243 11625277364 014053 0 ustar keith keith
\n";
print "Return to main page
\n";
?>
php/arithmetic.php 0000644 0001751 0001751 00000003711 12747224567 013525 0 ustar keith keith
\n";
print "Return to main page
\n";
?>
php/arithpartition.php 0000644 0001751 0001751 00000002535 13574621547 014436 0 ustar keith keith \n";
$temp=bcdiv($m,$n);
#printarray1($globaloutput_array,$temp);
#print "
\n";
$globaloutput_array_number=$temp;
return("0");
}
?>
php/aubry_thue.html 0000644 0001751 0001751 00000010456 11626066771 013720 0 ustar keith keith
Here r0 = m > 0, r1 = n > 0,
r0 | = | r1q1 + r2 | (0 < r2 < r1) |
r1 | = | r2q2 + r3 | (0 < r3 < r2) |
··· | |||
rk-1 | = | rkqk + rk+1 | (0 < rk+1 < rk) |
··· | |||
rl-1 | = | rlql |
The sk and tk are important:
s0 = 1, | s1 = 0, | sk = sk-2 - qk-1sk-1, | |
t0 = 0, | t1 = 1, | tk = tk-2 - qk-1tk-1, | k = 2,...,l+1. |
Other properties of rk, sk and tk:
nx ≡ y (mod m)
has a solution x, y satisfying1 ≤ |x| < √m, 1 ≤ |y| ≤ √m,
namely (x,y) = (tk,rk), where rk-1 > √m ≥ rk.See lecture notes for an application to Hermite-Serret's proof of p=x2+y2. Also used in the paper Thue's theorem and the diophantine equation x2-Dy2=±N, K.R. Matthews, Mathematics of Computation, 71 (2002), 1281-1286.
Last modified 3rd October 2007\n";
print "Return to main page
\n";
?>
php/axb.html 0000644 0001751 0001751 00000004752 13163266110 012310 0 ustar keith keith
a11x1+⋯+a1nxn=b1
.
.
.
am1x1+⋯+amnxn=bm
We use LLL parameter α = 1.
The augmented matrix can be entered either (i) as a string of m(n+1) integers separated by spaces, or
(ii) cut and pasted from a text file, with entries separated by spaces and each row ended by a newline.
The case of zero coeffient matrix is not dealt with.
Last modified 3rd November 2011
Return to main page
php/axbmodm.html 0000644 0001751 0001751 00000006756 13477611632 013206 0 ustar keith keith
a11x1 + ⋯ + a1nxn ≡ b1 (mod q)
.
.
.
am1x1 + ⋯ + amnxn ≡ bm (mod q)
P and Q are unimodular matrices such that PAQ = diag(d1,...,dr,0,...,0), where r = rank(A) and d1,...,dr are positive integers such that di divides di+1 for 1 ≤ i ≤ r-1.
Write X = QY and K = PB. Then AX ≡ B (mod q) is equivalent to the system of congrences
d1y1 ≡ k1 (mod q)
.
.
.
dryr ≡ kr (mod q)
0 ≡ kr+1 (mod q)
.
.
.
0 ≡ kn (mod q).
If r = n, we get c1···cr solutions (mod q), otherwise we get c1···crqn-r solutions (mod q).
The augmented matrix [A|B] can be entered either
(i) as a string of m(n+1) integers separated by spaces, or
(ii) cut and pasted from a text file, with entries separated by spaces and each row ended by a newline.
We assume that [A|B] is not the zero matrix (mod q).
The author is grateful to Alan Offer for programming assistance with the recursive construction of the cartesian product.
Last modified 10th June 2015
Return to main page
php/axbmodm.php 0000644 0001751 0001751 00000010170 13477611662 013015 0 ustar keith keith
\n";
flush();
$flag="1";
break;
}
}
if(ezero($flag)){
$ii="0";
for($i="1";le($i,$rows);$i=bcadd($i,"1")){
for($j="1";le($j,$cols);$j=bcadd($j,"1")){
$k=bcadd($ii,$j);
$k=bcsub($k,"1");
$temp=mod($a[$k],$q);
$mat[$i][$j]=$temp;
}
$ii=bcadd($cols,$ii);
}
$m=bcsub($cols,"1");
$t=test_zeromat($mat,$rows,$m);
if(eq($t,"1")){
echo "Augmented matrix is the zero matrix (mod $q)
\n";
}else{
echo "Augmented matrix [A|B] =";
printmat1($mat,$rows,$cols);
echo "
\n";
for($i="1";le($i,$rows);$i=bcadd($i,"1")){
$B[$i]["1"]=$mat[$i][$cols];
for($j="1";le($j,$m);$j=bcadd($j,"1")){
$A[$i][$j]=$mat[$i][$j];
}
}
$t=axbmodm($A,$B,$rows,$m,$q);
if(ezero($t)){
print "There are no solutions (mod $q)
\n";
}else{
if(neqzero($colsminusrank)){
if(eq($t,"1")){
print "There is $t solution family (mod $q)
\n";
}else{
print "There are $t solution families (mod $q)
\n";
}
}else{
if(eq($t,"1")){
print "There is $t solution (mod $q)
\n";
}else{
print "There are $t solutions (mod $q)
\n";
}
}
}
}
}
print "
\n";
flush();
print "Return to main page
\n";
flush();
?>
php/axbmodq1dotqm.html 0000644 0001751 0001751 00000007616 13241440334 014320 0 ustar keith keith
a11x1 + ⋯ + a1nxn ≡ b1 (mod q1)
.
.
.
am1x1 + ⋯ + amnxn ≡ bm (mod qm)
b11x1 + ⋯ + b1nxn ≡ c1 (mod q)
.
.
.
bm1x1 + ⋯ + bmnxn ≡ cm (mod q)
P and Q are unimodular matrices such that PBQ = diag(d1,...,dr,0,...,0), where r = rank(B) and d1,...,dr are positive integers such that di divides di+1 for 1 ≤ i ≤ r-1.
Write X = QY and K = PC. Then we have the equivalent system of congrences
d1y1 ≡ k1 (mod q)
.
.
.
dryr ≡ kr (mod q)
0 ≡ kr+1 (mod q)
.
.
.
0 ≡ kn (mod q).
If r = n, we get e1···er solutions (mod q), otherwise we get e1···erqn-r solutions (mod q).
The augmented matrix [A|B] can be entered either
(i) as a string of m(n+1) integers separated by spaces, or
(ii) cut and pasted from a text file, with entries separated by spaces and each row ended by a newline.
The author is grateful to Alan Offer for programming assistance with the recursive construction of the cartesian product.
Last modified 13th June 2015
Return to main page
php/axbmodq1dotqm.php 0000644 0001751 0001751 00000012626 12747003404 014143 0 ustar keith keith
\n";
flush();
$flag="1";
break;
}
}
if(ezero($flag)){
$ii="0";
for($i="1";le($i,$rows);$i=bcadd($i,"1")){
for($j="1";le($j,$cols);$j=bcadd($j,"1")){
$k=bcadd($ii,$j);
$k=bcsub($k,"1");
$temp=mod($a[$k],$qmodulus);
$mat[$i][$j]=$temp;
}
$ii=bcadd($cols,$ii);
}
$m=bcsub($cols,"1");
$t=test_zeromat($mat,$rows,$m);
if(eq($t,"1")){
echo "adjusted augmented matrix [B|C] is the zero matrix (mod $qmodulus)
\n";
}else{
echo "adjusted augmented matrix [B|C] =";
printmat1($mat,$rows,$cols);
echo "
\n";
for($i="1";le($i,$rows);$i=bcadd($i,"1")){
$B[$i]["1"]=$mat[$i][$cols];
for($j="1";le($j,$m);$j=bcadd($j,"1")){
$A[$i][$j]=$mat[$i][$j];
}
}
for($i="1";le($i,$rows);$i=bcadd($i,"1")){
$r[$i]=bcdiv($qmodulus,$mm[$i]);
$B[$i]["1"]=bcmul($B[$i]["1"],$r[$i]);
$B[$i]["1"]=mod($B[$i]["1"],$qmodulus);
}
for($i="1";le($i,$rows);$i=bcadd($i,"1")){
for($j="1";le($j,$m);$j=bcadd($j,"1")){
$A[$i][$j]=bcmul($A[$i][$j],$r[$i]);
$A[$i][$j]=mod($A[$i][$j],$qmodulus);
}
}
$t=axbmodm($A,$B,$rows,$m,$qmodulus);
if(ezero($t)){
print "There are no solutions (mod $qmodulus)
\n";
}else if(eq($t,"-1")){
print "greater than 1000 solutions arising from cartesian product
\n";
}else{
if(neqzero($colsminusrank)){
if(eq($t,"1")){
print "There is $t solution family (mod $qmodulus)
\n";
}else{
print "There are $t solution families (mod $qmodulus)
\n";
}
}else{
if(eq($t,"1")){
print "There is $t solution (mod $qmodulus)
\n";
}else{
print "There are $t solutions (mod $qmodulus)
\n";
}
}
}
}
}
print "
\n";
flush();
print "Return to main page
\n";
flush();
?>
php/axb.php 0000644 0001751 0001751 00000005740 12746777351 012155 0 ustar keith keith
\n";
exit;
}
if(gt($rows,"50")){
print "row dimension is > 50
\n";
print "Return to main page
\n";
exit;
}
if(gt($cols,"50")){
print "column dimension is > 50
\n";
print "Return to main page
\n";
exit;
}
if(lt($rows,"1")){
print "row dimension is < 1
\n";
print "Return to main page
\n";
exit;
}
if(lt($cols,"1")){
print "column dimension is < 1
\n";
print "Return to main page
\n";
exit;
}
if(isset($_POST['matrix'])){
$matrix=$_POST['matrix'];
}else{
return;
}
$matrix=trim($matrix);
$a=preg_split('[ ]',$matrix);
$t=count($a);
if(le($t,"1")){
print "number of entries is less than or equal to 1
\n";
print "Return to main page
\n";
flush();
exit;
}
$cols=bcadd($cols,"1");/* Here $cols is the number of columns of the augmented matrix */
$size=bcmul($rows,$cols);
if(lt($t,$size)){
print "number $t of entries is less than m × n = $size
\n";
print "Return to main page
\n";
flush();
exit;
}
if(gt($t,$size)){
print "number $t of entries is greater than m × n = $size
\n";
print "Return to main page
\n";
flush();
exit;
}
$flag="0";
for($i="0";lt($i,$t);$i=bcadd($i,"1")){
$check=check_decimal($a[$i]);
if (ezero($check)){
print "
\n";
flush();
$flag="1";
break;
}
}
if(ezero($flag)){
$ii="0";
for($i="1";le($i,$rows);$i=bcadd($i,"1")){
for($j="1";le($j,$cols);$j=bcadd($j,"1")){
$k=bcadd($ii,$j);
$k=bcsub($k,"1");
$mat[$i][$j]=$a[$k];
}
$ii=bcadd($cols,$ii);
}
$m=bcsub($cols,"1");
$t=test_zeromat($mat,$rows,$m);
if(eq($t,"1")){
echo "Coeffficient matrix is the zero matrix
\n";
}else{
echo "Augmented matrix [A|B]=";
printmat1($mat,$rows,$cols);
echo "
\n";
$transposed=transpose($mat,$rows,$cols);
$m1="1";
$n1="1";
axb($transposed,$m,$rows,$m1,$n1);
echo "
\n";
}
}
print "
\n";
flush();
print "Return to main page
\n";
flush();
?>
php/b2plus3bcplusc2.html 0000644 0001751 0001751 00000004404 12530552147 014465 0 ustar keith keith
First find the solution v of the congruence v2 + v - 1 ≡ 0 (mod p), where v < p/2.
Then perform the Euclidean algorithm with p and v.
The length of the Euclidean algorithm is 2s + 1 and the sequence of quotients has the form
q1, … , qs-1, qs + (-1)s+1, 1, qs, qs-1, … , q1.
Then rs+1 is the first remainder less than √(p/5) and rs-1 = rs + rs+1. AlsoThis is a BCmath version of a BC program.
Last modified 22nd May 2015
Return to main page
php/b2plus3bcplusc2_.php 0000644 0001751 0001751 00000005326 12530533460 014450 0 ustar keith keith 0=$a
\n";
$r["1"]=$b=$n;
print "r1=$b
\n";
$r["2"]=$c=bcmod($a,$b);
while(gtzero($c)){
$iplus1=bcadd($i,"1");
$iplus2=bcadd($i,"2");
print "r$iplus2=$r[$iplus2]
\n";
$t=bcmul3("5",$c,$c);
if(lt($t,$p)){
$temp=bcmul($b,$b);
$temp1=bcmul($b,$c);
$temp=bcadd($temp,$temp1);
$temp1=bcmul($c,$c);
$temp=bcsub($temp,$temp1);
if(eq($p,$temp)){
print "$p = b2 + bc - c2, where b = r$iplus1 = $b, c = r$iplus2 = $c
\n";
}
$temp=bcadd($b,$c);
$temp2=bcmul($temp,$temp);
$temp1=bcmul($temp,$c);
$temp3=bcadd($temp2,$temp1);
$temp1=bcmul($c,$c);
$temp4=bcsub($temp3,$temp1);
if(eq($p,$temp4)){
print "$p = b2 + bc - c2, where b = r$iplus1 + r$iplus2 = $temp, c = r$iplus2 = $c
\n";
}
$temp=bcmul($b,$b);
$temp1=bcmul3("3",$b,$c);
$temp=bcadd($temp,$temp1);
$temp1=bcmul($c,$c);
$temp=bcadd($temp,$temp1);
if(eq($p,$temp)){
print "$p = b2 + 3bc + c2, where b = r$iplus1 = $b, c = r$iplus2 = $c
\n";
}
$temp=bcsub($b,$c);
$t1=bcmul($temp,$temp);
$t2=bcmul3("3",$temp,$c);
$t3=bcmul($c,$c);
$t=bcadd3($t1,$t2,$t3);
if(eq($p,$t)){
print "$p = b2 + 3bc + c2, where b = r$iplus1 - r$iplus2 = $temp, c = r$iplus2 = $c
\n";
}
$temp=aplusbc("1","2",$i);
print "length of Euclid's algorithm is 2s+1=$temp
\n";
return;
}
$a=$b;
$b=$c;
$c=bcmod($a,$b);
$iplus3=bcadd($i,"3");
$r[$iplus3]=$c;
$i=bcadd($i,"1");
}
}
?>
php/b2plus3bcplusc2.php 0000644 0001751 0001751 00000001276 12747037117 014321 0 ustar keith keith
\n";
print "Return to main page
\n";
?>
php/barina8.html 0000644 0001751 0001751 00000004543 13326520012 013053 0 ustar keith keith
t(x) | = | 5x+1 | if x ≡ -1 (mod 8) |
t(x) | = | 5x-1 | if x ≡ 1 (mod 8) |
t(x) | = | ⌊x/2⌋ | otherwise |
This phenomenon was communicated to Keith Matthews by David Barina on July 13, 2018.
The mapping can be regarded as an 8-branched example of type (b).
Here Q(8) has the zero class as a transient class and the submatrix formed by deleting rows 1 and column 1 has stationary vector (1/23)×(3,4,2,5,3,4,2).
The corresponding weighted product is 53/23(1/2)4/23(1/2)2/23(1/2)5/23(1/2)3/23(1/2)4/2352/23 < 1
⇔ (1/2)(4+2+5+3+4)/2355/23 < 1
⇔ 55 < 218 ⇔ 3125 < 262144,
thereby predicting everywhere eventual cycling. The cycles found are
Last modified 27th July 2018
Return to main page
php/barina8_.php 0000644 0001751 0001751 00000002731 13323333313 013035 0 ustar keith keith $y\n
";
flush();
$x=$y;
for($i="0";gezero($i);$i=bcadd($i,"1")){
if(eq($x,"1")){
print "starting number = $y\n
";
flush();
print "the number of iterations taken to reach 1 is $i\n
";
flush();
return;
}
if(eq($x,"-1")){
print "starting number = $y\n
";
flush();
print "the number of iterations taken to reach -1 is $i\n
";
flush();
return;
}
if(eq($x,"1")){
print "starting number = $y\n
";
flush();
print "the number of iterations taken to reach -1 is $i\n
";
flush();
return;
}
if(eq($x,"-31")){
print "starting number = $y\n
";
flush();
print "the number of iterations taken to reach -1 is $i\n
";
flush();
return;
}
$x=t($x);
print "$x\n
";
flush();
}
}
?>
php/barina8.php 0000644 0001751 0001751 00000001207 13323333267 012703 0 ustar keith keith
\n";
print "Return to main page
\n";
return;
?>
php/barina.html 0000644 0001751 0001751 00000004233 13326517672 013001 0 ustar keith keith
t(x) | = | 7x+1 | if x ≡ 1 (mod 4) |
t(x) | = | 7x-1 | if x ≡ -1 (mod 4) |
t(x) | = | x/2 | if x ≡ 0 (mod 2) |
This remarkable phenomenon was communicated to Keith Matthews by David Barina on July 6, 2018. See his paper for an heuristic explanation of this phenomenon.
We remark that the iterates of -x are the negative of the iterates of x, so it is enough to consider positive starting values x.
The mapping can be regarded as a 4-branched example of type (b). Here the associated Markov matrix Q(4) has stationary vector (1/2, 1/8, 1/4, 1/8) and we have the inequality
(1/2)1/2 71/8 (1/2)1/4 71/8 < 1,
thereby predicting everywhere eventual cycling.
Last modified 27th July 2018
Return to main page
php/barina_.php 0000644 0001751 0001751 00000002140 13320071050 012731 0 ustar keith keith $y\n
";
flush();
$x=$y;
for($i="0";gezero($i);$i=bcadd($i,"1")){
if(eq($x,"1")){
print "starting number = $y\n
";
flush();
print "the number of iterations taken to reach 1 is $i\n
";
flush();
return;
}
if(eq($x,"-1")){
print "starting number = $y\n
";
flush();
print "the number of iterations taken to reach -1 is $i\n
";
flush();
return;
}
$x=t($x);
print "$x\n
";
flush();
}
}
?>
php/barina.php 0000644 0001751 0001751 00000001203 13320070755 012604 0 ustar keith keith
\n";
print "Return to main page
\n";
return;
?>
php/base.html 0000644 0001751 0001751 00000001715 11625277373 012462 0 ustar keith keith
Last modified 26th July 2011
Return to main page
php/base_.php 0000644 0001751 0001751 00000002335 12211741767 012436 0 ustar keith keith \n";
flush();
$i=bcadd($i,"1");
print " are the base $b digits of $x
\n";
return($i);
}
function base1($b,$n,$e){
global $basedigits;
global $nonzerodigitcount;
$i="0";
$nonzerodigitcount="0";
while(ge($n,$b)){
$q=bcdiv($n,$b);
$temp=bcmul($q,$b);
$t=bcsub($n,$temp);
$basedigits[$i]=$t;
if(neqzero($t)){
$nonzerodigitcount=bcadd($nonzerodigitcount,"1");
}
$n=$q;
$i=bcadd($i,1);
}
$basedigits[$i]=$n;
if(neqzero($n)){
$nonzerodigitcount=bcadd($nonzerodigitcount,"1");
}
if(neqzero($e)){
for($j="0";le($j,$i);$j=bcadd($j,"1")){
print "basedigits[$j]=$basedigits[$j],";
}
print "
\n";
}
$i=bcadd($i,1);
return($i);
}
?>
php/base.php 0000655 0001751 0001751 00000001426 12746527574 012314 0 ustar keith keith
\n";
print "Return to main page
\n";
?>
php/bernoulli_numbers.html 0000644 0001751 0001751 00000002624 12301302546 015255 0 ustar keith keith
See BC code based on Richard Brent's slides Computing Bernoulli and Tangent numbers.
Also see a paper by Donald Knuth and Thomas J. Buckholtz and The Bernoulli page.
Last modified 9th July 2011
Return to main page
php/bernoulli_numbers_.php 0000644 0001751 0001751 00000002611 11574526166 015254 0 ustar keith keith = 2, n even.
See slides by Richard Brent at http://maths.anu.edu.au/~brent/talks.html
B[0]=1, B[1]=-1/2, B[2m+1]=0 if m >= 1, B[2m]=(-1)^(m-1)*2m*T[m]/2^m*(2^m-1) if m >= 1.
Also see http://www.bernoulli.org/
*/
function bernoulli($n){
global $global_denominator_rows;
global $global_numerator_rows;
global $global_numerator;
global $global_denominator;
global $global_numerator_len;
global $global_denominator_len;
$t=bcdiv($n,"2");
$tminus1=bcsub($t,"1");
$s=bcpow("-1",$tminus1);
$temp1=tangent($t);
$temp=bcmul($n,$temp1);
$global_numerator=bcmul($s,$temp);
$k=bcpow("2",$n);
$kminus1=bcsub($k,"1");
$global_denominator=bcmul($k,$kminus1);
$g=gcd($temp,$global_denominator);
$global_numerator=int($global_numerator,$g);
$global_denominator=bcdiv($global_denominator,$g);
$global_numerator_len=len($global_numerator);
$global_denominator_len=len($global_denominator);
$temp=bcdiv($global_numerator_len,"100");
$global_numerator_rows=$temp;
$global_numerator_rows=bcadd($temp,"1");
$temp=bcdiv($global_denominator_len,"100");
$global_denominator_rows=$temp;
$global_denominator_rows=bcadd($temp,"1");
$signbn=sign($global_numerator);
$global_numerator=bcabs($global_numerator);
return($signbn);
}
?>
php/bernoulli_numbers.php 0000644 0001751 0001751 00000004275 12747021160 015110 0 ustar keith keith
This is a BCMath version of BC function bigu(a,b,c,d,e,f,printflag) contained in bigu.
Last modified 3rd March 2020
Return to main page
php/biguimproved_.php 0000644 0001751 0001751 00000043456 13743443014 014224 0 ustar keith keith \n";
return("0");
}
$a=bcdiv($a,$g); $b=bcdiv($b,$g); $c=bcdiv($c,$g);
$d=bcdiv($d,$g); $e=bcdiv($e,$g); $f=bcdiv($f,$g);
$fourac=bcmul3("4",$a,$c);
$bsquared=bcmul($b,$b);
$delta1=bcsub($bsquared,$fourac);
print "Δ1 = b2 – 4ac = $delta1
\n";
$temp=sqtest($delta1);
if(gezero($temp)){
print "discriminant is a square
\n";
return("-1");
}
$s=fund4($delta1,"0");
$t1=$globalx;
$u1=$globaly;
#print "(t1,u1)=($t1,$u1)
\n";
print "least positive solution of u2 - $delta1v2 = 4: (φ1,ψ1)=($t1,$u1)
\n";
if(ezero($d) && ezero($e)){
$f=bcminus($f);
$g=binaryviasfs($a,$b,$c,$f,"0");
if(ezero($g)){
print "There are no integer solutions of the transformed equation
\n";
return("0");
}
$u='u';
$v='v';
$twoa=bcmul("2",$a);
$twoc=bcmul("2",$c);
for($i="0";lt($i,$g);$i++){
$aa=$globalbinaryviastoltx[$i];
$bb=$globalbinaryviastolty[$i];
print "Fundamental solution [$i]: ($aa, $bb)
\n";
$temp1=abpluscd($b,$aa,$twoc,$bb);
$temp1=bcminus($temp1);
print "x = (";
printaxplusby($aa,$u,$temp1,$v);
print ")/2
\n";
$temp2=abpluscd($b,$bb,$twoa,$aa);
print "y = (";
printaxplusby($bb,$u,$temp2,$v);
print ")/2
\n";
}
$fourac=bcmul3("4",$a,$c);
$bsquared=bcmul($b,$b);
$d=bcsub($bsquared,$fourac);
print " where u2 – $d v2 = 4
\n";
$x='x';
$y='y';
print "The diophantine equation ";
printbinaryform($a,$b,$c,$x,$y);
print " = $f
\n";
if(eq($g,"1")){
print " has one solution family
\n";
}elseif(gt($g,"1")){
print " has $g solution families
\n";
}
return($g);
}
$twoa=bcmul("2",$a);
$twoc=bcmul("2",$c);
$alpha=abminuscd($twoc,$d,$b,$e);
$beta=abminuscd($twoa,$e,$b,$d);
print "α = $alpha, β = $beta
\n";
print "$delta1x = ";
$X='X';
$Y='Y';
printxplusa($X,$alpha);
print "
\n";
print "$delta1y = ";
printxplusa($Y,$beta);
print "
\n";
$temp1=bcmul3($a,$e,$e);
$temp2=bcmul3($b,$e,$d);
$temp2=bcminus($temp2);
$temp3=bcmul3($c,$d,$d);
$temp4=bcmul($f,$delta1);
$temp=bcadd4($temp1,$temp2,$temp3,$temp4);
$temp=bcmul($delta1,$temp);
$k=bcminus($temp);
#------------------------------------------------------------------------
# Now to divide a,b,c,k by gcd(a,b,c)
$t=gcd3($a,$b,$c);
$A=bcdiv($a,$t); $B=bcdiv($b,$t); $C=bcdiv($c,$t); $N=bcdiv($k,$t);
print "equation transforms to
\n";
print "AX2 + BXY + CY2 = N,
\n";
print "where A = a/g, B = b/g, C = c/g, g = gcd(a,b,c), and
\n";
print " N = -Δ1(ae2 - bde + cd2 + fΔ1)/g
\n";
print "i.e., ";
printbinaryform($A,$B,$C,$X,$Y);
print " = $N
\n";
if(ezero($N)){
$temp1=bcmod($alpha,$delta1);
$temp2=bcmod($beta,$delta1);
if(ezero($temp1) && ezero($temp2)){
$uniquesolutionx=bcdiv($alpha,$delta1);
$uniquesolutiony=bcdiv($beta,$delta1);
print "($uniquesolutionx,$uniquesolutiony) is a solution to the original equation
\n";
return("-1");
}else{
return("0");
}
}
$fourAC=bcmul3("4",$A,$C);
$Bsquared=bcmul($B,$B);
$delta2=bcsub($Bsquared,$fourAC);
print "Δ2 = B2 – 4AC = $delta2
\n";
$s=fund4($delta2,"0");
$t2=$globalx;
$u2=$globaly;
print "least positive solution of u2 - $delta2v2 = 4 is (u1,v1)=($t2,$u2)
\n";
$u11temp=aminusbc($t2,$B,$u2);
$u11=bcdiv($u11temp,"2");
$u12temp=bcmul($C,$u2);
$u12=bcminus($u12temp);
$u21=bcmul($A,$u2);
$u22temp=aplusbc($t2,$B,$u2);
$u22=bcdiv($u22temp,"2");
print "UL = ((u1 - Bv1)/2, -Cv1, Av1, ((u1 + Bv1))/2) = ($u11, $u12, $u21, $u22)
\n";
$count="0";
$g=binaryviasfs($A,$B,$C,$N,$printflag);
if(ezero($g)){
print "There are no solutions of the transformed equation
\n";
return($count);
}else{
print "There are g = $g fundamental solutions (Xh, Yh), 0 ≤ h < g, of ";
$X='x'; $Y='y';
printbinaryform($A,$B,$C,$X,$Y);
print " = $N:
\n";
for($h="0";lt($h,$g);$h++){
print "($globalbinaryviastoltx[$h], $globalbinaryviastolty[$h]), ";
}
}
print "
\n";
$k="0";
$powerof2="1";
while("1"){
$k=bcadd($k,"1");
$null=powerdd($t2,$u2,$delta2,$k);
$temp=bcdiv($zed1,$powerof2);
if(eq($temp,$t1)){
break;
}
$powerof2=bcmul($powerof2,"2");
}
$twok=bcmul("2",$k);
print "kL = $twok
\n";
print "((u1 + v1√Δ2)/2)kL/2 =";
print " ((u1 + v1√Δ2)/2)$k =";
print " (φ1 + ψ1√Δ1)/2
\n";
$twokminus1=bcsub($twok,"1");
if(eq($flag,"1")){
print "twokminus1=$twokminus1
\n";
}
print "testing ±ULt(Xh,Yh)t, 0 ≤ h < g = $g and 0 ≤ t ≤ kL – 1 = $twokminus1 gives
\n";
#print "
";
}
if(eq($merge,"1")){# we are using U instead of U^2
print "ULkL = UL$kL = ($u11,$u12,$u21,$u22)
\n";
$temp=abpluscd($u11,$alpha,$u12,$beta);
$temp1=bcminus($temp);
$temp1=bcadd($temp1,$alpha);
$aa=bcdiv($temp1,$delta1);
print " The solutions satisfy the recurrence relations
\n";
print "xn+1 = $u11xn ";
plusminus($u12);
print "yn ";
plusminus($aa);
print "
\n";
$temp=abpluscd($u21,$alpha,$u22,$beta);
$temp1=bcminus($temp);
$temp1=bcadd($temp1,$beta);
$bb=bcdiv($temp1,$delta1);
print "yn+1 = $u21xn ";
plusminus($u22);
print "yn ";
plusminus($bb);
print "
\n";
$aaa=abminuscd($u12,$bb,$u22,$aa);
$bbb=abminuscd($u21,$aa,$u11,$bb);
print "and inverse:
\n";
print "xn = $u22xn+1 ";
$minusu12=bcminus($u12);
plusminus($minusu12);
print "yn+1 ";
plusminus($aaa);
print "
\n";
$minusu21=bcminus($u21);
print "yn = $minusu21xn+1 ";
plusminus($u11);
print "yn+1 ";
plusminus($bbb);
print "
\n";
# print "n ≥ 0
\n";
print "
";
}
if(eq($merge,"-1")){# we are using -U instead of U^2
print "ULkL/2 = UL$k = ($u11,$u12,$u21,$u22)
\n";
$temp=abpluscd($u11,$alpha,$u12,$beta);
$temp=bcadd($temp,$alpha);
$aa=bcdiv($temp,$delta1);
$temp=abpluscd($u21,$alpha,$u22,$beta);
$temp=bcadd($temp,$beta);
$bb=bcdiv($temp,$delta1);
$minusu11=bcminus($u11);
$minusu12=bcminus($u12);
print " The solutions satisfy the recurrence relations
\n";
print "xn+1 = $minusu11xn ";
plusminus($minusu12);
print "yn ";
plusminus($aa);
print "
\n";
$minusu22=bcminus($u22);
$minusu21=bcminus($u21);
print "yn+1 = $minusu21xn ";
plusminus($minusu22);
print "yn ";
plusminus($bb);
print "
\n";
$aaa=abminuscd($u22,$aa,$u12,$bb);
$bbb=abminuscd($u11,$bb,$u21,$aa);
print "and inverse:
\n";
$minusu22=bcminus($u22);
print "xn = $minusu22xn+1 ";
plusminus($u12);
print "yn+1 ";
plusminus($aaa);
print "
\n";
print "yn = $u21xn+1 ";
$minusu11=bcminus($u11);
plusminus($minusu11);
print "yn+1 ";
plusminus($bbb);
print "
\n";
# print "n ≥ 0
\n";
print "
";
}
if(ezero($merge)){
return($count);
}else{
$count=bcdiv($count,"2");
return($count);
}
}
function test($x,$y,$alpha,$beta,$dd){
global $globalhyperbolasolutionx;
global $globalhyperbolasolutiony;
#print "testing (x,y)=($x,$y)
\n";
$xx=bcadd($x,$alpha);
$yy=bcadd($y,$beta);
$xxmoddd=bcmod($xx,$dd);
$yymoddd=bcmod($yy,$dd);
if(ezero($xxmoddd) && ezero($yymoddd)){
$xxoverdd=bcdiv($xx,$dd);
$yyoverdd=bcdiv($yy,$dd);
$globalhyperbolasolutionx=$xxoverdd;
$globalhyperbolasolutiony=$yyoverdd;
return("1");
}else{
return("0");
}
}
?>
php/bigu_.php 0000644 0001751 0001751 00000040224 13656354213 012451 0 ustar keith keith \n";
return("0");
}
$fourac=bcmul3("4",$a,$c);
$bsquared=bcmul($b,$b);
$dd=bcsub($bsquared,$fourac);
print "D = $dd
\n";
$temp=sqtest($dd);
if(gezero($temp)){
print "discriminant is a square
\n";
return("-1");
}
if(ezero($d) && ezero($e)){
$f=bcminus($f);
$g=binaryviasfs($a,$b,$c,$f,"0");
if(ezero($g)){
print "There are no integer solutions of the transformed equation
\n";
return("0");
}
$u='u';
$v='v';
$twoa=bcmul("2",$a);
$twoc=bcmul("2",$c);
for($i="0";lt($i,$g);$i++){
$aa=$globalbinaryviastoltx[$i];
$bb=$globalbinaryviastolty[$i];
print "Fundamental solution [$i]: ($aa, $bb)
\n";
$temp1=abpluscd($b,$aa,$twoc,$bb);
$temp1=bcminus($temp1);
print "x = (";
printaxplusby($aa,$u,$temp1,$v);
print ")/2
\n";
$temp2=abpluscd($b,$bb,$twoa,$aa);
print "y = (";
printaxplusby($bb,$u,$temp2,$v);
print ")/2
\n";
}
$fourac=bcmul3("4",$a,$c);
$bsquared=bcmul($b,$b);
$d=bcsub($bsquared,$fourac);
print " where u2 – $d v2 = 4
\n";
$x='x';
$y='y';
print "The diophantine equation ";
printbinaryform($a,$b,$c,$x,$y);
print " = $f
\n";
if(eq($g,"1")){
print " has one solution family
\n";
}elseif(gt($g,"1")){
print " has $g solution families
\n";
}
return($g);
}
$twoa=bcmul("2",$a);
$twoc=bcmul("2",$c);
$alpha=abminuscd($twoc,$d,$b,$e);
$beta=abminuscd($twoa,$e,$b,$d);
print "alpha = $alpha, beta = $beta
\n";
print "$ddx = ";
$X='X';
$Y='Y';
printxplusa($X,$alpha);
print "
\n";
print "$ddy = ";
printxplusa($Y,$beta);
print "
\n";
$temp1=bcmul3($a,$e,$e);
$temp2=bcmul3($b,$e,$d);
$temp2=bcminus($temp2);
$temp3=bcmul3($c,$d,$d);
$temp4=bcmul($f,$dd);
$temp=bcadd4($temp1,$temp2,$temp3,$temp4);
$temp=bcmul($dd,$temp);
$k=bcminus($temp);
print "solving ";
printbinaryform($a,$b,$c,$X,$Y);
print " = $k
\n";
$s=fund4($dd,"0");
$phi=$globalx;
$psi=$globaly;
print "least positive solution of u2 - $ddv2 = 4: (φ,ψ)=($phi,$psi)
\n";
$u11temp=aminusbc($phi,$b,$psi);
$u11=bcdiv($u11temp,"2");
$u12temp=bcmul($c,$psi);
$u12=bcminus($u12temp);
$u21=bcmul($a,$psi);
$u22temp=aplusbc($phi,$b,$psi);
$u22=bcdiv($u22temp,"2");
print "U = ((φ - bψ)/2, -cψ, aψ, ((φ + bψ))/2) = ($u11,$u12,$u21,$u22)
\n";
$count="0";
$flag1="0";
$flag2="0";
$g=binaryviasfs($a,$b,$c,$k,$printflag);
if(ezero($g)){
print "There are no solutions of the transformed equation
\n";
return($count);
}
print "There are g = $g fundamental solutions (X[h], Y[h], 0 ≤ h < g, of ";
$X='x'; $Y='y';
printbinaryform($a,$b,$c,$X,$Y);
print " = $k:
\n";
for($h="0";lt($h,$g);$h++){
print "($globalbinaryviastoltx[$h], $globalbinaryviastolty[$h]), ";
}
print "
\n";
for($h="0";lt($h,$g);$h++){
$gamma=$globalbinaryviastoltx[$h];
$epsilon=$globalbinaryviastolty[$h];
$t1=test($a,$b,$c,$d,$e,$f,$gamma,$epsilon,$alpha,$beta,$dd);
if(eq($t1,"1")){
$solutionx1=$globalhyperbolasolutionx;
$solutiony1=$globalhyperbolasolutiony;
}
$x=bcminus($gamma);$y=bcminus($epsilon);
$t2=test($a,$b,$c,$d,$e,$f,$x,$y,$alpha,$beta,$dd);
if(eq($t2,"1")){
$solutionx2=$globalhyperbolasolutionx;
$solutiony2=$globalhyperbolasolutiony;
}
$x=abpluscd($u11,$gamma,$u12,$epsilon);$y=abpluscd($u21,$gamma,$u22,$epsilon);
$t3=test($a,$b,$c,$d,$e,$f,$x,$y,$alpha,$beta,$dd);
if(eq($t3,"1")){
$solutionx3=$globalhyperbolasolutionx;
$solutiony3=$globalhyperbolasolutiony;
}
$x=bcminus($x);$y=bcminus($y);
$t4=test($a,$b,$c,$d,$e,$f,$x,$y,$alpha,$beta,$dd);
if(eq($t4,"1")){
$solutionx4=$globalhyperbolasolutionx;
$solutiony4=$globalhyperbolasolutiony;
}
if(ezero($t1) && ezero($t2) && ezero($t3) && ezero($t4)){
continue;
}
print "case (a,b,c,d)=($t1,$t2,$t3,$t4)
\n";
if(eq($t1,"1") && eq($t2,"1") && ezero($t3) && ezero($t4)){
#print "case 1
\n";
print "(X[$h],Y[$h]) = ($gamma,,$epsilon)
\n";
print "solution [$count]: ($solutionx1,,$solutiony1)
\n";
print "(x,y)t = (U2n($gamma,$epsilon)t + ($alpha,$beta)t)/$dd, n ∈ ℤ
\n";
print "
\n";
$arrayvalue[$count]="2";
$count++;
print "solution [$count]: ($solutionx2,$solutiony2)
\n";
print "(x,y)t = (-U2n($gamma,$epsilon)t + ($alpha,$beta)t)/$dd, n ∈ ℤ
\n";
$arrayvalue[$count]="2";
$count++;
}
if(eq($t1,"1") && ezero($t2) && eq($t3,"1") && ezero($t4)){
#print "case 2
\n";
print "(X[$h],Y[$h]) = ($gamma,$epsilon)
\n";
print "solution [$count]: ($solutionx1,$solutiony1)
\n";
print "(x,y)t = (Um($gamma,$epsilon)t + ($alpha,$beta)t)/$dd, m ∈ ℤ
\n";
$arrayvalue[$count]="1";
$count++;
}
if(eq($t1,"1") && ezero($t2) && ezero($t3) && eq($t4,"1")){
#print "case 3
\n";
print "(X[$h],Y[$h]) = ($gamma,$epsilon)
\n";
print "solution [$count]: ($solutionx1,$solutiony1)
\n";
$arrayvalue[$count]="-1";
$count++;
print "(x,y)t = ((-U)m($gamma,$epsilon)t + ($alpha,$beta)t)/$dd, m ∈ ℤ
\n";
# print "(x,y)t=(U2n($gamma,$epsilon)t + ($alpha,$beta)t)/$dd
\n";
# print "solution ($solutionx4,$solutiony4)
\n";
# print "(x,y)t=(-U2n+1($gamma,$epsilon)t + ($alpha,$beta)t)/$dd
\n";
}
if(ezero($t1) && eq($t2,"1") && eq($t3,"1") && ezero($t4)){
#print "case 4
\n";
print "(X[$h],Y[$h]) = ($gamma,$epsilon)
\n";
print "solution [$count]: ($solutionx2,$solutiony2)
\n";
$arrayvalue[$count]="-1";
$count++;
print "(x,y)t = (-(-U)m($gamma,$epsilon)t + ($alpha,$beta)t)/$dd, n ∈ ℤ
\n";
#print "solution ($solutionx2,$solutiony2)
\n";
#print "(x,y)t=(-U2n($gamma,$epsilon)t + ($alpha,$beta)t)/$dd, n ∈ ℤ
\n";
#print "solution ($solutionx3,$solutiony3)
\n";
#print "(x,y)t=(U2n+1($gamma,$epsilon)t + ($alpha,$beta)t)/$dd, n ∈ ℤ
\n";
}
if(ezero($t1) && ezero($t2) && eq($t3,"1") && eq($t4,"1")){
# print "case 5
\n";
print "(X[$h],Y[$h]) = ($gamma,$epsilon)
\n";
print "solution $count]: ($solutionx3,$solutiony3)
\n";
print "(x,y)t = (U2n+1($gamma,$epsilon)t + ($alpha,$beta)t)/$dd
\n";
$arrayvalue[$count]="2";
$count++;
print "solution [$count]: ($solutionx4,$solutiony4)
\n";
$arrayvalue[$count]="2";
$count++;
print "(x,y)t = (-U2n+1($gamma,$epsilon)t + ($alpha,$beta)t)/$dd, n ∈ ℤ
\n";
}
if(ezero($t1) && eq($t2,"1") && ezero($t3) && eq($t4,"1")){
# print "case 6
\n";
print "(X[$h],Y[$h]) = ($gamma,$epsilon)
\n";
print "solution [$count]: ($solutionx2,$solutiony2)
\n";
$arrayvalue[$count]="1";
$count++;
print "(x,y)t = (-Um($gamma,$epsilon)t + ($alpha,$beta)t)/$dd, m ∈ ℤ
\n";
}
if(eq($t1,"1") && ezero($t2) && ezero($t3) && ezero($t4)){
# print "case 7
\n";
print "(X[$h],Y[$h]) = ($gamma,$epsilon)
\n";
print "solution [$count]: ($solutionx1,$solutiony1)
\n";
print "(x,y)t = (U2n($gamma,$epsilon)t + ($alpha,$beta)t)/$dd, n ∈ ℤ
\n";
$arrayvalue[$count]="2";
$count++;
}
if(ezero($t1) && eq($t2,"1") && ezero($t3) && ezero($t4)){
# print "case 8
\n";
print "(X[$h],Y[$h]) = ($gamma,$epsilon)
\n";
print "solution [$count]: ($solutionx2,$solutiony2)
\n";
print "(x,y)t = (-U2n($gamma,$epsilon)t + ($alpha,$beta)t)/$dd, n ∈ ℤ
\n";
$arrayvalue[$count]="2";
$count++;
}
if(ezero($t1) && ezero($t2) && eq($t3,"1") && ezero($t4)){
#print "case 9
\n";
print "(X[$h],Y[$h]) = ($gamma,$epsilon)
\n";
print "solution [$count]: ($solutionx3,$solutiony3)
\n";
print "(x,y)t = (U2n+1($gamma,$epsilon)t + ($alpha,$beta)t)/$dd, n ∈ ℤ
\n";
$arrayvalue[$count]="2";
$count++;
}
if(ezero($t1) && ezero($t2) && ezero($t3) && eq($t4,"1")){
#print "case 10
\n";
print "(X[$h],Y[$h]) = ($gamma,$epsilon)
\n";
print "solution [$count]: ($solutionx4,$solutiony4)
\n";
print "(x,y)t = (-U2n+1($gamma,$epsilon)t + ($alpha,$beta)t)/$dd, n ∈ ℤ
\n";
$arrayvalue[$count]="2";
$count++;
}
if(eq($t1,"1") && eq($t2,"1") && eq($t3,"1") && eq($t4,"1")){
#print "case 15
\n";
print "(X[$h],Y[$h]) = ($gamma,$epsilon)
\n";
print "solution [$count]: ($solutionx1,$solutiony1)
\n";
print "(x,y)t = (Um($gamma,$epsilon)t + ($alpha,$beta)t)/$dd
\n";
$arrayvalue[$count]="1";
$count++;
print "solution [$count]: ($solutionx2,$solutiony2)
\n";
print "(x,y)t = (-Um($gamma,$epsilon)t + ($alpha,$beta)t)/$dd, m ∈ ℤ
\n";
$arrayvalue[$count]="1";
$count++;
}
}
if(ezero($count)){
print "no solutions of the transformed equation yielded solutions
\n";
return("0");
}
$temp=bcmul($u11,$u11);
$v11=aplusbc($temp,$u12,$u21);
$v12=abpluscd($u11,$u12,$u12,$u22);
$v21=abpluscd($u21,$u11,$u22,$u21);
$temp=bcmul($u22,$u22);
$v22=aplusbc($temp,$u21,$u12);
$t=testarrayvalue($arrayvalue,$count,"1");
# print "1st t =$t
\n";
if(eq($t,"1")){
$temp=abpluscd($u11,$alpha,$u12,$beta);
$temp1=bcminus($temp);
$temp1=bcadd($temp1,$alpha);
$aa=bcdiv($temp1,$dd);
print " The solutions satisfy the recurrence relations
\n";
print "xn+1 = $u11xn ";
plusminus($u12);
print "yn ";
plusminus($aa);
print "
\n";
$temp=abpluscd($u21,$alpha,$u22,$beta);
$temp1=bcminus($temp);
$temp1=bcadd($temp1,$beta);
$bb=bcdiv($temp1,$dd);
print "yn+1 = $u21xn ";
plusminus($u22);
print "yn ";
plusminus($bb);
print "
\n";
$aaa=abminuscd($u12,$bb,$u22,$aa);
$bbb=abminuscd($u21,$aa,$u11,$bb);
print "and inverse:
\n";
print "xn = $u22xn+1 ";
$minusu12=bcminus($u12);
plusminus($minusu12);
print "yn+1 ";
plusminus($aaa);
print "
\n";
$minusu21=bcminus($u21);
print "yn = $minusu21xn+1 ";
plusminus($u11);
print "yn+1 ";
plusminus($bbb);
print "
\n";
print "n ≥ 0
\n";
print "
";
}
$t=testarrayvalue($arrayvalue,$count,"-1");
# print "2nd t =$t
\n";
if(eq($t,"1")){
$temp=abpluscd($u11,$alpha,$u12,$beta);
$temp=bcadd($temp,$alpha);
$aa=bcdiv($temp,$dd);
$temp=abpluscd($u21,$alpha,$u22,$beta);
$temp=bcadd($temp,$beta);
$bb=bcdiv($temp,$dd);
$minusu11=bcminus($u11);
$minusu12=bcminus($u12);
print " The solutions satisfy the recurrence relations
\n";
print "xn+1 = $minusu11xn ";
plusminus($minusu12);
print "yn ";
plusminus($aa);
print "
\n";
$minusu22=bcminus($u22);
$minusu21=bcminus($u21);
print "yn+1 = $minusu21xn ";
plusminus($minusu22);
print "yn ";
plusminus($bb);
print "
\n";
$aaa=abminuscd($u22,$aa,$u12,$bb);
$bbb=abminuscd($u11,$bb,$u21,$aa);
print "and inverse:
\n";
$minusu22=bcminus($u22);
print "xn = $minusu22xn+1 ";
plusminus($u12);
print "yn+1 ";
plusminus($aaa);
print "
\n";
print "yn = $u21xn+1 ";
$minusu11=bcminus($u11);
plusminus($minusu11);
print "yn+1 ";
plusminus($bbb);
print "
\n";
print "n ≥ 0
\n";
print "
";
}
$t=testarrayvalue($arrayvalue,$count,"2");
#print "3rd t =$t
\n";
if(eq($t,"1")){
$temp=abpluscd($v11,$alpha,$v12,$beta);
$temp1=bcminus($temp);
$temp1=bcadd($temp1,$alpha);
$aa=bcdiv($temp1,$dd);
print "U2 = ($v11,$v12,$v21,$v22)
\n";
print " The solutions satisfy the recurrence relations
\n";
print "xn+1 = $v11xn ";
plusminus($v12);
print "yn ";
plusminus($aa);
print "
\n";
$temp=abpluscd($v21,$alpha,$v22,$beta);
$temp1=bcminus($temp);
$temp1=bcadd($temp1,$beta);
$bb=bcdiv($temp1,$dd);
print "yn+1 = $v21xn ";
plusminus($v22);
print "yn ";
plusminus($bb);
print "
\n";
$aaa=abminuscd($v12,$bb,$v22,$aa);
$bbb=abminuscd($v21,$aa,$v11,$bb);
print "and inverse:
\n";
print "xn = $v22xn+1 ";
$minusv12=bcminus($v12);
plusminus($minusv12);
print "yn+1 ";
plusminus($aaa);
print "
\n";
$minusv21=bcminus($v21);
print "yn = $minusv21xn+1 ";
plusminus($v11);
print "yn+1 ";
plusminus($bbb);
print "
\n";
print "n ≥ 0
\n";
print "
";
}
#print "U^(-2)=(",v22,",",-v12,",",-v21,",",v11,")\n"
#if(ezero($count)){
# print "There are no solutions
\n";
#}
#if(eq($count,"1")){
# print "There is one family of solutions
\n";
#}
#if(gt($count,"1")){
# print "There are $count families of solutions
\n";
#}
return($count);
}
function test($a,$b,$c,$d,$e,$f,$x,$y,$alpha,$beta,$dd){
global $globalhyperbolasolutionx;
global $globalhyperbolasolutiony;
#print "testing (x,y)=($x,$y)
\n";
$xx=bcadd($x,$alpha);
$yy=bcadd($y,$beta);
$xxmoddd=bcmod($xx,$dd);
$yymoddd=bcmod($yy,$dd);
if(ezero($xxmoddd) && ezero($yymoddd)){
$xxoverdd=bcdiv($xx,$dd);
$yyoverdd=bcdiv($yy,$dd);
$globalhyperbolasolutionx=$xxoverdd;
$globalhyperbolasolutiony=$yyoverdd;
return("1");
}else{
return("0");
}
}
?>
php/bigu.php 0000644 0001751 0001751 00000006155 13654706342 012321 0 ustar keith keith
\n";
print "Return to main page
\n";
return;
}
$g=bcsqrt($d);
$temp=bcmul($g,$g);
if(eq($temp,$d)){
print "d is a perfect square
\n";
print "
\n";
print "Return to main page
\n";
return;
}
/* print "The diophantine equation ";
if(gt($avalue,"1") || lt($avalue,"-1")){
print"$avalue u2";
}
if(eq($avalue,"1")){
print"u2";
}
if(eq($avalue,"-1")){
print"-u2";
}
if(neqzero($bvalue)){
if(gt($bvalue,"1")){
print"+$bvalue uv";
}
if(eq($bvalue,"1")){
print"+uv";
}
if(eq($bvalue,"-1")){
print"-uv";
}
if(lt($bvalue,"-1")){
print"$bvalue uv";
}
}
if(neqzero($cvalue)){
if(gt($cvalue,"1")){
print"+$cvalue v2";
}
if(lt($cvalue,"-1")){
print"$cvalue v2";
}
if(eq($cvalue,"1")){
print"+v2";
}
if(eq($cvalue,"-1")){
print"-v2";
}
}
*/
print "Solving the diophantine equation ax2 + bxy + cy2 + dx + ey +f = 0
\n";
print "(a, b, c, d, e, f)=($avalue, $bvalue, $cvalue, $dvalue, $evalue, $fvalue)
\n";
$s=bigu($avalue,$bvalue,$cvalue,$dvalue,$evalue,$fvalue,"0");
if(ezero($s)){
print "There are no solutions of the original equation
\n";
}
if(eq($s,"1")){
print "There is one family of solutions
\n";
}
if(gt($s,"1")){
print "There are $s families of solutions
\n";
}
}
print "
\n";
print "Return to main page
\n";
?>
php/biguu.php 0000644 0001751 0001751 00000006307 13654166366 012513 0 ustar keith keith
\n";
print "Return to main page
\n";
return;
}
$g=bcsqrt($d);
$temp=bcmul($g,$g);
if(eq($temp,$d)){
print "d is a perfect square
\n";
print "
\n";
print "Return to main page
\n";
return;
}
/* print "The diophantine equation ";
if(gt($avalue,"1") || lt($avalue,"-1")){
print"$avalue u2";
}
if(eq($avalue,"1")){
print"u2";
}
if(eq($avalue,"-1")){
print"-u2";
}
if(neqzero($bvalue)){
if(gt($bvalue,"1")){
print"+$bvalue uv";
}
if(eq($bvalue,"1")){
print"+uv";
}
if(eq($bvalue,"-1")){
print"-uv";
}
if(lt($bvalue,"-1")){
print"$bvalue uv";
}
}
if(neqzero($cvalue)){
if(gt($cvalue,"1")){
print"+$cvalue v2";
}
if(lt($cvalue,"-1")){
print"$cvalue v2";
}
if(eq($cvalue,"1")){
print"+v2";
}
if(eq($cvalue,"-1")){
print"-v2";
}
}
*/
print "Solving the diophantine equation ax2 + bxy + cy2 + dx + ey +f = 0
\n";
print "(a, b, c, d, e, f)=($avalue, $bvalue, $cvalue, $dvalue, $evalue, $fvalue)
\n";
$s=bigu($avalue,$bvalue,$cvalue,$dvalue,$evalue,$fvalue,"0");
if(ezero($s)){
print "There are no solutions of the original equation
\n";
}
if(eq($s,"1")){
print "There is one family of solutions
\n";
}
if(gt($s,"1")){
print "There are $s families of solutions
\n";
}
if(eq($s,"-1")){
print "There is a unique solution
\n";
}
}
print "
\n";
print "Return to main page
\n";
?>
php/binaryformsfs.html 0000644 0001751 0001751 00000003763 13650715130 014425 0 ustar keith keith
We also give formulae for the solutions corresponding to each fundamental solution.
This program has wider applicability than http://www.numbertheory.org/php/stolt_fundamental.html, as the latter is slow when the bounds become large.
This program is a BCMath version of a BC program.
Last modified 25th April 2020
Return to main page
php/binaryformsfs.php 0000644 0001751 0001751 00000007460 13627324426 014256 0 ustar keith keith
\n";
print "Return to main page
\n";
?>
php/binarygen.html 0000644 0001751 0001751 00000002657 12553622141 013520 0 ustar keith keith
Last modified 16th March 2015
Return to main page
php/binarygen.php 0000644 0001751 0001751 00000003722 13674271134 013344 0 ustar keith keith
\n";
print "Return to main page
\n";
?>
php/binary.html 0000644 0001751 0001751 00000003021 12553621714 013015 0 ustar keith keith
E = 1 is verbose.
Last modified 27th May 2009
Return to main page
php/binary.php 0000644 0001751 0001751 00000006175 12747032166 012657 0 ustar keith keith
\n";
print "Return to main page
\n";
?>
php/binomial0.php 0000644 0001751 0001751 00000000670 10040353524 013223 0 ustar keith keith
php/binomial.html 0000644 0001751 0001751 00000003431 11625277404 013332 0 ustar keith keith
(See P. Goetgheluck, Computing Binomial Coefficients, American Math. Monthly 94 (1987) 360-365.
Note that Goetgheluck's statement on p. 364 that E=1, if n – k < p ≤ n, assumes k ≤ n/2.)
The bc code I use is:
define E(n,k,p){ auto e,f,r,a,b e=0;r=0 if(k>n/2){ k=n-k } if(p>n-k){ return (1) } if(p>n/2){ return (0) } f=sqrt(n) if(p>f){ if(n%p < k%p){ return(1) }else{ return(0) } } while(n){ a=n%p; n=n/p b=k%p+r; k=k/p if(a<b){ e=e+1 r=1 }else{ r=0 } } return(e) }Last modified 27th February 2004
\n";
flush();
return;
}
if(lezero($k)){
print "k ≤ 0
\n";
flush();
return;
}
if(le($n,$k)){
print "n < k
\n";
flush();
return;
}
$i="0";
$s="0";
while(le($p[$i],$n)){ /* there exists an i, 0<=i<=2047,
satisfying $p[$i]>$n */
$q=$p[$i];
$e=binomial_p($n,$k,$q);
if(gtzero($e)){
if(gtzero($s)){
if(gt($e,"1")){
print " · $q$e";
flush();
}else{
print " · $q";
flush();
}
}else{
if(gt($e,"1")){
print "$q$e";
flush();
}else{
print $q;
flush();
}
}
$temp=bcmod($s,"10");
if(ezero($temp) && gtzero($s)){
print "
\n";
flush();
}
$s=bcadd($s,"1");
}
if(eq($i,"2047")){
break;
}else{
$i=bcadd($i,"1");
}
}
print "
\n";
flush();
return($s);
}
?>
php/binomial.php 0000644 0001751 0001751 00000002104 12747226736 013161 0 ustar keith keith
\n";
flush();
print "Return to main page
\n";
flush();
?>
php/blog 0000644 0001751 0001751 00000000237 11610766253 011520 0 ustar keith keith 18th July 2011 latest version of php files. reorganised inclusion of library.php, added order of qform for neg disc
and added h(d) for range of positive disc.
php/buell_224.html 0000644 0001751 0001751 00000046661 11612041574 013237 0 ustar keith keith
h(-3) | 1 | h(-7) | 1 | h(-11) | 1 | h(-15) | 2 | h(-19) | 1 | h(-23) | 3 |
h(-31) | 3 | h(-35) | 2 | h(-39) | 4 | h(-43) | 1 | h(-47) | 5 | h(-51) | 2 |
h(-55) | 4 | h(-59) | 3 | h(-67) | 1 | h(-71) | 7 | h(-79) | 5 | h(-83) | 3 |
h(-87) | 6 | h(-91) | 2 | h(-95) | 8 | h(-103) | 5 | h(-107) | 3 | h(-111) | 8 |
h(-115) | 2 | h(-119) | 10 | h(-123) | 2 | h(-127) | 5 | h(-131) | 5 | h(-139) | 3 |
h(-143) | 10 | h(-151) | 7 | h(-155) | 4 | h(-159) | 10 | h(-163) | 1 | h(-167) | 11 |
h(-179) | 5 | h(-183) | 8 | h(-187) | 2 | h(-191) | 13 | h(-195) | 4 | h(-199) | 9 |
h(-203) | 4 | h(-211) | 3 | h(-215) | 14 | h(-219) | 4 | h(-223) | 7 | h(-227) | 5 |
h(-231) | 12 | h(-235) | 2 | h(-239) | 15 | h(-247) | 6 | h(-251) | 7 | h(-255) | 12 |
h(-259) | 4 | h(-263) | 13 | h(-267) | 2 | h(-271) | 11 | h(-283) | 3 | h(-287) | 14 |
h(-291) | 4 | h(-295) | 8 | h(-299) | 8 | h(-303) | 10 | h(-307) | 3 | h(-311) | 19 |
h(-319) | 10 | h(-323) | 4 | h(-327) | 12 | h(-331) | 3 | h(-335) | 18 | h(-339) | 6 |
h(-347) | 5 | h(-355) | 4 | h(-359) | 19 | h(-367) | 9 | h(-371) | 8 | h(-379) | 3 |
h(-383) | 17 | h(-391) | 14 | h(-395) | 8 | h(-399) | 16 | h(-403) | 2 | h(-407) | 16 |
h(-411) | 6 | h(-415) | 10 | h(-419) | 9 | h(-427) | 2 | h(-431) | 21 | h(-435) | 4 |
h(-439) | 15 | h(-443) | 5 | h(-447) | 14 | h(-451) | 6 | h(-455) | 20 | h(-463) | 7 |
h(-467) | 7 | h(-471) | 16 | h(-479) | 25 | h(-483) | 4 | h(-487) | 7 | h(-491) | 9 |
h(-499) | 3 | h(-503) | 21 | h(-511) | 14 | h(-515) | 6 | h(-519) | 18 | h(-523) | 5 |
h(-527) | 18 | h(-535) | 14 | h(-543) | 12 | h(-547) | 3 | h(-551) | 26 | h(-555) | 4 |
h(-559) | 16 | h(-563) | 9 | h(-571) | 5 | h(-579) | 8 | h(-583) | 8 | h(-587) | 7 |
h(-591) | 22 | h(-595) | 4 | h(-599) | 25 | h(-607) | 13 | h(-611) | 10 | h(-615) | 20 |
h(-619) | 5 | h(-623) | 22 | h(-627) | 4 | h(-631) | 13 | h(-635) | 10 | h(-643) | 3 |
h(-647) | 23 | h(-651) | 8 | h(-655) | 12 | h(-659) | 11 | h(-663) | 16 | h(-667) | 4 |
h(-671) | 30 | h(-679) | 18 | h(-683) | 5 | h(-687) | 12 | h(-691) | 5 | h(-695) | 24 |
h(-699) | 10 | h(-703) | 14 | h(-707) | 6 | h(-715) | 4 | h(-719) | 31 | h(-723) | 4 |
h(-727) | 13 | h(-731) | 12 | h(-739) | 5 | h(-743) | 21 | h(-751) | 15 | h(-755) | 12 |
h(-759) | 24 | h(-763) | 4 | h(-767) | 22 | h(-771) | 6 | h(-779) | 10 | h(-787) | 5 |
h(-791) | 32 | h(-795) | 4 | h(-799) | 16 | h(-803) | 10 | h(-807) | 14 | h(-811) | 7 |
h(-815) | 30 | h(-823) | 9 | h(-827) | 7 | h(-831) | 28 | h(-835) | 6 | h(-839) | 33 |
h(-843) | 6 | h(-851) | 10 | h(-859) | 7 | h(-863) | 21 | h(-871) | 22 | h(-879) | 22 |
h(-883) | 3 | h(-887) | 29 | h(-895) | 16 | h(-899) | 14 | h(-903) | 16 | h(-907) | 3 |
h(-911) | 31 | h(-915) | 8 | h(-919) | 19 | h(-923) | 10 | h(-935) | 28 | h(-939) | 8 |
h(-943) | 16 | h(-947) | 5 | h(-951) | 26 | h(-955) | 4 | h(-959) | 36 | h(-967) | 11 |
h(-971) | 15 | h(-979) | 8 | h(-983) | 27 | h(-987) | 8 | h(-991) | 17 | h(-995) | 8 |
h(-1003) | 4 | h(-1007) | 30 | h(-1011) | 12 | h(-1015) | 16 | h(-1019) | 13 | h(-1023) | 16 |
h(-1027) | 4 | h(-1031) | 35 | h(-1039) | 23 | h(-1043) | 8 | h(-1047) | 16 | h(-1051) | 5 |
h(-1055) | 36 | h(-1059) | 6 | h(-1063) | 19 | h(-1067) | 12 | h(-1079) | 34 | h(-1087) | 9 |
h(-1091) | 17 | h(-1095) | 28 | h(-1099) | 6 | h(-1103) | 23 | h(-1111) | 22 | h(-1115) | 10 |
h(-1119) | 32 | h(-1123) | 5 | h(-1131) | 8 | h(-1135) | 18 | h(-1139) | 16 | h(-1147) | 6 |
h(-1151) | 41 | h(-1155) | 8 | h(-1159) | 16 | h(-1163) | 7 | h(-1167) | 22 | h(-1171) | 7 |
h(-1187) | 9 | h(-1191) | 24 | h(-1195) | 8 | h(-1199) | 38 | h(-1203) | 6 | h(-1207) | 18 |
h(-1211) | 14 | h(-1219) | 6 | h(-1223) | 35 | h(-1227) | 4 | h(-1231) | 27 | h(-1235) | 12 |
h(-1239) | 32 | h(-1243) | 4 | h(-1247) | 26 | h(-1255) | 12 | h(-1259) | 15 | h(-1263) | 20 |
h(-1267) | 6 | h(-1271) | 40 | h(-1279) | 23 | h(-1283) | 11 | h(-1291) | 9 | h(-1295) | 36 |
h(-1299) | 8 | h(-1303) | 11 | h(-1307) | 11 | h(-1311) | 28 | h(-1315) | 6 | h(-1319) | 45 |
h(-1327) | 15 | h(-1335) | 28 | h(-1339) | 8 | h(-1343) | 34 | h(-1347) | 6 | h(-1351) | 24 |
h(-1355) | 12 | h(-1363) | 6 | h(-1367) | 25 | h(-1371) | 12 | h(-1379) | 16 | h(-1383) | 18 |
h(-1387) | 4 | h(-1391) | 44 | h(-1399) | 27 | h(-1403) | 14 | h(-1407) | 24 | h(-1411) | 4 |
h(-1415) | 34 | h(-1419) | 12 | h(-1423) | 9 | h(-1427) | 15 | h(-1435) | 4 | h(-1439) | 39 |
h(-1443) | 8 | h(-1447) | 23 | h(-1451) | 13 | h(-1455) | 28 | h(-1459) | 11 | h(-1463) | 32 |
h(-1471) | 23 | h(-1479) | 28 | h(-1483) | 7 | h(-1487) | 37 | h(-1491) | 12 | h(-1495) | 20 |
h(-1499) | 13 | h(-1507) | 4 | h(-1511) | 49 | h(-1515) | 12 | h(-1523) | 7 | h(-1527) | 14 |
h(-1531) | 11 | h(-1535) | 38 | h(-1543) | 19 | h(-1547) | 12 | h(-1551) | 32 | h(-1555) | 4 |
h(-1559) | 51 | h(-1563) | 6 | h(-1567) | 15 | h(-1571) | 17 | h(-1579) | 9 | h(-1583) | 33 |
h(-1591) | 22 | h(-1595) | 16 | h(-1599) | 36 | h(-1603) | 6 | h(-1607) | 27 | h(-1615) | 24 |
h(-1619) | 15 | h(-1623) | 28 | h(-1627) | 7 | h(-1631) | 44 | h(-1635) | 8 | h(-1639) | 22 |
h(-1643) | 10 | h(-1651) | 8 | h(-1655) | 44 | h(-1659) | 8 | h(-1663) | 17 | h(-1667) | 13 |
h(-1671) | 38 | h(-1679) | 52 | h(-1687) | 18 | h(-1691) | 18 | h(-1695) | 20 | h(-1699) | 11 |
h(-1703) | 28 | h(-1707) | 10 | h(-1711) | 28 | h(-1723) | 5 | h(-1727) | 36 | h(-1731) | 8 |
h(-1735) | 26 | h(-1739) | 20 | h(-1743) | 24 | h(-1747) | 5 | h(-1751) | 48 | h(-1759) | 27 |
h(-1763) | 12 | h(-1767) | 32 | h(-1771) | 8 | h(-1779) | 10 | h(-1783) | 17 | h(-1787) | 7 |
h(-1795) | 8 | h(-1799) | 50 | h(-1803) | 8 | h(-1807) | 12 | h(-1811) | 23 | h(-1819) | 10 |
h(-1823) | 45 | h(-1831) | 19 | h(-1835) | 10 | h(-1839) | 40 | h(-1843) | 6 | h(-1847) | 43 |
h(-1851) | 14 | h(-1855) | 28 | h(-1867) | 5 | h(-1871) | 45 | h(-1879) | 27 | h(-1883) | 14 |
h(-1887) | 20 | h(-1891) | 10 | h(-1895) | 48 | h(-1903) | 22 | h(-1907) | 13 | h(-1915) | 6 |
h(-1919) | 44 | h(-1923) | 10 | h(-1927) | 18 | h(-1931) | 21 | h(-1939) | 8 | h(-1943) | 32 |
h(-1947) | 8 | h(-1951) | 33 | h(-1955) | 12 | h(-1959) | 42 | h(-1963) | 6 | h(-1967) | 36 |
h(-1979) | 23 | h(-1983) | 16 | h(-1987) | 7 | h(-1991) | 56 | h(-1995) | 8 | h(-1999) | 27 |
h(-2003) | 9 | h(-2011) | 7 | h(-2015) | 52 | h(-2019) | 16 | h(-2027) | 11 | h(-2031) | 38 |
h(-2035) | 8 | h(-2039) | 45 | h(-2047) | 18 | h(-2051) | 18 | h(-2055) | 28 | h(-2059) | 8 |
h(-2063) | 45 | h(-2067) | 8 | h(-2071) | 30 | h(-2083) | 7 | h(-2087) | 35 | h(-2091) | 12 |
h(-2095) | 16 | h(-2099) | 19 | h(-2103) | 34 | h(-2111) | 49 | h(-2119) | 34 | h(-2123) | 14 |
h(-2127) | 28 | h(-2131) | 13 | h(-2135) | 44 | h(-2139) | 8 | h(-2143) | 13 | h(-2147) | 14 |
h(-2155) | 12 | h(-2159) | 60 | h(-2163) | 8 | h(-2167) | 18 | h(-2171) | 14 | h(-2179) | 7 |
h(-2183) | 42 | h(-2191) | 30 | h(-2195) | 16 | h(-2199) | 36 | h(-2203) | 5 | h(-2207) | 39 |
h(-2211) | 16 | h(-2215) | 22 | h(-2219) | 24 | h(-2227) | 6 | h(-2231) | 58 | h(-2235) | 12 |
h(-2239) | 35 | h(-2243) | 15 | h(-2247) | 20 | h(-2251) | 7 | h(-2255) | 40 | h(-2263) | 22 |
h(-2267) | 11 | h(-2271) | 44 | h(-2279) | 56 | h(-2283) | 6 | h(-2287) | 29 | h(-2291) | 18 |
h(-2307) | 8 | h(-2311) | 29 | h(-2315) | 18 | h(-2319) | 30 | h(-2323) | 8 | h(-2327) | 48 |
h(-2335) | 14 | h(-2339) | 19 | h(-2343) | 32 | h(-2347) | 5 | h(-2351) | 63 | h(-2355) | 12 |
h(-2359) | 28 | h(-2363) | 10 | h(-2371) | 13 | h(-2379) | 16 | h(-2383) | 29 | h(-2387) | 12 |
h(-2391) | 34 | h(-2395) | 8 | h(-2399) | 59 | h(-2407) | 20 | h(-2411) | 23 | h(-2415) | 40 |
h(-2419) | 8 | h(-2423) | 33 | h(-2427) | 14 | h(-2431) | 28 | h(-2435) | 22 | h(-2443) | 6 |
h(-2447) | 37 | h(-2451) | 8 | h(-2455) | 28 | h(-2459) | 19 | h(-2463) | 34 | h(-2467) | 7 |
h(-2471) | 62 | h(-2479) | 24 | h(-2483) | 20 | h(-2487) | 20 | h(-2491) | 12 | h(-2495) | 56 |
h(-2503) | 21 | h(-2507) | 14 | h(-2515) | 6 | h(-2519) | 64 | h(-2531) | 17 | h(-2539) | 11 |
h(-2543) | 35 | h(-2551) | 41 | h(-2555) | 12 | h(-2559) | 40 | h(-2563) | 6 | h(-2567) | 44 |
h(-2571) | 14 | h(-2579) | 21 | h(-2587) | 8 | h(-2591) | 57 | h(-2595) | 12 | h(-2599) | 30 |
h(-2603) | 20 | h(-2607) | 28 | h(-2611) | 8 | h(-2615) | 46 | h(-2623) | 22 | h(-2627) | 12 |
h(-2631) | 48 | h(-2635) | 12 | h(-2639) | 64 | h(-2643) | 10 | h(-2647) | 15 | h(-2651) | 26 |
h(-2659) | 13 | h(-2663) | 43 | h(-2667) | 8 | h(-2671) | 23 | h(-2679) | 52 | h(-2683) | 5 |
h(-2687) | 51 | h(-2699) | 15 | h(-2703) | 28 | h(-2707) | 7 | h(-2711) | 53 | h(-2715) | 8 |
h(-2719) | 41 | h(-2723) | 12 | h(-2731) | 11 | h(-2735) | 62 | h(-2739) | 16 | h(-2743) | 20 |
h(-2747) | 18 | h(-2751) | 40 | h(-2755) | 8 | h(-2759) | 54 | h(-2767) | 21 | h(-2771) | 26 |
h(-2779) | 14 | h(-2787) | 6 | h(-2791) | 39 | h(-2795) | 12 | h(-2803) | 9 | h(-2807) | 52 |
h(-2811) | 16 | h(-2815) | 22 | h(-2819) | 21 | h(-2823) | 26 | h(-2827) | 8 | h(-2831) | 68 |
h(-2839) | 26 | h(-2843) | 15 | h(-2847) | 32 | h(-2851) | 11 | h(-2855) | 60 | h(-2859) | 18 |
h(-2863) | 22 | h(-2867) | 12 | h(-2879) | 57 | h(-2887) | 25 | h(-2895) | 36 | h(-2899) | 10 |
h(-2903) | 59 | h(-2911) | 42 | h(-2915) | 24 | h(-2919) | 40 | h(-2923) | 6 | h(-2927) | 31 |
h(-2931) | 14 | h(-2935) | 22 | h(-2939) | 29 | h(-2947) | 8 | h(-2951) | 54 | h(-2955) | 12 |
h(-2959) | 40 | h(-2963) | 13 | h(-2967) | 44 | h(-2971) | 11 | h(-2983) | 20 | h(-2987) | 20 |
h(-2991) | 48 | h(-2995) | 8 | h(-2999) | 73 | h(-3003) | 8 | h(-3007) | 20 | h(-3011) | 21 |
h(-3019) | 7 | h(-3023) | 47 | h(-3027) | 12 | h(-3031) | 34 | h(-3035) | 18 | h(-3039) | 42 |
h(-3043) | 12 | h(-3047) | 38 | h(-3055) | 36 | h(-3059) | 24 | h(-3063) | 16 | h(-3067) | 7 |
h(-3071) | 76 | h(-3079) | 41 | h(-3083) | 13 | h(-3091) | 10 | h(-3095) | 48 | h(-3099) | 20 |
h(-3103) | 20 | h(-3107) | 18 | h(-3111) | 52 | h(-3115) | 12 | h(-3119) | 69 | h(-3127) | 24 |
h(-3131) | 20 | h(-3135) | 40 | h(-3139) | 10 | h(-3143) | 56 | h(-3147) | 10 | h(-3151) | 22 |
h(-3155) | 20 | h(-3163) | 9 | h(-3167) | 53 | h(-3171) | 16 | h(-3183) | 34 | h(-3187) | 7 |
h(-3191) | 69 | h(-3199) | 32 | h(-3203) | 11 | h(-3207) | 32 | h(-3215) | 50 | h(-3219) | 20 |
h(-3223) | 30 | h(-3227) | 14 | h(-3235) | 6 | h(-3239) | 70 | h(-3243) | 8 | h(-3247) | 32 |
h(-3251) | 31 | h(-3255) | 40 | h(-3259) | 9 | h(-3263) | 48 | h(-3271) | 27 | h(-3279) | 52 |
h(-3287) | 34 | h(-3291) | 10 | h(-3295) | 32 | h(-3299) | 27 | h(-3307) | 9 | h(-3311) | 72 |
h(-3315) | 8 | h(-3319) | 41 | h(-3323) | 17 | h(-3327) | 26 | h(-3331) | 15 | h(-3335) | 64 |
h(-3343) | 19 | h(-3347) | 11 | h(-3351) | 60 | h(-3355) | 8 | h(-3359) | 69 | h(-3363) | 16 |
h(-3367) | 20 | h(-3371) | 21 | h(-3379) | 16 | h(-3383) | 46 | h(-3387) | 12 | h(-3391) | 37 |
h(-3395) | 20 | h(-3399) | 40 | h(-3403) | 8 | h(-3407) | 57 | h(-3415) | 38 | h(-3419) | 28 |
h(-3423) | 40 | h(-3427) | 6 | h(-3431) | 66 | h(-3435) | 16 | h(-3439) | 30 | h(-3443) | 16 |
h(-3451) | 12 | h(-3455) | 52 | h(-3459) | 12 | h(-3463) | 19 | h(-3467) | 19 | h(-3471) | 60 |
h(-3487) | 28 | h(-3491) | 23 | h(-3495) | 36 | h(-3499) | 11 | h(-3503) | 52 | h(-3507) | 8 |
h(-3511) | 41 | h(-3515) | 20 | h(-3523) | 6 | h(-3527) | 65 | h(-3531) | 16 | h(-3535) | 28 |
h(-3539) | 23 | h(-3543) | 18 | h(-3547) | 9 | h(-3551) | 58 | h(-3559) | 45 | h(-3563) | 22 |
h(-3567) | 20 | h(-3571) | 15 | h(-3579) | 14 | h(-3583) | 29 | h(-3587) | 22 | h(-3595) | 8 |
h(-3599) | 66 | h(-3603) | 16 | h(-3607) | 19 | h(-3611) | 26 | h(-3615) | 48 | h(-3619) | 12 |
h(-3623) | 45 | h(-3631) | 43 | h(-3635) | 10 | h(-3639) | 60 | h(-3643) | 9 | h(-3647) | 54 |
h(-3651) | 18 | h(-3655) | 20 | h(-3659) | 29 | h(-3667) | 10 | h(-3671) | 81 | h(-3679) | 32 |
h(-3683) | 10 | h(-3687) | 42 | h(-3691) | 13 | h(-3695) | 72 | h(-3707) | 14 | h(-3711) | 36 |
h(-3715) | 14 | h(-3719) | 67 | h(-3723) | 12 | h(-3727) | 31 | h(-3731) | 28 | h(-3739) | 11 |
h(-3743) | 56 | h(-3747) | 12 | h(-3755) | 20 | h(-3759) | 52 | h(-3763) | 6 | h(-3767) | 39 |
h(-3779) | 31 | h(-3783) | 48 | h(-3787) | 8 | h(-3791) | 68 | h(-3795) | 16 | h(-3799) | 46 |
h(-3803) | 15 | h(-3811) | 10 | h(-3815) | 56 | h(-3819) | 16 | h(-3823) | 29 | h(-3827) | 22 |
h(-3831) | 42 | h(-3835) | 12 | h(-3839) | 82 | h(-3847) | 23 | h(-3851) | 25 | h(-3855) | 44 |
h(-3859) | 10 | h(-3863) | 61 | h(-3867) | 14 | h(-3883) | 8 | h(-3891) | 24 | h(-3895) | 32 |
h(-3899) | 24 | h(-3903) | 26 | h(-3907) | 7 | h(-3911) | 83 | h(-3919) | 39 | h(-3923) | 23 |
h(-3927) | 40 | h(-3931) | 11 | h(-3935) | 66 | h(-3939) | 16 | h(-3943) | 27 | h(-3947) | 17 |
h(-3955) | 12 | h(-3959) | 68 | h(-3963) | 8 | h(-3967) | 33 | h(-3979) | 20 | h(-3983) | 44 |
h(-3991) | 30 | h(-3995) | 28 | h(-3999) | 48 | h(-4003) | 13 | h(-4007) | 57 | h(-4011) | 20 |
h(-4015) | 20 | h(-4019) | 19 | h(-4027) | 9 | h(-4031) | 84 | h(-4035) | 12 | h(-4039) | 42 |
h(-4043) | 16 | h(-4047) | 40 | h(-4051) | 11 | h(-4055) | 68 | h(-4063) | 24 | h(-4071) | 40 |
h(-4079) | 85 | h(-4083) | 10 | h(-4087) | 30 | h(-4091) | 33 | h(-4099) | 15 | h(-4103) | 42 |
h(-4111) | 39 | h(-4115) | 22 | h(-4119) | 54 | h(-4123) | 8 | h(-4127) | 49 | h(-4135) | 46 |
h(-4139) | 19 | h(-4143) | 44 | h(-4147) | 12 | h(-4151) | 74 | h(-4155) | 12 | h(-4159) | 31 |
h(-4163) | 22 | h(-4171) | 16 | h(-4179) | 16 | h(-4183) | 28 | h(-4187) | 14 | h(-4191) | 60 |
h(-4195) | 8 | h(-4199) | 88 | h(-4207) | 26 | h(-4211) | 23 | h(-4215) | 44 | h(-4219) | 15 |
h(-4223) | 44 | h(-4227) | 10 | h(-4231) | 51 | h(-4243) | 9 | h(-4247) | 62 | h(-4251) | 16 |
h(-4255) | 36 | h(-4259) | 35 | h(-4267) | 8 | h(-4271) | 65 | h(-4279) | 28 | h(-4283) | 21 |
h(-4287) | 48 | h(-4291) | 12 | h(-4295) | 48 | h(-4299) | 18 | h(-4303) | 34 | h(-4307) | 18 |
h(-4315) | 14 | h(-4319) | 84 | h(-4323) | 8 | h(-4327) | 19 | h(-4331) | 34 | h(-4339) | 17 |
h(-4343) | 64 | h(-4351) | 44 | h(-4355) | 20 | h(-4359) | 60 | h(-4363) | 9 | h(-4367) | 68 |
h(-4371) | 20 | h(-4379) | 16 | h(-4387) | 8 | h(-4391) | 79 | h(-4395) | 20 | h(-4399) | 50 |
h(-4403) | 20 | h(-4407) | 40 | h(-4411) | 12 | h(-4415) | 66 | h(-4423) | 33 | h(-4427) | 16 |
h(-4431) | 48 | h(-4435) | 10 | h(-4439) | 76 | h(-4443) | 14 | h(-4447) | 17 | h(-4451) | 29 |
h(-4463) | 55 | h(-4467) | 12 | h(-4471) | 44 | h(-4479) | 70 | h(-4483) | 9 | h(-4487) | 60 |
h(-4495) | 32 | h(-4499) | 34 | h(-4503) | 24 | h(-4507) | 13 | h(-4511) | 84 | h(-4515) | 16 |
h(-4519) | 29 | h(-4523) | 21 | h(-4531) | 12 | h(-4535) | 70 | h(-4539) | 20 | h(-4543) | 28 |
h(-4547) | 17 | h(-4551) | 56 | h(-4555) | 12 | h(-4559) | 72 | h(-4567) | 33 | h(-4571) | 28 |
h(-4579) | 10 | h(-4583) | 61 | h(-4587) | 12 | h(-4591) | 49 | h(-4595) | 24 | h(-4603) | 7 |
h(-4607) | 40 | h(-4611) | 28 | h(-4615) | 36 | h(-4619) | 36 | h(-4623) | 36 | h(-4627) | 10 |
h(-4631) | 76 | h(-4639) | 51 | h(-4643) | 13 | h(-4647) | 32 | h(-4651) | 17 | h(-4659) | 14 |
h(-4663) | 33 | h(-4667) | 22 | h(-4679) | 91 | h(-4683) | 16 | h(-4687) | 16 | h(-4691) | 21 |
h(-4695) | 44 | h(-4699) | 12 | h(-4703) | 75 | h(-4711) | 44 | h(-4715) | 24 | h(-4723) | 9 |
h(-4727) | 54 | h(-4731) | 20 | h(-4735) | 42 | h(-4739) | 26 | h(-4747) | 8 | h(-4751) | 91 |
h(-4755) | 12 | h(-4759) | 55 | h(-4763) | 20 | h(-4767) | 32 | h(-4771) | 12 | h(-4783) | 23 |
h(-4787) | 25 | h(-4791) | 68 | h(-4795) | 12 | h(-4799) | 63 | h(-4803) | 14 | h(-4807) | 40 |
h(-4811) | 22 | h(-4819) | 18 | h(-4823) | 48 | h(-4827) | 12 | h(-4831) | 33 | h(-4835) | 30 |
h(-4839) | 58 | h(-4843) | 8 | h(-4847) | 74 | h(-4855) | 20 | h(-4859) | 30 | h(-4863) | 52 |
h(-4867) | 8 | h(-4871) | 91 | h(-4879) | 52 | h(-4883) | 18 | h(-4891) | 20 | h(-4895) | 64 |
h(-4899) | 16 | h(-4903) | 27 | h(-4907) | 12 | h(-4911) | 50 | h(-4915) | 10 | h(-4919) | 91 |
h(-4927) | 34 | h(-4931) | 35 | h(-4935) | 48 | h(-4939) | 16 | h(-4943) | 55 | h(-4947) | 12 |
h(-4951) | 31 | h(-4955) | 28 | h(-4963) | 12 | h(-4967) | 59 | h(-4971) | 16 | h(-4979) | 30 |
h(-4983) | 52 | h(-4987) | 9 | h(-4991) | 92 | h(-4999) | 33 | h(-5003) | 15 | h(-5007) | 36 |
h(-5011) | 21 | h(-5015) | 88 | h(-5019) | 20 | h(-5023) | 25 | h(-5027) | 14 | h(-5035) | 12 |
h(-5039) | 83 | h(-5051) | 29 | h(-5055) | 36 | h(-5059) | 19 | h(-5063) | 36 | h(-5071) | 50 |
h(-5079) | 64 | h(-5083) | 8 | h(-5087) | 69 | h(-5091) | 14 | h(-5095) | 48 | h(-5099) | 39 |
h(-5107) | 7 | h(-5111) | 78 | h(-5115) | 16 | h(-5119) | 39 | h(-5123) | 26 | h(-5127) | 38 |
h(-5131) | 10 | h(-5135) | 56 | h(-5143) | 40 | h(-5147) | 19 | h(-5151) | 68 | h(-5155) | 12 |
h(-5159) | 88 | h(-5163) | 10 | h(-5167) | 33 | h(-5171) | 35 | h(-5179) | 11 | h(-5183) | 80 |
h(-5187) | 16 | h(-5191) | 40 | h(-5195) | 16 | h(-5199) | 74 | h(-5207) | 56 | h(-5215) | 32 |
h(-5219) | 24 | h(-5223) | 32 | h(-5227) | 15 | h(-5231) | 75 | h(-5235) | 24 | h(-5251) | 14 |
h(-5255) | 92 | h(-5259) | 12 | h(-5263) | 28 | h(-5267) | 14 | h(-5271) | 64 | h(-5279) | 87 |
h(-5287) | 34 | h(-5291) | 36 | h(-5295) | 60 | h(-5299) | 12 | h(-5303) | 55 | h(-5307) | 12 |
h(-5311) | 46 | h(-5315) | 18 | h(-5323) | 15 | h(-5327) | 58 | h(-5331) | 20 | h(-5335) | 32 |
h(-5339) | 34 | h(-5343) | 36 | h(-5347) | 13 | h(-5351) | 93 | h(-5359) | 48 | h(-5363) | 16 |
h(-5367) | 40 | h(-5371) | 12 | h(-5379) | 24 | h(-5383) | 22 | h(-5387) | 23 | h(-5395) | 12 |
h(-5399) | 79 | h(-5403) | 16 | h(-5407) | 43 | h(-5411) | 34 | h(-5419) | 13 | h(-5423) | 68 |
h(-5431) | 57 | h(-5435) | 26 | h(-5443) | 9 | h(-5447) | 60 | h(-5451) | 28 | h(-5455) | 36 |
h(-5459) | 34 | h(-5467) | 8 | h(-5471) | 71 | h(-5479) | 43 | h(-5483) | 17 | h(-5487) | 52 |
h(-5495) | 84 | h(-5503) | 25 | h(-5507) | 23 | h(-5511) | 56 | h(-5515) | 10 | h(-5519) | 97 |
h(-5523) | 12 | h(-5527) | 19 | h(-5531) | 23 | h(-5539) | 18 | h(-5543) | 78 | h(-5551) | 52 |
h(-5555) | 24 | h(-5559) | 44 | h(-5563) | 15 | h(-5567) | 54 | h(-5579) | 30 | h(-5583) | 32 |
h(-5587) | 8 | h(-5591) | 99 | h(-5595) | 12 | h(-5599) | 56 | h(-5603) | 22 | h(-5611) | 10 |
h(-5615) | 62 | h(-5619) | 28 | h(-5623) | 33 | h(-5627) | 28 | h(-5631) | 74 | h(-5639) | 87 |
h(-5647) | 21 | h(-5651) | 31 | h(-5655) | 56 | h(-5659) | 19 | h(-5663) | 56 | h(-5667) | 10 |
h(-5671) | 44 | h(-5683) | 11 | h(-5691) | 24 | h(-5695) | 44 | h(-5699) | 24 | h(-5703) | 54 |
h(-5707) | 8 | h(-5711) | 109 | h(-5719) | 56 | h(-5723) | 14 | h(-5727) | 40 | h(-5731) | 20 |
h(-5735) | 52 | h(-5739) | 22 | h(-5743) | 29 | h(-5747) | 24 | h(-5755) | 12 | h(-5759) | 108 |
h(-5763) | 12 | h(-5767) | 36 | h(-5771) | 44 | h(-5779) | 13 | h(-5783) | 53 | h(-5791) | 33 |
h(-5795) | 32 | h(-5799) | 80 | h(-5803) | 10 | h(-5807) | 65 | h(-5811) | 12 | h(-5815) | 50 |
h(-5827) | 15 | h(-5835) | 12 | h(-5839) | 37 | h(-5843) | 25 | h(-5847) | 50 | h(-5851) | 21 |
h(-5855) | 76 | h(-5863) | 28 | h(-5867) | 21 | h(-5871) | 72 | h(-5879) | 101 | h(-5883) | 16 |
h(-5891) | 26 | h(-5899) | 18 | h(-5903) | 73 | h(-5907) | 16 | h(-5911) | 56 | h(-5919) | 54 |
h(-5923) | 7 | h(-5927) | 71 | h(-5935) | 42 | h(-5939) | 35 | h(-5943) | 32 | h(-5947) | 8 |
h(-5951) | 90 | h(-5955) | 20 | h(-5959) | 42 | h(-5963) | 24 | h(-5971) | 14 | h(-5979) | 24 |
h(-5983) | 44 | h(-5987) | 15 | h(-5991) | 70 | h(-5995) | 16 | h(-5999) | 90 | h(-6007) | 27 |
h(-6011) | 27 | h(-6015) | 36 | h(-6019) | 22 | h(-6023) | 82 | h(-6031) | 50 | h(-6035) | 28 |
h(-6043) | 9 | h(-6047) | 71 | h(-6051) | 20 | h(-6055) | 36 | h(-6059) | 26 | h(-6063) | 36 |
h(-6067) | 15 | h(-6071) | 96 | h(-6079) | 57 | h(-6083) | 24 | h(-6087) | 36 | h(-6091) | 15 |
h(-6095) | 84 | h(-6099) | 16 | h(-6103) | 28 | h(-6107) | 30 | h(-6115) | 10 | h(-6119) | 82 |
h(-6123) | 16 | h(-6127) | 22 | h(-6131) | 31 | h(-6135) | 72 | h(-6139) | 20 | h(-6143) | 41 |
h(-6151) | 59 | h(-6155) | 28 | h(-6159) | 80 | h(-6163) | 11 | h(-6167) | 66 | h(-6179) | 42 |
h(-6187) | 12 | h(-6191) | 98 | h(-6195) | 16 | h(-6199) | 39 | h(-6203) | 17 | h(-6207) | 50 |
h(-6211) | 15 | h(-6215) | 96 | h(-6227) | 18 | h(-6231) | 64 | h(-6235) | 12 | h(-6239) | 90 |
h(-6243) | 22 | h(-6247) | 43 | h(-6251) | 24 | h(-6259) | 10 | h(-6263) | 77 | h(-6267) | 12 |
h(-6271) | 51 | h(-6279) | 56 | h(-6283) | 12 | h(-6287) | 51 | h(-6295) | 24 | h(-6299) | 43 |
h(-6303) | 48 | h(-6307) | 8 | h(-6311) | 89 | h(-6315) | 16 | h(-6319) | 52 | h(-6323) | 21 |
h(-6331) | 18 | h(-6335) | 92 | h(-6339) | 20 | h(-6343) | 33 | h(-6347) | 28 | h(-6351) | 44 |
h(-6355) | 16 | h(-6359) | 101 | h(-6367) | 37 | h(-6371) | 36 | h(-6379) | 17 | h(-6383) | 72 |
h(-6387) | 18 | h(-6391) | 48 | h(-6395) | 16 | h(-6403) | 10 | h(-6407) | 46 | h(-6411) | 24 |
h(-6415) | 50 | h(-6423) | 38 | h(-6427) | 9 | h(-6431) | 114 | h(-6439) | 62 | h(-6443) | 26 |
h(-6447) | 48 | h(-6451) | 17 | h(-6455) | 60 | h(-6459) | 30 | h(-6463) | 30 | h(-6467) | 20 |
h(-6479) | 84 | h(-6483) | 12 | h(-6487) | 42 | h(-6491) | 31 | h(-6495) | 52 | h(-6499) | 14 |
h(-6503) | 82 | h(-6511) | 44 | h(-6515) | 26 | h(-6519) | 68 | h(-6523) | 14 | h(-6527) | 80 |
h(-6531) | 24 | h(-6535) | 30 | h(-6539) | 28 | h(-6547) | 11 | h(-6551) | 117 | h(-6555) | 24 |
h(-6559) | 38 | h(-6563) | 23 | h(-6567) | 32 | h(-6571) | 15 | h(-6583) | 36 | h(-6587) | 26 |
h(-6595) | 16 | h(-6599) | 109 | h(-6603) | 12 | h(-6607) | 45 | h(-6611) | 42 | h(-6619) | 13 |
h(-6623) | 42 | h(-6631) | 44 | h(-6635) | 30 | h(-6639) | 90 | h(-6643) | 12 | h(-6659) | 23 |
h(-6663) | 60 | h(-6667) | 10 | h(-6671) | 88 | h(-6679) | 55 | h(-6683) | 32 | h(-6691) | 21 |
h(-6695) | 92 | h(-6699) | 24 | h(-6703) | 23 | h(-6707) | 28 | h(-6711) | 74 | h(-6715) | 12 |
h(-6719) | 105 | h(-6731) | 34 | h(-6735) | 44 | h(-6739) | 18 | h(-6743) | 54 | h(-6747) | 16 |
h(-6751) | 66 | h(-6755) | 20 | h(-6763) | 9 | h(-6767) | 86 | h(-6771) | 16 | h(-6779) | 39 |
h(-6783) | 56 | h(-6787) | 12 | h(-6791) | 81 | h(-6799) | 44 | h(-6803) | 19 | h(-6807) | 40 |
h(-6815) | 92 | h(-6819) | 22 | h(-6823) | 33 | h(-6827) | 17 | h(-6835) | 18 | h(-6839) | 108 |
h(-6843) | 12 | h(-6847) | 26 | h(-6851) | 36 | h(-6855) | 60 | h(-6863) | 81 | h(-6871) | 45 |
h(-6879) | 64 | h(-6883) | 9 | h(-6887) | 78 | h(-6891) | 26 | h(-6895) | 28 | h(-6899) | 35 |
h(-6907) | 17 | h(-6911) | 87 | h(-6915) | 28 | h(-6919) | 68 | h(-6923) | 16 | h(-6927) | 38 |
h(-6931) | 12 | h(-6935) | 88 | h(-6943) | 48 | h(-6947) | 29 | h(-6951) | 80 | h(-6955) | 12 |
h(-6959) | 95 | h(-6963) | 12 | h(-6967) | 33 | h(-6971) | 45 | h(-6979) | 14 | h(-6983) | 57 |
h(-6987) | 12 | h(-6991) | 71 | h(-6995) | 32 | h(-6999) | 66 | h(-7003) | 16 | h(-7015) | 28 |
h(-7019) | 43 | h(-7023) | 44 | h(-7027) | 11 | h(-7031) | 108 | h(-7035) | 16 | h(-7039) | 43 |
h(-7043) | 23 | h(-7051) | 16 | h(-7055) | 92 | h(-7059) | 32 | h(-7063) | 40 | h(-7067) | 14 |
h(-7071) | 70 | h(-7079) | 85 | h(-7087) | 30 | h(-7091) | 38 | h(-7095) | 56 | h(-7099) | 14 |
h(-7103) | 77 | h(-7107) | 12 | h(-7111) | 52 | h(-7115) | 30 | h(-7123) | 10 | h(-7127) | 79 |
h(-7131) | 20 | h(-7135) | 38 | h(-7143) | 46 | h(-7147) | 14 | h(-7151) | 85 | h(-7159) | 65 |
h(-7163) | 20 | h(-7167) | 64 | h(-7171) | 20 | h(-7179) | 22 | h(-7183) | 32 | h(-7187) | 25 |
h(-7195) | 16 | h(-7199) | 114 | h(-7207) | 29 | h(-7211) | 35 | h(-7215) | 72 | h(-7219) | 15 |
h(-7223) | 84 | h(-7231) | 44 | h(-7235) | 22 | h(-7239) | 48 | h(-7243) | 13 | h(-7247) | 47 |
h(-7251) | 34 | h(-7255) | 60 | h(-7259) | 36 | h(-7271) | 116 | h(-7279) | 70 | h(-7283) | 25 |
h(-7287) | 36 | h(-7291) | 12 | h(-7295) | 80 | h(-7303) | 30 | h(-7307) | 25 | h(-7311) | 88 |
h(-7315) | 16 | h(-7319) | 88 | h(-7323) | 18 | h(-7327) | 34 | h(-7331) | 33 | h(-7339) | 18 |
h(-7343) | 74 | h(-7347) | 16 | h(-7351) | 33 | h(-7355) | 36 | h(-7359) | 72 | h(-7363) | 10 |
h(-7367) | 94 | h(-7379) | 28 | h(-7383) | 56 | h(-7387) | 10 | h(-7391) | 120 | h(-7395) | 16 |
h(-7403) | 22 | h(-7411) | 25 | h(-7415) | 58 | h(-7419) | 24 | h(-7423) | 40 | h(-7427) | 28 |
h(-7431) | 70 | h(-7435) | 10 | h(-7439) | 116 | h(-7447) | 42 | h(-7451) | 35 | h(-7455) | 56 |
h(-7459) | 15 | h(-7463) | 66 | h(-7467) | 20 | h(-7471) | 58 | h(-7483) | 10 | h(-7487) | 65 |
h(-7491) | 16 | h(-7495) | 48 | h(-7499) | 33 | h(-7503) | 40 | h(-7507) | 11 | h(-7511) | 96 |
h(-7519) | 50 | h(-7523) | 35 | h(-7527) | 40 | h(-7531) | 24 | h(-7535) | 96 | h(-7539) | 28 |
h(-7543) | 36 | h(-7547) | 15 | h(-7555) | 12 | h(-7559) | 115 | h(-7563) | 24 | h(-7567) | 44 |
h(-7571) | 18 | h(-7579) | 16 | h(-7583) | 63 | h(-7591) | 65 | h(-7599) | 52 | h(-7603) | 11 |
h(-7607) | 89 | h(-7611) | 20 | h(-7615) | 50 | h(-7619) | 46 | h(-7627) | 10 | h(-7631) | 106 |
h(-7635) | 20 | h(-7639) | 31 | h(-7643) | 29 | h(-7647) | 66 | h(-7651) | 20 | h(-7655) | 76 |
h(-7663) | 44 | h(-7667) | 20 | h(-7671) | 84 | h(-7679) | 106 | h(-7683) | 12 | h(-7687) | 29 |
h(-7691) | 43 | h(-7699) | 27 | h(-7703) | 81 | h(-7707) | 16 | h(-7711) | 34 | h(-7715) | 18 |
h(-7719) | 96 | h(-7723) | 9 | h(-7727) | 81 | h(-7735) | 48 | h(-7739) | 40 | h(-7743) | 52 |
h(-7747) | 16 | h(-7751) | 110 | h(-7755) | 16 | h(-7759) | 49 | h(-7763) | 22 | h(-7771) | 18 |
h(-7779) | 24 | h(-7783) | 44 | h(-7787) | 28 | h(-7795) | 16 | h(-7799) | 96 | h(-7807) | 36 |
h(-7811) | 42 | h(-7815) | 52 | h(-7819) | 16 | h(-7823) | 75 | h(-7827) | 18 | h(-7831) | 66 |
h(-7835) | 30 | h(-7843) | 16 | h(-7847) | 56 | h(-7851) | 20 | h(-7855) | 44 | h(-7859) | 34 |
h(-7863) | 34 | h(-7867) | 11 | h(-7871) | 120 | h(-7879) | 49 | h(-7883) | 17 | h(-7887) | 72 |
h(-7891) | 12 | h(-7895) | 112 | h(-7899) | 22 | h(-7903) | 44 | h(-7907) | 21 | h(-7915) | 14 |
h(-7919) | 97 | h(-7923) | 16 | h(-7927) | 47 | h(-7931) | 44 | h(-7939) | 20 | h(-7951) | 51 |
h(-7955) | 44 | h(-7959) | 80 | h(-7963) | 13 | h(-7967) | 44 | h(-7971) | 30 | h(-7979) | 44 |
h(-7991) | 100 | h(-7995) | 16 | h(-7999) | 74 | h(-8003) | 26 | h(-8007) | 64 | h(-8011) | 25 |
h(-8015) | 92 | h(-8023) | 22 | h(-8027) | 28 | h(-8031) | 60 | h(-8035) | 14 | h(-8039) | 113 |
h(-8043) | 16 | h(-8047) | 34 | h(-8051) | 34 | h(-8059) | 21 | h(-8063) | 86 | h(-8067) | 20 |
h(-8071) | 66 | h(-8079) | 50 | h(-8083) | 16 | h(-8087) | 81 | h(-8095) | 56 | h(-8099) | 28 |
h(-8103) | 48 | h(-8111) | 121 | h(-8115) | 24 | h(-8119) | 52 | h(-8123) | 21 | h(-8131) | 12 |
h(-8135) | 94 | h(-8139) | 36 | h(-8143) | 22 | h(-8147) | 37 | h(-8151) | 88 | h(-8155) | 12 |
h(-8159) | 106 | h(-8167) | 33 | h(-8171) | 21 | h(-8179) | 25 | h(-8187) | 14 | h(-8191) | 55 |
h(-8195) | 32 | h(-8203) | 18 | h(-8207) | 96 | h(-8211) | 24 | h(-8215) | 36 | h(-8219) | 35 |
h(-8223) | 58 | h(-8227) | 10 | h(-8231) | 107 | h(-8239) | 64 | h(-8243) | 21 | h(-8247) | 40 |
h(-8251) | 20 | h(-8255) | 68 | h(-8259) | 30 | h(-8263) | 43 | h(-8267) | 30 | h(-8279) | 126 |
h(-8283) | 16 | h(-8287) | 45 | h(-8291) | 47 | h(-8295) | 64 | h(-8299) | 16 | h(-8311) | 61 |
h(-8315) | 38 | h(-8319) | 80 | h(-8323) | 12 | h(-8327) | 52 | h(-8331) | 18 | h(-8335) | 50 |
h(-8339) | 26 | h(-8347) | 12 | h(-8351) | 118 | h(-8355) | 20 | h(-8359) | 58 | h(-8363) | 35 |
h(-8367) | 30 | h(-8371) | 22 | h(-8383) | 26 | h(-8387) | 21 | h(-8391) | 76 | h(-8395) | 12 |
h(-8399) | 134 | h(-8403) | 18 | h(-8407) | 36 | h(-8411) | 40 | h(-8419) | 19 | h(-8423) | 83 |
h(-8431) | 59 | h(-8435) | 28 | h(-8439) | 68 | h(-8443) | 11 | h(-8447) | 99 | h(-8455) | 56 |
h(-8459) | 42 | h(-8463) | 48 | h(-8467) | 15 | h(-8471) | 80 | h(-8479) | 50 | h(-8483) | 30 |
h(-8491) | 20 | h(-8495) | 64 | h(-8499) | 24 | h(-8503) | 48 | h(-8507) | 18 | h(-8511) | 94 |
h(-8515) | 16 | h(-8519) | 110 | h(-8527) | 43 | h(-8531) | 50 | h(-8535) | 52 | h(-8539) | 17 |
h(-8543) | 97 | h(-8547) | 16 | h(-8551) | 50 | h(-8555) | 32 | h(-8563) | 9 | h(-8567) | 84 |
h(-8571) | 36 | h(-8579) | 42 | h(-8583) | 50 | h(-8587) | 18 | h(-8599) | 63 | h(-8603) | 24 |
h(-8607) | 40 | h(-8611) | 14 | h(-8615) | 118 | h(-8623) | 51 | h(-8627) | 21 | h(-8635) | 16 |
h(-8639) | 88 | h(-8643) | 16 | h(-8647) | 31 | h(-8651) | 38 | h(-8655) | 84 | h(-8659) | 22 |
h(-8663) | 67 | h(-8671) | 64 | h(-8679) | 88 | h(-8683) | 16 | h(-8687) | 84 | h(-8691) | 26 |
h(-8695) | 36 | h(-8699) | 35 | h(-8707) | 15 | h(-8711) | 132 | h(-8715) | 16 | h(-8719) | 53 |
h(-8723) | 28 | h(-8727) | 50 | h(-8731) | 17 | h(-8735) | 106 | h(-8743) | 26 | h(-8747) | 21 |
h(-8751) | 72 | h(-8755) | 20 | h(-8759) | 108 | h(-8763) | 24 | h(-8767) | 36 | h(-8779) | 15 |
h(-8783) | 73 | h(-8787) | 12 | h(-8791) | 82 | h(-8795) | 32 | h(-8799) | 80 | h(-8803) | 9 |
h(-8807) | 81 | h(-8815) | 48 | h(-8819) | 49 | h(-8823) | 60 | h(-8827) | 12 | h(-8831) | 109 |
h(-8835) | 16 | h(-8839) | 77 | h(-8843) | 26 | h(-8851) | 22 | h(-8855) | 88 | h(-8859) | 16 |
h(-8863) | 29 | h(-8867) | 27 | h(-8871) | 46 | h(-8879) | 130 | h(-8887) | 43 | h(-8891) | 32 |
h(-8895) | 92 | h(-8899) | 14 | h(-8903) | 70 | h(-8907) | 22 | h(-8911) | 44 | h(-8915) | 22 |
h(-8923) | 19 | h(-8927) | 82 | h(-8931) | 32 | h(-8935) | 46 | h(-8939) | 38 | h(-8943) | 60 |
h(-8947) | 10 | h(-8951) | 135 | h(-8963) | 29 | h(-8971) | 19 | h(-8979) | 24 | h(-8983) | 38 |
h(-8987) | 32 | h(-8995) | 20 | h(-8999) | 99 | h(-9003) | 12 | h(-9007) | 35 | h(-9011) | 33 |
h(-9015) | 72 | h(-9019) | 30 | h(-9023) | 80 | h(-9031) | 54 | h(-9035) | 40 | h(-9039) | 80 |
h(-9043) | 15 | h(-9047) | 88 | h(-9051) | 20 | h(-9055) | 36 | h(-9059) | 39 | h(-9067) | 9 |
h(-9071) | 138 | h(-9079) | 52 | h(-9083) | 24 | h(-9087) | 32 | h(-9091) | 21 | h(-9095) | 76 |
h(-9103) | 57 | h(-9107) | 26 | h(-9111) | 64 | h(-9115) | 14 | h(-9119) | 124 | h(-9123) | 18 |
h(-9127) | 57 | h(-9131) | 40 | h(-9139) | 12 | h(-9143) | 72 | h(-9147) | 20 | h(-9151) | 67 |
h(-9155) | 36 | h(-9159) | 96 | h(-9167) | 54 | h(-9179) | 38 | h(-9183) | 40 | h(-9187) | 21 |
h(-9191) | 124 | h(-9195) | 20 | h(-9199) | 51 | h(-9203) | 31 | h(-9211) | 18 | h(-9215) | 116 |
h(-9219) | 16 | h(-9223) | 34 | h(-9227) | 25 | h(-9231) | 100 | h(-9235) | 14 | h(-9239) | 139 |
h(-9247) | 54 | h(-9255) | 52 | h(-9259) | 24 | h(-9263) | 62 | h(-9267) | 22 | h(-9271) | 60 |
h(-9283) | 11 | h(-9287) | 78 | h(-9291) | 32 | h(-9299) | 50 | h(-9303) | 68 | h(-9307) | 10 |
h(-9311) | 97 | h(-9319) | 41 | h(-9323) | 29 | h(-9327) | 56 | h(-9331) | 20 | h(-9335) | 98 |
h(-9339) | 20 | h(-9343) | 51 | h(-9347) | 24 | h(-9355) | 12 | h(-9363) | 20 | h(-9367) | 28 |
h(-9371) | 49 | h(-9379) | 24 | h(-9383) | 102 | h(-9391) | 55 | h(-9395) | 24 | h(-9399) | 96 |
h(-9403) | 11 | h(-9407) | 92 | h(-9411) | 30 | h(-9415) | 52 | h(-9419) | 35 | h(-9427) | 14 |
h(-9431) | 91 | h(-9435) | 32 | h(-9439) | 75 | h(-9443) | 20 | h(-9447) | 44 | h(-9451) | 24 |
h(-9455) | 120 | h(-9463) | 45 | h(-9467) | 41 | h(-9471) | 72 | h(-9479) | 101 | h(-9483) | 16 |
h(-9487) | 38 | h(-9491) | 45 | h(-9499) | 28 | h(-9503) | 80 | h(-9507) | 16 | h(-9511) | 69 |
h(-9515) | 28 | h(-9519) | 96 | h(-9523) | 12 | h(-9527) | 66 | h(-9535) | 34 | h(-9539) | 55 |
h(-9543) | 52 | h(-9547) | 13 | h(-9551) | 129 | h(-9563) | 18 | h(-9571) | 20 | h(-9579) | 32 |
h(-9587) | 23 | h(-9591) | 80 | h(-9595) | 16 | h(-9599) | 98 | h(-9607) | 42 | h(-9611) | 44 |
h(-9615) | 36 | h(-9619) | 19 | h(-9623) | 95 | h(-9627) | 18 | h(-9631) | 77 | h(-9635) | 44 |
h(-9643) | 11 | h(-9647) | 86 | h(-9651) | 28 | h(-9655) | 52 | h(-9659) | 38 | h(-9663) | 54 |
h(-9667) | 12 | h(-9671) | 126 | h(-9679) | 71 | h(-9683) | 18 | h(-9687) | 60 | h(-9691) | 20 |
h(-9695) | 92 | h(-9699) | 28 | h(-9703) | 34 | h(-9707) | 26 | h(-9715) | 24 | h(-9719) | 133 |
h(-9723) | 24 | h(-9727) | 38 | h(-9731) | 32 | h(-9735) | 64 | h(-9739) | 13 | h(-9743) | 105 |
h(-9755) | 20 | h(-9759) | 92 | h(-9763) | 16 | h(-9767) | 89 | h(-9771) | 26 | h(-9779) | 48 |
h(-9787) | 11 | h(-9791) | 119 | h(-9795) | 20 | h(-9799) | 66 | h(-9803) | 37 | h(-9807) | 64 |
h(-9811) | 21 | h(-9815) | 76 | h(-9823) | 24 | h(-9827) | 28 | h(-9831) | 108 | h(-9835) | 16 |
h(-9839) | 91 | h(-9843) | 12 | h(-9847) | 44 | h(-9851) | 45 | h(-9859) | 21 | h(-9863) | 96 |
h(-9867) | 16 | h(-9871) | 49 | h(-9879) | 76 | h(-9883) | 17 | h(-9887) | 75 | h(-9895) | 56 |
h(-9899) | 30 | h(-9903) | 56 | h(-9907) | 15 | h(-9911) | 136 | h(-9915) | 24 | h(-9919) | 68 |
h(-9923) | 25 | h(-9931) | 23 | h(-9935) | 94 | h(-9939) | 28 | h(-9943) | 56 | h(-9951) | 76 |
h(-9955) | 16 | h(-9959) | 130 | h(-9967) | 39 | h(-9979) | 20 | h(-9983) | 92 | h(-9987) | 26 |
h(-9991) | 32 | h(-9995) | 40 |
h(-4) | 1 | h(-8) | 1 | h(-20) | 2 | h(-24) | 2 | h(-40) | 2 | h(-52) | 2 |
h(-56) | 4 | h(-68) | 4 | h(-84) | 4 | h(-88) | 2 | h(-104) | 6 | h(-116) | 6 |
h(-120) | 4 | h(-132) | 4 | h(-136) | 4 | h(-148) | 2 | h(-152) | 6 | h(-164) | 8 |
h(-168) | 4 | h(-184) | 4 | h(-212) | 6 | h(-228) | 4 | h(-232) | 2 | h(-244) | 6 |
h(-248) | 8 | h(-260) | 8 | h(-264) | 8 | h(-276) | 8 | h(-280) | 4 | h(-292) | 4 |
h(-296) | 10 | h(-308) | 8 | h(-312) | 4 | h(-328) | 4 | h(-340) | 4 | h(-344) | 10 |
h(-356) | 12 | h(-372) | 4 | h(-376) | 8 | h(-388) | 4 | h(-404) | 14 | h(-408) | 4 |
h(-420) | 8 | h(-424) | 6 | h(-436) | 6 | h(-440) | 12 | h(-452) | 8 | h(-456) | 8 |
h(-472) | 6 | h(-488) | 10 | h(-516) | 12 | h(-520) | 4 | h(-532) | 4 | h(-536) | 14 |
h(-548) | 8 | h(-552) | 8 | h(-564) | 8 | h(-568) | 4 | h(-580) | 8 | h(-584) | 16 |
h(-596) | 14 | h(-616) | 8 | h(-628) | 6 | h(-632) | 8 | h(-644) | 16 | h(-660) | 8 |
h(-664) | 10 | h(-680) | 12 | h(-692) | 14 | h(-696) | 12 | h(-708) | 4 | h(-712) | 8 |
h(-724) | 10 | h(-728) | 12 | h(-740) | 16 | h(-744) | 12 | h(-760) | 4 | h(-772) | 4 |
h(-776) | 20 | h(-788) | 10 | h(-804) | 12 | h(-808) | 6 | h(-820) | 8 | h(-824) | 20 |
h(-836) | 20 | h(-840) | 8 | h(-852) | 8 | h(-856) | 6 | h(-868) | 8 | h(-872) | 10 |
h(-884) | 16 | h(-888) | 12 | h(-904) | 8 | h(-916) | 10 | h(-920) | 20 | h(-932) | 12 |
h(-948) | 12 | h(-952) | 8 | h(-964) | 12 | h(-984) | 12 | h(-996) | 12 | h(-1012) | 4 |
h(-1016) | 16 | h(-1028) | 16 | h(-1032) | 8 | h(-1048) | 6 | h(-1060) | 8 | h(-1064) | 20 |
h(-1076) | 22 | h(-1092) | 8 | h(-1096) | 12 | h(-1108) | 6 | h(-1112) | 14 | h(-1124) | 20 |
h(-1128) | 8 | h(-1140) | 16 | h(-1144) | 12 | h(-1160) | 20 | h(-1172) | 18 | h(-1192) | 6 |
h(-1204) | 8 | h(-1208) | 12 | h(-1220) | 16 | h(-1236) | 12 | h(-1240) | 8 | h(-1252) | 8 |
h(-1256) | 26 | h(-1268) | 10 | h(-1272) | 12 | h(-1284) | 20 | h(-1288) | 8 | h(-1304) | 22 |
h(-1316) | 24 | h(-1320) | 8 | h(-1336) | 12 | h(-1348) | 8 | h(-1364) | 28 | h(-1380) | 8 |
h(-1384) | 10 | h(-1396) | 14 | h(-1412) | 16 | h(-1416) | 16 | h(-1428) | 8 | h(-1432) | 6 |
h(-1448) | 18 | h(-1460) | 20 | h(-1464) | 12 | h(-1480) | 12 | h(-1492) | 10 | h(-1496) | 28 |
h(-1508) | 16 | h(-1524) | 20 | h(-1528) | 8 | h(-1540) | 8 | h(-1544) | 20 | h(-1556) | 22 |
h(-1560) | 16 | h(-1572) | 12 | h(-1576) | 10 | h(-1588) | 6 | h(-1592) | 20 | h(-1604) | 20 |
h(-1608) | 16 | h(-1624) | 16 | h(-1636) | 16 | h(-1640) | 16 | h(-1652) | 20 | h(-1668) | 12 |
h(-1672) | 8 | h(-1684) | 10 | h(-1688) | 10 | h(-1704) | 24 | h(-1716) | 16 | h(-1720) | 12 |
h(-1732) | 12 | h(-1736) | 24 | h(-1748) | 20 | h(-1752) | 8 | h(-1768) | 8 | h(-1780) | 8 |
h(-1784) | 32 | h(-1796) | 20 | h(-1812) | 12 | h(-1816) | 14 | h(-1828) | 8 | h(-1832) | 26 |
h(-1844) | 30 | h(-1848) | 8 | h(-1860) | 16 | h(-1864) | 8 | h(-1876) | 16 | h(-1880) | 20 |
h(-1892) | 12 | h(-1896) | 20 | h(-1912) | 8 | h(-1924) | 16 | h(-1928) | 20 | h(-1940) | 20 |
h(-1956) | 20 | h(-1972) | 12 | h(-1976) | 28 | h(-1988) | 24 | h(-1992) | 8 | h(-2004) | 16 |
h(-2008) | 14 | h(-2020) | 8 | h(-2024) | 28 | h(-2036) | 30 | h(-2040) | 16 | h(-2056) | 16 |
h(-2068) | 12 | h(-2072) | 16 | h(-2084) | 32 | h(-2104) | 12 | h(-2120) | 28 | h(-2132) | 12 |
h(-2136) | 20 | h(-2148) | 12 | h(-2152) | 10 | h(-2164) | 10 | h(-2168) | 24 | h(-2180) | 32 |
h(-2184) | 24 | h(-2212) | 8 | h(-2216) | 22 | h(-2228) | 18 | h(-2244) | 16 | h(-2248) | 8 |
h(-2260) | 12 | h(-2264) | 30 | h(-2276) | 32 | h(-2280) | 16 | h(-2292) | 16 | h(-2296) | 16 |
h(-2308) | 8 | h(-2324) | 28 | h(-2328) | 16 | h(-2344) | 18 | h(-2356) | 16 | h(-2360) | 20 |
h(-2372) | 24 | h(-2388) | 12 | h(-2392) | 8 | h(-2404) | 20 | h(-2408) | 24 | h(-2424) | 12 |
h(-2436) | 16 | h(-2440) | 12 | h(-2452) | 10 | h(-2456) | 34 | h(-2468) | 12 | h(-2472) | 12 |
h(-2488) | 12 | h(-2504) | 36 | h(-2516) | 36 | h(-2532) | 20 | h(-2536) | 14 | h(-2552) | 20 |
h(-2564) | 28 | h(-2568) | 16 | h(-2580) | 16 | h(-2584) | 16 | h(-2596) | 20 | h(-2612) | 14 |
h(-2616) | 28 | h(-2632) | 8 | h(-2644) | 18 | h(-2648) | 22 | h(-2660) | 24 | h(-2676) | 12 |
h(-2680) | 12 | h(-2692) | 12 | h(-2696) | 24 | h(-2708) | 30 | h(-2712) | 20 | h(-2724) | 20 |
h(-2728) | 12 | h(-2740) | 12 | h(-2756) | 40 | h(-2760) | 16 | h(-2776) | 10 | h(-2788) | 8 |
h(-2792) | 26 | h(-2804) | 34 | h(-2820) | 24 | h(-2824) | 24 | h(-2836) | 10 | h(-2840) | 32 |
h(-2852) | 24 | h(-2856) | 24 | h(-2868) | 16 | h(-2872) | 12 | h(-2884) | 16 | h(-2920) | 12 |
h(-2932) | 14 | h(-2936) | 40 | h(-2948) | 20 | h(-2964) | 24 | h(-2968) | 8 | h(-2980) | 16 |
h(-2984) | 26 | h(-2996) | 32 | h(-3012) | 12 | h(-3016) | 20 | h(-3028) | 10 | h(-3032) | 22 |
h(-3044) | 40 | h(-3048) | 12 | h(-3064) | 24 | h(-3076) | 20 | h(-3080) | 32 | h(-3092) | 26 |
h(-3108) | 16 | h(-3112) | 14 | h(-3124) | 20 | h(-3128) | 24 | h(-3140) | 16 | h(-3144) | 16 |
h(-3156) | 32 | h(-3160) | 16 | h(-3172) | 8 | h(-3176) | 42 | h(-3188) | 30 | h(-3192) | 16 |
h(-3208) | 12 | h(-3220) | 16 | h(-3224) | 28 | h(-3236) | 32 | h(-3252) | 12 | h(-3256) | 12 |
h(-3268) | 12 | h(-3272) | 28 | h(-3284) | 30 | h(-3288) | 20 | h(-3304) | 12 | h(-3316) | 22 |
h(-3320) | 20 | h(-3336) | 16 | h(-3352) | 14 | h(-3368) | 26 | h(-3396) | 28 | h(-3412) | 10 |
h(-3416) | 44 | h(-3428) | 32 | h(-3432) | 16 | h(-3444) | 24 | h(-3448) | 8 | h(-3460) | 16 |
h(-3464) | 44 | h(-3476) | 32 | h(-3480) | 16 | h(-3496) | 20 | h(-3508) | 10 | h(-3512) | 20 |
h(-3524) | 40 | h(-3540) | 24 | h(-3544) | 18 | h(-3556) | 16 | h(-3560) | 24 | h(-3572) | 28 |
h(-3576) | 28 | h(-3588) | 16 | h(-3592) | 12 | h(-3604) | 24 | h(-3608) | 28 | h(-3620) | 24 |
h(-3624) | 28 | h(-3640) | 16 | h(-3652) | 12 | h(-3656) | 36 | h(-3668) | 20 | h(-3684) | 20 |
h(-3688) | 18 | h(-3704) | 40 | h(-3716) | 36 | h(-3720) | 24 | h(-3732) | 16 | h(-3736) | 26 |
h(-3748) | 20 | h(-3752) | 16 | h(-3764) | 46 | h(-3768) | 12 | h(-3784) | 16 | h(-3796) | 12 |
h(-3812) | 32 | h(-3828) | 16 | h(-3832) | 16 | h(-3848) | 28 | h(-3860) | 44 | h(-3864) | 24 |
h(-3876) | 24 | h(-3880) | 12 | h(-3892) | 12 | h(-3896) | 36 | h(-3908) | 20 | h(-3912) | 24 |
h(-3928) | 10 | h(-3940) | 24 | h(-3944) | 44 | h(-3956) | 36 | h(-3972) | 12 | h(-3976) | 16 |
h(-3988) | 14 | h(-3992) | 26 | h(-4004) | 40 | h(-4008) | 16 | h(-4020) | 16 | h(-4024) | 20 |
h(-4036) | 20 | h(-4040) | 28 | h(-4052) | 26 | h(-4072) | 18 | h(-4084) | 22 | h(-4088) | 32 |
h(-4120) | 12 | h(-4132) | 12 | h(-4136) | 44 | h(-4148) | 20 | h(-4152) | 12 | h(-4164) | 36 |
h(-4168) | 12 | h(-4180) | 16 | h(-4184) | 42 | h(-4196) | 44 | h(-4216) | 16 | h(-4228) | 16 |
h(-4244) | 26 | h(-4260) | 16 | h(-4264) | 20 | h(-4276) | 30 | h(-4280) | 36 | h(-4292) | 24 |
h(-4296) | 32 | h(-4308) | 24 | h(-4324) | 16 | h(-4328) | 22 | h(-4340) | 32 | h(-4344) | 28 |
h(-4360) | 12 | h(-4372) | 10 | h(-4376) | 26 | h(-4388) | 36 | h(-4404) | 28 | h(-4408) | 20 |
h(-4420) | 16 | h(-4424) | 48 | h(-4436) | 50 | h(-4440) | 16 | h(-4452) | 16 | h(-4456) | 22 |
h(-4468) | 14 | h(-4472) | 36 | h(-4484) | 44 | h(-4488) | 16 | h(-4504) | 22 | h(-4516) | 16 |
h(-4520) | 44 | h(-4532) | 28 | h(-4548) | 20 | h(-4552) | 12 | h(-4564) | 24 | h(-4568) | 18 |
h(-4580) | 24 | h(-4584) | 32 | h(-4596) | 16 | h(-4612) | 16 | h(-4616) | 56 | h(-4628) | 28 |
h(-4632) | 24 | h(-4648) | 12 | h(-4660) | 20 | h(-4664) | 36 | h(-4676) | 48 | h(-4692) | 24 |
h(-4696) | 30 | h(-4708) | 12 | h(-4712) | 16 | h(-4724) | 46 | h(-4728) | 20 | h(-4740) | 16 |
h(-4744) | 24 | h(-4756) | 20 | h(-4760) | 40 | h(-4772) | 36 | h(-4776) | 28 | h(-4792) | 12 |
h(-4804) | 16 | h(-4808) | 24 | h(-4820) | 40 | h(-4836) | 40 | h(-4852) | 10 | h(-4856) | 40 |
h(-4868) | 32 | h(-4872) | 24 | h(-4884) | 32 | h(-4888) | 12 | h(-4904) | 42 | h(-4916) | 38 |
h(-4920) | 24 | h(-4936) | 24 | h(-4948) | 14 | h(-4952) | 42 | h(-4964) | 32 | h(-4980) | 32 |
h(-4984) | 16 | h(-4996) | 32 | h(-5012) | 32 | h(-5016) | 24 | h(-5028) | 20 | h(-5032) | 12 |
h(-5044) | 20 | h(-5048) | 36 | h(-5060) | 40 | h(-5064) | 32 | h(-5080) | 20 | h(-5092) | 20 |
h(-5108) | 34 | h(-5124) | 24 | h(-5128) | 12 | h(-5140) | 12 | h(-5144) | 58 | h(-5156) | 36 |
h(-5160) | 16 | h(-5172) | 24 | h(-5176) | 28 | h(-5188) | 12 | h(-5192) | 32 | h(-5204) | 50 |
h(-5208) | 16 | h(-5224) | 18 | h(-5236) | 24 | h(-5240) | 36 | h(-5252) | 24 | h(-5268) | 20 |
h(-5272) | 10 | h(-5284) | 24 | h(-5288) | 42 | h(-5304) | 40 | h(-5316) | 36 | h(-5320) | 24 |
h(-5332) | 20 | h(-5336) | 32 | h(-5348) | 24 | h(-5352) | 20 | h(-5368) | 20 | h(-5380) | 16 |
h(-5384) | 28 | h(-5396) | 56 | h(-5412) | 16 | h(-5416) | 22 | h(-5428) | 16 | h(-5432) | 24 |
h(-5444) | 60 | h(-5448) | 24 | h(-5460) | 16 | h(-5464) | 18 | h(-5480) | 44 | h(-5492) | 18 |
h(-5496) | 28 | h(-5512) | 20 | h(-5524) | 26 | h(-5528) | 38 | h(-5540) | 48 | h(-5556) | 28 |
h(-5560) | 20 | h(-5572) | 16 | h(-5576) | 48 | h(-5588) | 24 | h(-5592) | 20 | h(-5604) | 28 |
h(-5608) | 14 | h(-5620) | 24 | h(-5624) | 44 | h(-5636) | 36 | h(-5640) | 32 | h(-5656) | 28 |
h(-5668) | 16 | h(-5672) | 34 | h(-5704) | 32 | h(-5716) | 22 | h(-5720) | 32 | h(-5732) | 36 |
h(-5736) | 32 | h(-5748) | 24 | h(-5752) | 16 | h(-5764) | 28 | h(-5768) | 24 | h(-5784) | 32 |
h(-5812) | 14 | h(-5816) | 60 | h(-5828) | 24 | h(-5844) | 28 | h(-5848) | 16 | h(-5860) | 16 |
h(-5864) | 58 | h(-5876) | 56 | h(-5892) | 28 | h(-5896) | 16 | h(-5908) | 16 | h(-5912) | 30 |
h(-5924) | 52 | h(-5928) | 24 | h(-5944) | 20 | h(-5956) | 20 | h(-5960) | 36 | h(-5972) | 22 |
h(-5988) | 20 | h(-5992) | 16 | h(-6004) | 24 | h(-6008) | 24 | h(-6020) | 40 | h(-6024) | 24 |
h(-6036) | 40 | h(-6040) | 16 | h(-6052) | 16 | h(-6056) | 50 | h(-6068) | 48 | h(-6072) | 24 |
h(-6088) | 20 | h(-6104) | 48 | h(-6116) | 52 | h(-6132) | 24 | h(-6136) | 20 | h(-6148) | 16 |
h(-6152) | 44 | h(-6164) | 36 | h(-6168) | 20 | h(-6180) | 24 | h(-6184) | 34 | h(-6196) | 18 |
h(-6212) | 40 | h(-6216) | 24 | h(-6232) | 12 | h(-6244) | 32 | h(-6248) | 28 | h(-6260) | 28 |
h(-6276) | 28 | h(-6280) | 20 | h(-6296) | 54 | h(-6308) | 28 | h(-6312) | 16 | h(-6324) | 40 |
h(-6328) | 16 | h(-6340) | 24 | h(-6344) | 44 | h(-6356) | 52 | h(-6360) | 32 | h(-6376) | 34 |
h(-6388) | 14 | h(-6392) | 32 | h(-6404) | 56 | h(-6420) | 16 | h(-6424) | 28 | h(-6436) | 28 |
h(-6440) | 32 | h(-6452) | 42 | h(-6456) | 28 | h(-6472) | 12 | h(-6484) | 18 | h(-6488) | 30 |
h(-6504) | 20 | h(-6520) | 28 | h(-6532) | 16 | h(-6536) | 64 | h(-6548) | 38 | h(-6564) | 44 |
h(-6568) | 14 | h(-6580) | 16 | h(-6584) | 44 | h(-6596) | 48 | h(-6612) | 16 | h(-6616) | 22 |
h(-6628) | 16 | h(-6632) | 42 | h(-6644) | 48 | h(-6648) | 20 | h(-6676) | 26 | h(-6680) | 28 |
h(-6692) | 32 | h(-6708) | 16 | h(-6712) | 20 | h(-6740) | 52 | h(-6744) | 44 | h(-6756) | 36 |
h(-6772) | 22 | h(-6788) | 28 | h(-6792) | 16 | h(-6808) | 20 | h(-6820) | 16 | h(-6824) | 58 |
h(-6836) | 42 | h(-6852) | 36 | h(-6856) | 20 | h(-6868) | 16 | h(-6872) | 46 | h(-6884) | 52 |
h(-6888) | 24 | h(-6904) | 24 | h(-6916) | 24 | h(-6920) | 36 | h(-6932) | 34 | h(-6952) | 16 |
h(-6964) | 26 | h(-6968) | 44 | h(-6980) | 40 | h(-6996) | 40 | h(-7012) | 20 | h(-7016) | 38 |
h(-7028) | 28 | h(-7032) | 20 | h(-7044) | 20 | h(-7048) | 24 | h(-7060) | 20 | h(-7064) | 50 |
h(-7076) | 64 | h(-7080) | 40 | h(-7096) | 20 | h(-7108) | 24 | h(-7112) | 40 | h(-7124) | 68 |
h(-7140) | 32 | h(-7144) | 20 | h(-7156) | 26 | h(-7160) | 52 | h(-7172) | 36 | h(-7176) | 32 |
h(-7188) | 24 | h(-7192) | 20 | h(-7204) | 28 | h(-7208) | 32 | h(-7224) | 40 | h(-7240) | 20 |
h(-7256) | 46 | h(-7268) | 40 | h(-7284) | 36 | h(-7288) | 16 | h(-7304) | 56 | h(-7316) | 40 |
h(-7320) | 24 | h(-7332) | 24 | h(-7336) | 36 | h(-7348) | 24 | h(-7352) | 28 | h(-7364) | 40 |
h(-7368) | 16 | h(-7384) | 28 | h(-7412) | 36 | h(-7428) | 20 | h(-7432) | 20 | h(-7444) | 38 |
h(-7460) | 48 | h(-7464) | 32 | h(-7476) | 40 | h(-7480) | 16 | h(-7492) | 12 | h(-7496) | 56 |
h(-7508) | 34 | h(-7512) | 24 | h(-7528) | 18 | h(-7540) | 16 | h(-7544) | 64 | h(-7556) | 72 |
h(-7572) | 20 | h(-7576) | 30 | h(-7588) | 16 | h(-7592) | 28 | h(-7604) | 42 | h(-7608) | 36 |
h(-7620) | 24 | h(-7624) | 20 | h(-7636) | 28 | h(-7640) | 56 | h(-7652) | 36 | h(-7656) | 48 |
h(-7672) | 16 | h(-7684) | 40 | h(-7716) | 28 | h(-7720) | 20 | h(-7732) | 18 | h(-7736) | 52 |
h(-7748) | 48 | h(-7752) | 32 | h(-7764) | 24 | h(-7768) | 22 | h(-7780) | 16 | h(-7784) | 68 |
h(-7796) | 70 | h(-7816) | 28 | h(-7828) | 16 | h(-7832) | 32 | h(-7844) | 32 | h(-7860) | 40 |
h(-7864) | 36 | h(-7876) | 20 | h(-7880) | 52 | h(-7892) | 42 | h(-7896) | 32 | h(-7908) | 36 |
h(-7912) | 12 | h(-7924) | 20 | h(-7928) | 24 | h(-7940) | 40 | h(-7944) | 48 | h(-7960) | 24 |
h(-7972) | 24 | h(-7976) | 54 | h(-7988) | 42 | h(-8004) | 48 | h(-8008) | 16 | h(-8020) | 32 |
h(-8024) | 48 | h(-8040) | 32 | h(-8052) | 16 | h(-8056) | 36 | h(-8068) | 12 | h(-8072) | 28 |
h(-8084) | 68 | h(-8088) | 24 | h(-8104) | 34 | h(-8116) | 34 | h(-8120) | 40 | h(-8132) | 28 |
h(-8148) | 24 | h(-8152) | 18 | h(-8164) | 32 | h(-8168) | 50 | h(-8180) | 48 | h(-8184) | 32 |
h(-8196) | 36 | h(-8212) | 18 | h(-8216) | 72 | h(-8248) | 12 | h(-8260) | 24 | h(-8264) | 56 |
h(-8276) | 38 | h(-8292) | 20 | h(-8296) | 20 | h(-8308) | 16 | h(-8312) | 40 | h(-8324) | 60 |
h(-8328) | 24 | h(-8340) | 32 | h(-8344) | 24 | h(-8356) | 44 | h(-8360) | 48 | h(-8372) | 40 |
h(-8376) | 28 | h(-8392) | 24 | h(-8404) | 20 | h(-8408) | 26 | h(-8420) | 48 | h(-8436) | 40 |
h(-8440) | 28 | h(-8452) | 16 | h(-8456) | 56 | h(-8468) | 36 | h(-8472) | 20 | h(-8484) | 40 |
h(-8488) | 18 | h(-8504) | 60 | h(-8516) | 56 | h(-8520) | 32 | h(-8536) | 32 | h(-8548) | 16 |
h(-8552) | 42 | h(-8564) | 78 | h(-8580) | 32 | h(-8584) | 28 | h(-8596) | 28 | h(-8612) | 32 |
h(-8616) | 40 | h(-8628) | 24 | h(-8632) | 20 | h(-8644) | 36 | h(-8648) | 56 | h(-8660) | 28 |
h(-8680) | 16 | h(-8692) | 20 | h(-8696) | 64 | h(-8708) | 40 | h(-8724) | 36 | h(-8728) | 22 |
h(-8740) | 24 | h(-8744) | 42 | h(-8756) | 60 | h(-8760) | 24 | h(-8772) | 24 | h(-8776) | 32 |
h(-8792) | 36 | h(-8804) | 64 | h(-8808) | 20 | h(-8824) | 32 | h(-8840) | 56 | h(-8852) | 42 |
h(-8868) | 28 | h(-8872) | 26 | h(-8884) | 18 | h(-8888) | 52 | h(-8904) | 40 | h(-8916) | 48 |
h(-8920) | 20 | h(-8932) | 16 | h(-8936) | 34 | h(-8948) | 30 | h(-8952) | 28 | h(-8968) | 16 |
h(-8980) | 32 | h(-8984) | 78 | h(-8996) | 40 | h(-9012) | 36 | h(-9028) | 24 | h(-9032) | 28 |
h(-9044) | 72 | h(-9048) | 24 | h(-9060) | 32 | h(-9064) | 36 | h(-9076) | 30 | h(-9080) | 28 |
h(-9092) | 48 | h(-9096) | 56 | h(-9112) | 24 | h(-9124) | 20 | h(-9128) | 40 | h(-9140) | 60 |
h(-9156) | 32 | h(-9160) | 20 | h(-9172) | 14 | h(-9176) | 76 | h(-9188) | 40 | h(-9192) | 32 |
h(-9204) | 48 | h(-9208) | 16 | h(-9220) | 24 | h(-9224) | 64 | h(-9236) | 66 | h(-9240) | 32 |
h(-9256) | 28 | h(-9268) | 24 | h(-9272) | 36 | h(-9284) | 60 | h(-9304) | 22 | h(-9316) | 32 |
h(-9320) | 60 | h(-9332) | 34 | h(-9336) | 44 | h(-9348) | 32 | h(-9352) | 24 | h(-9364) | 30 |
h(-9368) | 42 | h(-9380) | 56 | h(-9384) | 24 | h(-9412) | 16 | h(-9416) | 56 | h(-9428) | 42 |
h(-9444) | 36 | h(-9448) | 26 | h(-9460) | 32 | h(-9476) | 72 | h(-9480) | 24 | h(-9492) | 24 |
h(-9496) | 22 | h(-9508) | 16 | h(-9512) | 60 | h(-9524) | 38 | h(-9528) | 28 | h(-9544) | 32 |
h(-9556) | 34 | h(-9560) | 48 | h(-9572) | 60 | h(-9588) | 32 | h(-9592) | 20 | h(-9608) | 40 |
h(-9620) | 40 | h(-9624) | 60 | h(-9636) | 40 | h(-9640) | 16 | h(-9652) | 24 | h(-9656) | 72 |
h(-9668) | 36 | h(-9672) | 24 | h(-9688) | 20 | h(-9704) | 54 | h(-9716) | 56 | h(-9732) | 20 |
h(-9736) | 32 | h(-9748) | 18 | h(-9752) | 28 | h(-9764) | 76 | h(-9768) | 32 | h(-9780) | 32 |
h(-9784) | 28 | h(-9796) | 40 | h(-9812) | 52 | h(-9816) | 32 | h(-9832) | 18 | h(-9844) | 36 |
h(-9848) | 32 | h(-9860) | 32 | h(-9876) | 52 | h(-9880) | 32 | h(-9892) | 20 | h(-9896) | 78 |
h(-9908) | 38 | h(-9912) | 32 | h(-9924) | 52 | h(-9928) | 24 | h(-9940) | 24 | h(-9944) | 56 |
h(-9956) | 44 | h(-9960) | 32 | h(-9976) | 20 | h(-9988) | 28 | h(-9992) | 40 |
h(5) | 1- | h(13) | 1- | h(17) | 1- | h(21) | 2+ | h(29) | 1- | h(33) | 2+ | h(37) | 1- | h(41) | 1- |
h(53) | 1- | h(57) | 2+ | h(61) | 1- | h(65) | 2- | h(69) | 2+ | h(73) | 1- | h(77) | 2+ | h(85) | 2- |
h(89) | 1- | h(93) | 2+ | h(97) | 1- | h(101) | 1- | h(105) | 4+ | h(109) | 1- | h(113) | 1- | h(129) | 2+ |
h(133) | 2+ | h(137) | 1- | h(141) | 2+ | h(145) | 4- | h(149) | 1- | h(157) | 1- | h(161) | 2+ | h(165) | 4+ |
h(173) | 1- | h(177) | 2+ | h(181) | 1- | h(185) | 2- | h(193) | 1- | h(197) | 1- | h(201) | 2+ | h(205) | 4+ |
h(209) | 2+ | h(213) | 2+ | h(217) | 2+ | h(221) | 4+ | h(229) | 3- | h(233) | 1- | h(237) | 2+ | h(241) | 1- |
h(249) | 2+ | h(253) | 2+ | h(257) | 3- | h(265) | 2- | h(269) | 1- | h(273) | 4+ | h(277) | 1- | h(281) | 1- |
h(285) | 4+ | h(293) | 1- | h(301) | 2+ | h(305) | 4+ | h(309) | 2+ | h(313) | 1- | h(317) | 1- | h(321) | 6+ |
h(329) | 2+ | h(337) | 1- | h(341) | 2+ | h(345) | 4+ | h(349) | 1- | h(353) | 1- | h(357) | 4+ | h(365) | 2- |
h(373) | 1- | h(377) | 4+ | h(381) | 2+ | h(385) | 4+ | h(389) | 1- | h(393) | 2+ | h(397) | 1- | h(401) | 5- |
h(409) | 1- | h(413) | 2+ | h(417) | 2+ | h(421) | 1- | h(429) | 4+ | h(433) | 1- | h(437) | 2+ | h(445) | 4- |
h(449) | 1- | h(453) | 2+ | h(457) | 1- | h(461) | 1- | h(465) | 4+ | h(469) | 6+ | h(473) | 6+ | h(481) | 2- |
h(485) | 2- | h(489) | 2+ | h(493) | 2- | h(497) | 2+ | h(501) | 2+ | h(505) | 8+ | h(509) | 1- | h(517) | 2+ |
h(521) | 1- | h(533) | 2- | h(537) | 2+ | h(541) | 1- | h(545) | 4+ | h(553) | 2+ | h(557) | 1- | h(561) | 4+ |
h(565) | 2- | h(569) | 1- | h(573) | 2+ | h(577) | 7- | h(581) | 2+ | h(589) | 2+ | h(593) | 1- | h(597) | 2+ |
h(601) | 1- | h(609) | 4+ | h(613) | 1- | h(617) | 1- | h(629) | 2- | h(633) | 2+ | h(641) | 1- | h(645) | 4+ |
h(649) | 2+ | h(653) | 1- | h(661) | 1- | h(665) | 4+ | h(669) | 2+ | h(673) | 1- | h(677) | 1- | h(681) | 2+ |
h(685) | 2- | h(689) | 8+ | h(697) | 6- | h(701) | 1- | h(705) | 4+ | h(709) | 1- | h(713) | 2+ | h(717) | 2+ |
h(721) | 2+ | h(733) | 3- | h(737) | 2+ | h(741) | 4+ | h(745) | 4+ | h(749) | 2+ | h(753) | 2+ | h(757) | 1- |
h(761) | 3- | h(769) | 1- | h(773) | 1- | h(777) | 8+ | h(781) | 2+ | h(785) | 6- | h(789) | 2+ | h(793) | 8+ |
h(797) | 1- | h(805) | 4+ | h(809) | 1- | h(813) | 2+ | h(817) | 10+ | h(821) | 1- | h(829) | 1- | h(849) | 2+ |
h(853) | 1- | h(857) | 1- | h(861) | 4+ | h(865) | 2- | h(869) | 2+ | h(877) | 1- | h(881) | 1- | h(885) | 4+ |
h(889) | 2+ | h(893) | 2+ | h(897) | 8+ | h(901) | 4- | h(905) | 8+ | h(913) | 2+ | h(917) | 2+ | h(921) | 2+ |
h(929) | 1- | h(933) | 2+ | h(937) | 1- | h(941) | 1- | h(949) | 2- | h(953) | 1- | h(957) | 4+ | h(965) | 2- |
h(969) | 4+ | h(973) | 2+ | h(977) | 1- | h(985) | 6- | h(989) | 2+ | h(993) | 6+ | h(997) | 1- | h(1001) | 4+ |
h(1005) | 4+ | h(1009) | 7- | h(1013) | 1- | h(1021) | 1- | h(1033) | 1- | h(1037) | 2- | h(1041) | 2+ | h(1045) | 8+ |
h(1049) | 1- | h(1057) | 2+ | h(1061) | 1- | h(1065) | 4+ | h(1069) | 1- | h(1073) | 2- | h(1077) | 2+ | h(1081) | 2+ |
h(1085) | 4+ | h(1093) | 5- | h(1097) | 1- | h(1101) | 6+ | h(1105) | 4- | h(1109) | 1- | h(1113) | 4+ | h(1117) | 1- |
h(1121) | 2+ | h(1129) | 9- | h(1133) | 2+ | h(1137) | 2+ | h(1141) | 2+ | h(1145) | 4- | h(1149) | 2+ | h(1153) | 1- |
h(1157) | 2- | h(1165) | 2- | h(1169) | 2+ | h(1173) | 4+ | h(1177) | 2+ | h(1181) | 1- | h(1185) | 4+ | h(1189) | 2- |
h(1193) | 1- | h(1201) | 1- | h(1205) | 4+ | h(1209) | 4+ | h(1213) | 1- | h(1217) | 1- | h(1221) | 8+ | h(1229) | 3- |
h(1237) | 1- | h(1241) | 2- | h(1245) | 4+ | h(1249) | 1- | h(1253) | 2+ | h(1257) | 6+ | h(1261) | 2- | h(1265) | 4+ |
h(1273) | 2+ | h(1277) | 1- | h(1281) | 4+ | h(1285) | 2- | h(1289) | 1- | h(1293) | 2+ | h(1297) | 11- | h(1301) | 1- |
h(1309) | 4+ | h(1313) | 4- | h(1317) | 2+ | h(1321) | 1- | h(1329) | 2+ | h(1333) | 2+ | h(1337) | 2+ | h(1345) | 12+ |
h(1349) | 2+ | h(1353) | 4+ | h(1357) | 2+ | h(1361) | 1- | h(1365) | 8+ | h(1373) | 3- | h(1381) | 1- | h(1385) | 2- |
h(1389) | 2+ | h(1393) | 10+ | h(1397) | 2+ | h(1401) | 2+ | h(1405) | 4+ | h(1409) | 1- | h(1417) | 2- | h(1429) | 5- |
h(1433) | 1- | h(1437) | 2+ | h(1441) | 2+ | h(1453) | 1- | h(1457) | 2+ | h(1461) | 2+ | h(1465) | 2- | h(1469) | 4+ |
h(1473) | 2+ | h(1477) | 2+ | h(1481) | 1- | h(1489) | 3- | h(1493) | 1- | h(1497) | 2+ | h(1501) | 2+ | h(1505) | 4+ |
h(1509) | 6+ | h(1513) | 4+ | h(1517) | 4+ | h(1529) | 2+ | h(1533) | 4+ | h(1537) | 4+ | h(1541) | 2+ | h(1545) | 4+ |
h(1549) | 1- | h(1553) | 1- | h(1561) | 2+ | h(1565) | 2- | h(1569) | 2+ | h(1577) | 2+ | h(1581) | 4+ | h(1585) | 2- |
h(1589) | 2+ | h(1597) | 1- | h(1601) | 7- | h(1605) | 4+ | h(1609) | 1- | h(1613) | 1- | h(1621) | 1- | h(1633) | 2+ |
h(1637) | 1- | h(1641) | 10+ | h(1645) | 4+ | h(1649) | 2- | h(1653) | 4+ | h(1657) | 1- | h(1661) | 2+ | h(1669) | 1- |
h(1673) | 2+ | h(1677) | 8+ | h(1685) | 2- | h(1689) | 2+ | h(1693) | 1- | h(1697) | 1- | h(1705) | 16+ | h(1709) | 1- |
h(1713) | 2+ | h(1717) | 4+ | h(1721) | 1- | h(1729) | 4+ | h(1733) | 1- | h(1741) | 1- | h(1745) | 4- | h(1749) | 4+ |
h(1753) | 1- | h(1757) | 2+ | h(1761) | 14+ | h(1765) | 6- | h(1769) | 2- | h(1777) | 1- | h(1781) | 2- | h(1785) | 16+ |
h(1789) | 1- | h(1793) | 2+ | h(1797) | 2+ | h(1801) | 1- | h(1817) | 2+ | h(1821) | 2+ | h(1829) | 2+ | h(1833) | 4+ |
h(1837) | 2+ | h(1841) | 2+ | h(1853) | 2- | h(1857) | 2+ | h(1861) | 1- | h(1865) | 2- | h(1869) | 4+ | h(1873) | 1- |
h(1877) | 1- | h(1885) | 8+ | h(1889) | 1- | h(1893) | 2+ | h(1897) | 10+ | h(1901) | 3- | h(1905) | 4+ | h(1909) | 2+ |
h(1913) | 1- | h(1921) | 2- | h(1929) | 6+ | h(1933) | 1- | h(1937) | 6- | h(1941) | 2+ | h(1945) | 4+ | h(1949) | 1- |
h(1957) | 6+ | h(1961) | 4+ | h(1965) | 4+ | h(1969) | 2+ | h(1973) | 1- | h(1977) | 2+ | h(1981) | 2+ | h(1985) | 2- |
h(1993) | 1- | h(1997) | 1- | h(2001) | 4+ | h(2005) | 8+ | h(2013) | 4+ | h(2017) | 1- | h(2021) | 6+ | h(2029) | 7- |
h(2033) | 2+ | h(2037) | 4+ | h(2041) | 4+ | h(2045) | 4+ | h(2049) | 2+ | h(2053) | 1- | h(2065) | 4+ | h(2069) | 1- |
h(2073) | 2+ | h(2077) | 2+ | h(2081) | 5- | h(2085) | 4+ | h(2089) | 3- | h(2093) | 4+ | h(2101) | 6+ | h(2105) | 4+ |
h(2109) | 4+ | h(2113) | 1- | h(2117) | 2- | h(2121) | 4+ | h(2129) | 1- | h(2137) | 1- | h(2141) | 1- | h(2145) | 8+ |
h(2149) | 2+ | h(2153) | 5- | h(2157) | 2+ | h(2161) | 1- | h(2165) | 2- | h(2173) | 2- | h(2177) | 6+ | h(2181) | 2+ |
h(2185) | 4+ | h(2189) | 2+ | h(2193) | 4+ | h(2201) | 2+ | h(2213) | 3- | h(2217) | 2+ | h(2221) | 1- | h(2229) | 2+ |
h(2233) | 12+ | h(2237) | 1- | h(2245) | 4+ | h(2249) | 4- | h(2253) | 2+ | h(2257) | 2- | h(2261) | 4+ | h(2265) | 4+ |
h(2269) | 1- | h(2273) | 1- | h(2281) | 1- | h(2285) | 2- | h(2289) | 8+ | h(2293) | 1- | h(2297) | 1- | h(2301) | 4+ |
h(2305) | 16- | h(2309) | 1- | h(2317) | 2+ | h(2321) | 2+ | h(2329) | 4+ | h(2333) | 1- | h(2337) | 4+ | h(2341) | 1- |
h(2345) | 4+ | h(2353) | 4+ | h(2357) | 1- | h(2361) | 2+ | h(2365) | 4+ | h(2369) | 2+ | h(2373) | 4+ | h(2377) | 1- |
h(2381) | 1- | h(2389) | 1- | h(2393) | 1- | h(2397) | 4+ | h(2405) | 4- | h(2409) | 4+ | h(2413) | 2+ | h(2417) | 1- |
h(2429) | 6+ | h(2433) | 2+ | h(2437) | 1- | h(2441) | 1- | h(2445) | 4+ | h(2449) | 2+ | h(2453) | 2+ | h(2461) | 2+ |
h(2465) | 4- | h(2469) | 2+ | h(2473) | 1- | h(2477) | 1- | h(2481) | 2+ | h(2485) | 4+ | h(2489) | 2+ | h(2497) | 2+ |
h(2501) | 4- | h(2505) | 12+ | h(2509) | 2- | h(2513) | 2+ | h(2517) | 2+ | h(2521) | 1- | h(2533) | 8+ | h(2537) | 2+ |
h(2545) | 4- | h(2549) | 1- | h(2553) | 4+ | h(2557) | 3- | h(2561) | 2- | h(2569) | 2+ | h(2573) | 2+ | h(2577) | 2+ |
h(2581) | 2- | h(2585) | 4+ | h(2589) | 6+ | h(2593) | 1- | h(2605) | 8- | h(2609) | 1- | h(2613) | 4+ | h(2617) | 1- |
h(2621) | 1- | h(2629) | 2+ | h(2633) | 1- | h(2641) | 2+ | h(2649) | 2+ | h(2653) | 2+ | h(2657) | 1- | h(2661) | 2+ |
h(2665) | 4- | h(2669) | 8+ | h(2677) | 3- | h(2681) | 2+ | h(2685) | 4+ | h(2689) | 1- | h(2693) | 1- | h(2697) | 4+ |
h(2701) | 4+ | h(2705) | 8- | h(2713) | 3- | h(2717) | 4+ | h(2721) | 2+ | h(2729) | 1- | h(2733) | 2+ | h(2737) | 4+ |
h(2741) | 1- | h(2749) | 1- | h(2753) | 1- | h(2757) | 2+ | h(2761) | 2+ | h(2765) | 4+ | h(2769) | 4+ | h(2773) | 2+ |
h(2777) | 3- | h(2785) | 2- | h(2789) | 1- | h(2797) | 1- | h(2801) | 1- | h(2805) | 8+ | h(2813) | 2- | h(2821) | 4+ |
h(2829) | 4+ | h(2833) | 1- | h(2837) | 1- | h(2841) | 2+ | h(2845) | 4+ | h(2849) | 8+ | h(2857) | 3- | h(2861) | 1- |
h(2865) | 4+ | h(2869) | 2+ | h(2877) | 4+ | h(2881) | 2+ | h(2885) | 2- | h(2893) | 2+ | h(2897) | 1- | h(2901) | 2+ |
h(2905) | 4+ | h(2909) | 1- | h(2913) | 14+ | h(2917) | 3- | h(2921) | 2+ | h(2929) | 2- | h(2933) | 2+ | h(2937) | 4+ |
h(2941) | 6- | h(2945) | 8+ | h(2949) | 2+ | h(2953) | 1- | h(2957) | 1- | h(2965) | 2- | h(2969) | 1- | h(2973) | 2+ |
h(2977) | 2- | h(2981) | 6+ | h(2985) | 4+ | h(2993) | 12+ | h(3001) | 1- | h(3005) | 4+ | h(3009) | 4+ | h(3013) | 2+ |
h(3017) | 2+ | h(3021) | 12+ | h(3029) | 4- | h(3037) | 1- | h(3041) | 1- | h(3045) | 8+ | h(3049) | 1- | h(3053) | 2+ |
h(3057) | 2+ | h(3061) | 1- | h(3065) | 2- | h(3073) | 2+ | h(3077) | 2- | h(3081) | 16+ | h(3085) | 2- | h(3089) | 1- |
h(3093) | 2+ | h(3097) | 2+ | h(3101) | 2+ | h(3109) | 1- | h(3113) | 2+ | h(3117) | 2+ | h(3121) | 5- | h(3129) | 20+ |
h(3133) | 2- | h(3137) | 9- | h(3145) | 4- | h(3149) | 2+ | h(3153) | 2+ | h(3157) | 4+ | h(3161) | 4- | h(3165) | 4+ |
h(3169) | 1- | h(3173) | 6+ | h(3181) | 5- | h(3189) | 2+ | h(3193) | 2+ | h(3197) | 2+ | h(3201) | 16+ | h(3205) | 4+ |
h(3209) | 1- | h(3217) | 1- | h(3221) | 3- | h(3229) | 3- | h(3233) | 2- | h(3237) | 4+ | h(3241) | 2+ | h(3245) | 8+ |
h(3253) | 5- | h(3257) | 1- | h(3261) | 6+ | h(3265) | 2- | h(3269) | 2+ | h(3273) | 2+ | h(3277) | 2- | h(3281) | 6- |
h(3289) | 4+ | h(3293) | 2- | h(3297) | 4+ | h(3301) | 1- | h(3305) | 12+ | h(3309) | 2+ | h(3313) | 1- | h(3317) | 2+ |
h(3329) | 1- | h(3333) | 4+ | h(3337) | 2+ | h(3341) | 4- | h(3345) | 4+ | h(3349) | 2- | h(3353) | 2+ | h(3361) | 1- |
h(3365) | 2- | h(3369) | 2+ | h(3373) | 1- | h(3377) | 2+ | h(3385) | 2- | h(3389) | 1- | h(3397) | 2+ | h(3401) | 2+ |
h(3405) | 4+ | h(3409) | 2+ | h(3413) | 1- | h(3417) | 4+ | h(3421) | 2+ | h(3433) | 1- | h(3437) | 2+ | h(3441) | 4+ |
h(3445) | 4- | h(3449) | 1- | h(3453) | 2+ | h(3457) | 1- | h(3461) | 1- | h(3469) | 1- | h(3473) | 2+ | h(3477) | 8+ |
h(3485) | 4- | h(3489) | 2+ | h(3493) | 2+ | h(3497) | 4+ | h(3505) | 4+ | h(3513) | 2+ | h(3517) | 1- | h(3521) | 2+ |
h(3529) | 1- | h(3533) | 1- | h(3541) | 1- | h(3545) | 4- | h(3553) | 4+ | h(3557) | 1- | h(3561) | 2+ | h(3565) | 4+ |
h(3569) | 6+ | h(3581) | 1- | h(3585) | 20+ | h(3589) | 2- | h(3593) | 1- | h(3597) | 4+ | h(3601) | 20- | h(3605) | 4+ |
h(3613) | 1- | h(3617) | 1- | h(3621) | 4+ | h(3629) | 2+ | h(3633) | 4+ | h(3637) | 1- | h(3641) | 2+ | h(3649) | 2- |
h(3653) | 2- | h(3657) | 4+ | h(3661) | 2+ | h(3665) | 2- | h(3669) | 2+ | h(3673) | 1- | h(3677) | 1- | h(3685) | 4+ |
h(3689) | 4+ | h(3693) | 2+ | h(3697) | 1- | h(3701) | 1- | h(3705) | 8+ | h(3709) | 1- | h(3713) | 2+ | h(3729) | 4+ |
h(3733) | 1- | h(3737) | 4+ | h(3741) | 4+ | h(3745) | 4+ | h(3749) | 2+ | h(3761) | 1- | h(3765) | 4+ | h(3769) | 1- |
h(3777) | 2+ | h(3781) | 2+ | h(3785) | 2- | h(3793) | 1- | h(3797) | 1- | h(3801) | 4+ | h(3805) | 8+ | h(3809) | 2- |
h(3813) | 4+ | h(3817) | 2+ | h(3821) | 1- | h(3829) | 2+ | h(3833) | 1- | h(3837) | 2+ | h(3841) | 2+ | h(3845) | 4- |
h(3849) | 2+ | h(3853) | 1- | h(3857) | 4+ | h(3865) | 2- | h(3869) | 2- | h(3873) | 6+ | h(3877) | 3- | h(3881) | 1- |
h(3885) | 8+ | h(3889) | 3- | h(3893) | 4+ | h(3901) | 2+ | h(3905) | 8+ | h(3909) | 2+ | h(3913) | 4+ | h(3917) | 1- |
h(3921) | 2+ | h(3929) | 1- | h(3937) | 2+ | h(3941) | 6+ | h(3945) | 4+ | h(3949) | 2+ | h(3953) | 2+ | h(3957) | 6+ |
h(3961) | 2- | h(3965) | 8+ | h(3973) | 6- | h(3977) | 2- | h(3981) | 6+ | h(3985) | 2- | h(3989) | 1- | h(3997) | 10+ |
h(4001) | 3- | h(4009) | 22+ | h(4013) | 1- | h(4017) | 8+ | h(4021) | 1- | h(4029) | 4+ | h(4033) | 2- | h(4037) | 2+ |
h(4045) | 4- | h(4049) | 1- | h(4053) | 8+ | h(4057) | 1- | h(4061) | 2+ | h(4065) | 12+ | h(4069) | 4+ | h(4073) | 1- |
h(4081) | 8+ | h(4085) | 4+ | h(4089) | 4+ | h(4093) | 1- | h(4097) | 10- | h(4101) | 2+ | h(4105) | 4+ | h(4109) | 2+ |
h(4117) | 2+ | h(4121) | 2- | h(4129) | 1- | h(4133) | 1- | h(4137) | 4+ | h(4141) | 2- | h(4145) | 4+ | h(4153) | 1- |
h(4157) | 1- | h(4161) | 16+ | h(4169) | 2+ | h(4173) | 8+ | h(4177) | 1- | h(4181) | 2- | h(4189) | 2+ | h(4193) | 6+ |
h(4197) | 2+ | h(4201) | 1- | h(4209) | 4+ | h(4213) | 2+ | h(4217) | 1- | h(4229) | 7- | h(4233) | 4+ | h(4237) | 2+ |
h(4241) | 1- | h(4245) | 4+ | h(4249) | 2+ | h(4253) | 1- | h(4261) | 1- | h(4265) | 2- | h(4269) | 2+ | h(4273) | 1- |
h(4277) | 4+ | h(4281) | 6+ | h(4285) | 2- | h(4289) | 1- | h(4297) | 1- | h(4301) | 4+ | h(4305) | 16+ | h(4309) | 2+ |
h(4313) | 2+ | h(4317) | 2+ | h(4321) | 20+ | h(4333) | 2+ | h(4337) | 1- | h(4341) | 2+ | h(4345) | 24+ | h(4349) | 1- |
h(4353) | 10+ | h(4357) | 5- | h(4369) | 4+ | h(4373) | 1- | h(4377) | 2+ | h(4381) | 4+ | h(4385) | 2- | h(4389) | 8+ |
h(4393) | 2+ | h(4397) | 1- | h(4405) | 4+ | h(4409) | 9- | h(4413) | 2+ | h(4417) | 2+ | h(4421) | 1- | h(4429) | 2+ |
h(4433) | 4+ | h(4441) | 5- | h(4445) | 4+ | h(4449) | 2+ | h(4453) | 4+ | h(4457) | 1- | h(4461) | 2+ | h(4465) | 4+ |
h(4469) | 2- | h(4481) | 3- | h(4485) | 8+ | h(4493) | 3- | h(4497) | 2+ | h(4501) | 2+ | h(4505) | 4- | h(4513) | 1- |
h(4517) | 1- | h(4521) | 4+ | h(4529) | 2+ | h(4533) | 2+ | h(4537) | 2- | h(4541) | 2+ | h(4549) | 1- | h(4553) | 2- |
h(4561) | 1- | h(4565) | 4+ | h(4569) | 2+ | h(4573) | 2- | h(4577) | 2+ | h(4585) | 4+ | h(4589) | 2- | h(4593) | 2+ |
h(4597) | 3- | h(4601) | 2+ | h(4605) | 4+ | h(4609) | 2+ | h(4613) | 2+ | h(4621) | 1- | h(4629) | 2+ | h(4633) | 4+ |
h(4637) | 1- | h(4641) | 24+ | h(4645) | 4+ | h(4649) | 3- | h(4657) | 1- | h(4661) | 2+ | h(4665) | 4+ | h(4669) | 16+ |
h(4673) | 1- | h(4677) | 2+ | h(4681) | 2+ | h(4685) | 2- | h(4697) | 4+ | h(4701) | 2+ | h(4705) | 8+ | h(4709) | 2- |
h(4713) | 2+ | h(4717) | 4+ | h(4721) | 1- | h(4729) | 3- | h(4733) | 1- | h(4737) | 2+ | h(4741) | 2+ | h(4745) | 4- |
h(4749) | 6+ | h(4757) | 10+ | h(4765) | 6- | h(4769) | 2+ | h(4773) | 4+ | h(4777) | 4- | h(4781) | 2+ | h(4785) | 8+ |
h(4789) | 1- | h(4793) | 1- | h(4801) | 1- | h(4809) | 4+ | h(4813) | 1- | h(4817) | 1- | h(4821) | 2+ | h(4829) | 2+ |
h(4837) | 2+ | h(4841) | 6+ | h(4845) | 8+ | h(4849) | 4+ | h(4853) | 6+ | h(4857) | 6+ | h(4861) | 1- | h(4865) | 20+ |
h(4873) | 2+ | h(4877) | 1- | h(4881) | 2+ | h(4885) | 2- | h(4889) | 5- | h(4893) | 4+ | h(4897) | 2+ | h(4909) | 1- |
h(4917) | 4+ | h(4921) | 4+ | h(4929) | 4+ | h(4933) | 3- | h(4937) | 1- | h(4945) | 4+ | h(4953) | 8+ | h(4957) | 1- |
h(4965) | 4+ | h(4969) | 1- | h(4973) | 1- | h(4981) | 8+ | h(4985) | 2- | h(4989) | 2+ | h(4993) | 1- | h(4997) | 2+ |
h(5001) | 2+ | h(5005) | 8+ | h(5009) | 1- | h(5017) | 4+ | h(5021) | 1- | h(5029) | 2+ | h(5033) | 2+ | h(5037) | 8+ |
h(5045) | 4- | h(5053) | 2+ | h(5057) | 4+ | h(5061) | 4+ | h(5065) | 2- | h(5069) | 4+ | h(5073) | 12+ | h(5077) | 1- |
h(5081) | 3- | h(5089) | 6+ | h(5093) | 2+ | h(5097) | 2+ | h(5101) | 1- | h(5105) | 8+ | h(5109) | 8+ | h(5113) | 1- |
h(5117) | 4+ | h(5129) | 2+ | h(5133) | 4+ | h(5137) | 2+ | h(5141) | 4+ | h(5149) | 2+ | h(5153) | 1- | h(5161) | 2- |
h(5165) | 2- | h(5169) | 2+ | h(5173) | 2+ | h(5177) | 2+ | h(5181) | 8+ | h(5185) | 20- | h(5189) | 1- | h(5197) | 1- |
h(5201) | 2+ | h(5205) | 4+ | h(5209) | 1- | h(5213) | 2- | h(5217) | 8+ | h(5221) | 2+ | h(5233) | 1- | h(5237) | 1- |
h(5241) | 10+ | h(5245) | 4- | h(5249) | 16+ | h(5253) | 4+ | h(5257) | 2+ | h(5261) | 3- | h(5269) | 10+ | h(5273) | 7- |
h(5277) | 2+ | h(5281) | 3- | h(5285) | 4+ | h(5289) | 4+ | h(5293) | 2+ | h(5297) | 3- | h(5305) | 8- | h(5309) | 1- |
h(5313) | 8+ | h(5317) | 2- | h(5321) | 2- | h(5333) | 3- | h(5345) | 4+ | h(5349) | 2+ | h(5353) | 6- | h(5357) | 2+ |
h(5361) | 2+ | h(5365) | 4- | h(5369) | 12+ | h(5377) | 2+ | h(5381) | 1- | h(5385) | 4+ | h(5389) | 2- | h(5393) | 1- |
h(5397) | 4+ | h(5401) | 2+ | h(5405) | 4+ | h(5413) | 1- | h(5417) | 7- | h(5421) | 8+ | h(5429) | 2- | h(5433) | 2+ |
h(5437) | 1- | h(5441) | 1- | h(5449) | 1- | h(5453) | 4+ | h(5457) | 4+ | h(5461) | 2+ | h(5465) | 2- | h(5469) | 2+ |
h(5473) | 2- | h(5477) | 3- | h(5485) | 2- | h(5489) | 2+ | h(5493) | 2+ | h(5497) | 6+ | h(5501) | 1- | h(5505) | 4+ |
h(5509) | 2+ | h(5513) | 16+ | h(5521) | 9- | h(5529) | 12+ | h(5533) | 2+ | h(5541) | 2+ | h(5545) | 4- | h(5549) | 2+ |
h(5557) | 1- | h(5561) | 2+ | h(5565) | 8+ | h(5569) | 1- | h(5573) | 1- | h(5581) | 1- | h(5585) | 2- | h(5593) | 4+ |
h(5597) | 2- | h(5601) | 2+ | h(5605) | 8+ | h(5609) | 2+ | h(5613) | 6+ | h(5617) | 2- | h(5621) | 12+ | h(5629) | 12- |
h(5633) | 2+ | h(5637) | 6+ | h(5641) | 1- | h(5645) | 4+ | h(5649) | 4+ | h(5653) | 1- | h(5657) | 1- | h(5665) | 4+ |
h(5669) | 1- | h(5673) | 4+ | h(5677) | 2+ | h(5681) | 4+ | h(5685) | 12+ | h(5689) | 1- | h(5693) | 1- | h(5701) | 1- |
h(5705) | 4+ | h(5709) | 4+ | h(5713) | 8- | h(5717) | 1- | h(5721) | 2+ | h(5729) | 2- | h(5737) | 1- | h(5741) | 3- |
h(5745) | 4+ | h(5749) | 1- | h(5753) | 2+ | h(5757) | 4+ | h(5761) | 2+ | h(5765) | 2- | h(5773) | 2+ | h(5777) | 10- |
h(5781) | 4+ | h(5785) | 4- | h(5789) | 2+ | h(5793) | 2+ | h(5797) | 4+ | h(5801) | 1- | h(5809) | 8+ | h(5813) | 1- |
h(5817) | 8+ | h(5821) | 3- | h(5829) | 4+ | h(5833) | 2+ | h(5837) | 2- | h(5845) | 4+ | h(5849) | 1- | h(5853) | 6+ |
h(5857) | 1- | h(5861) | 1- | h(5865) | 16+ | h(5869) | 1- | h(5873) | 2+ | h(5881) | 1- | h(5885) | 4+ | h(5889) | 4+ |
h(5893) | 2+ | h(5897) | 1- | h(5901) | 12+ | h(5905) | 4+ | h(5909) | 2+ | h(5917) | 4+ | h(5921) | 2+ | h(5933) | 4- |
h(5937) | 2+ | h(5941) | 2- | h(5945) | 8+ | h(5953) | 1- | h(5957) | 4+ | h(5961) | 2+ | h(5965) | 2- | h(5969) | 2+ |
h(5973) | 8+ | h(5977) | 2+ | h(5981) | 1- | h(5989) | 4+ | h(5993) | 2- | h(5997) | 2+ | h(6001) | 8+ | h(6005) | 4+ |
h(6009) | 2+ | h(6013) | 2+ | h(6017) | 2+ | h(6029) | 1- | h(6033) | 2+ | h(6037) | 1- | h(6041) | 2+ | h(6045) | 8+ |
h(6049) | 2+ | h(6053) | 3- | h(6061) | 4+ | h(6065) | 2- | h(6073) | 1- | h(6077) | 2+ | h(6081) | 22+ | h(6085) | 10- |
h(6089) | 1- | h(6097) | 28+ | h(6101) | 1- | h(6105) | 8+ | h(6109) | 2- | h(6113) | 5- | h(6117) | 2+ | h(6121) | 1- |
h(6133) | 3- | h(6141) | 4+ | h(6145) | 4- | h(6149) | 4+ | h(6153) | 12+ | h(6157) | 10+ | h(6161) | 2- | h(6169) | 2+ |
h(6173) | 1- | h(6177) | 4+ | h(6181) | 2+ | h(6185) | 6- | h(6189) | 2+ | h(6193) | 2+ | h(6197) | 1- | h(6205) | 4- |
h(6209) | 6+ | h(6213) | 4+ | h(6217) | 1- | h(6221) | 1- | h(6229) | 1- | h(6233) | 2+ | h(6245) | 4- | h(6249) | 2+ |
h(6257) | 1- | h(6261) | 2+ | h(6265) | 4+ | h(6269) | 1- | h(6277) | 1- | h(6281) | 2+ | h(6285) | 4+ | h(6289) | 6+ |
h(6293) | 4+ | h(6297) | 2+ | h(6301) | 1- | h(6305) | 4- | h(6313) | 2+ | h(6317) | 1- | h(6329) | 1- | h(6333) | 2+ |
h(6337) | 1- | h(6341) | 4+ | h(6349) | 2+ | h(6353) | 1- | h(6357) | 4+ | h(6361) | 1- | h(6365) | 4+ | h(6369) | 4+ |
h(6373) | 1- | h(6377) | 2+ | h(6385) | 2- | h(6389) | 1- | h(6393) | 2+ | h(6397) | 1- | h(6401) | 12- | h(6405) | 8+ |
h(6409) | 8- | h(6421) | 1- | h(6429) | 2+ | h(6433) | 2+ | h(6437) | 2- | h(6441) | 4+ | h(6445) | 4- | h(6449) | 1- |
h(6457) | 2+ | h(6461) | 4+ | h(6465) | 4+ | h(6469) | 1- | h(6473) | 1- | h(6477) | 4+ | h(6481) | 5- | h(6485) | 2- |
h(6493) | 2+ | h(6497) | 8+ | h(6501) | 4+ | h(6505) | 4+ | h(6509) | 2+ | h(6513) | 4+ | h(6521) | 1- | h(6529) | 1- |
h(6533) | 2+ | h(6537) | 2+ | h(6541) | 2+ | h(6545) | 8+ | h(6549) | 12+ | h(6553) | 1- | h(6557) | 6+ | h(6565) | 8- |
h(6569) | 1- | h(6573) | 4+ | h(6577) | 1- | h(6581) | 1- | h(6585) | 4+ | h(6589) | 2+ | h(6593) | 2+ | h(6601) | 12+ |
h(6605) | 4+ | h(6609) | 2+ | h(6613) | 4+ | h(6617) | 2- | h(6621) | 2+ | h(6629) | 2+ | h(6637) | 3- | h(6641) | 2- |
h(6645) | 4+ | h(6649) | 4- | h(6653) | 1- | h(6657) | 4+ | h(6661) | 1- | h(6665) | 4+ | h(6673) | 1- | h(6677) | 2+ |
h(6681) | 12+ | h(6685) | 12+ | h(6689) | 1- | h(6693) | 4+ | h(6697) | 4+ | h(6701) | 1- | h(6709) | 1- | h(6717) | 2+ |
h(6721) | 4+ | h(6729) | 2+ | h(6733) | 1- | h(6737) | 1- | h(6745) | 8+ | h(6749) | 2- | h(6753) | 2+ | h(6757) | 8- |
h(6761) | 1- | h(6765) | 8+ | h(6769) | 2+ | h(6773) | 4+ | h(6781) | 1- | h(6785) | 4+ | h(6789) | 4+ | h(6793) | 1- |
h(6797) | 2+ | h(6801) | 2+ | h(6805) | 8+ | h(6809) | 18+ | h(6817) | 2- | h(6821) | 2+ | h(6829) | 1- | h(6833) | 1- |
h(6837) | 4+ | h(6841) | 1- | h(6853) | 4+ | h(6857) | 1- | h(6861) | 2+ | h(6865) | 2- | h(6869) | 1- | h(6873) | 4+ |
h(6881) | 2+ | h(6893) | 4- | h(6901) | 6+ | h(6905) | 4+ | h(6913) | 2+ | h(6917) | 1- | h(6933) | 2+ | h(6937) | 2+ |
h(6941) | 2+ | h(6945) | 20+ | h(6949) | 5- | h(6953) | 8- | h(6961) | 1- | h(6965) | 4+ | h(6969) | 4+ | h(6973) | 2+ |
h(6977) | 1- | h(6981) | 8+ | h(6985) | 4+ | h(6989) | 4- | h(6997) | 3- | h(7001) | 1- | h(7005) | 4+ | h(7009) | 2+ |
h(7013) | 1- | h(7017) | 2+ | h(7021) | 4+ | h(7033) | 2- | h(7037) | 2+ | h(7041) | 2+ | h(7045) | 4- | h(7049) | 20+ |
h(7053) | 6+ | h(7057) | 21- | h(7061) | 2+ | h(7069) | 1- | h(7073) | 2+ | h(7077) | 8+ | h(7081) | 4+ | h(7085) | 4- |
h(7089) | 4+ | h(7093) | 4- | h(7097) | 2+ | h(7109) | 1- | h(7113) | 2+ | h(7117) | 6+ | h(7121) | 1- | h(7129) | 1- |
h(7133) | 2+ | h(7141) | 2- | h(7145) | 4+ | h(7149) | 2+ | h(7153) | 2+ | h(7157) | 4+ | h(7161) | 8+ | h(7165) | 2- |
h(7169) | 2+ | h(7177) | 1- | h(7181) | 2+ | h(7185) | 4+ | h(7189) | 4+ | h(7193) | 1- | h(7197) | 2+ | h(7201) | 2+ |
h(7205) | 8+ | h(7213) | 1- | h(7217) | 2+ | h(7221) | 20+ | h(7229) | 5- | h(7233) | 2+ | h(7237) | 1- | h(7241) | 2- |
h(7249) | 6+ | h(7253) | 1- | h(7257) | 4+ | h(7261) | 2- | h(7265) | 2- | h(7269) | 2+ | h(7273) | 6+ | h(7277) | 2+ |
h(7285) | 4+ | h(7289) | 8+ | h(7293) | 8+ | h(7297) | 1- | h(7305) | 4+ | h(7309) | 1- | h(7313) | 2+ | h(7321) | 1- |
h(7329) | 4+ | h(7333) | 1- | h(7337) | 4+ | h(7341) | 2+ | h(7345) | 4- | h(7349) | 1- | h(7357) | 2+ | h(7361) | 4+ |
h(7365) | 4+ | h(7369) | 1- | h(7373) | 2- | h(7377) | 2+ | h(7385) | 4+ | h(7393) | 1- | h(7397) | 4- | h(7401) | 2+ |
h(7405) | 4+ | h(7409) | 2+ | h(7413) | 4+ | h(7417) | 1- | h(7421) | 2- | h(7429) | 4+ | h(7433) | 1- | h(7437) | 8+ |
h(7441) | 6+ | h(7445) | 4+ | h(7449) | 16+ | h(7453) | 12+ | h(7457) | 1- | h(7465) | 18- | h(7469) | 4+ | h(7473) | 12+ |
h(7477) | 1- | h(7481) | 3- | h(7485) | 4+ | h(7489) | 1- | h(7493) | 2+ | h(7501) | 2- | h(7505) | 8+ | h(7509) | 2+ |
h(7513) | 10+ | h(7517) | 1- | h(7521) | 4+ | h(7529) | 1- | h(7537) | 3- | h(7541) | 1- | h(7545) | 4+ | h(7549) | 1- |
h(7553) | 4+ | h(7557) | 8+ | h(7561) | 1- | h(7565) | 8+ | h(7573) | 9- | h(7577) | 1- | h(7585) | 8- | h(7589) | 1- |
h(7593) | 2+ | h(7597) | 2+ | h(7601) | 6+ | h(7609) | 2+ | h(7613) | 2+ | h(7617) | 2+ | h(7621) | 1- | h(7629) | 2+ |
h(7633) | 2- | h(7637) | 2+ | h(7645) | 8+ | h(7649) | 1- | h(7653) | 2+ | h(7657) | 4+ | h(7661) | 2+ | h(7665) | 24+ |
h(7669) | 1- | h(7673) | 3- | h(7681) | 1- | h(7685) | 8+ | h(7689) | 4+ | h(7697) | 2+ | h(7701) | 4+ | h(7705) | 20+ |
h(7709) | 6- | h(7717) | 1- | h(7721) | 6+ | h(7729) | 2+ | h(7733) | 4+ | h(7737) | 2+ | h(7741) | 1- | h(7745) | 12- |
h(7753) | 3- | h(7757) | 1- | h(7761) | 8+ | h(7765) | 2- | h(7769) | 4+ | h(7773) | 2+ | h(7777) | 4+ | h(7781) | 2+ |
h(7789) | 1- | h(7793) | 1- | h(7797) | 4+ | h(7801) | 2- | h(7805) | 4+ | h(7809) | 4+ | h(7813) | 4+ | h(7817) | 5- |
h(7829) | 1- | h(7833) | 16+ | h(7837) | 4- | h(7841) | 1- | h(7845) | 4+ | h(7849) | 2+ | h(7853) | 1- | h(7861) | 10+ |
h(7869) | 4+ | h(7873) | 9- | h(7877) | 1- | h(7881) | 24+ | h(7885) | 4+ | h(7897) | 4- | h(7901) | 1- | h(7905) | 8+ |
h(7909) | 2+ | h(7913) | 2- | h(7917) | 8+ | h(7933) | 1- | h(7937) | 1- | h(7941) | 2+ | h(7945) | 4+ | h(7949) | 1- |
h(7953) | 4+ | h(7957) | 8+ | h(7961) | 2+ | h(7969) | 2- | h(7973) | 4+ | h(7977) | 2+ | h(7981) | 2+ | h(7985) | 2- |
h(7989) | 2+ | h(7993) | 1- | h(7997) | 2+ | h(8005) | 8- | h(8009) | 1- | h(8013) | 2+ | h(8017) | 3- | h(8021) | 2- |
h(8029) | 4+ | h(8033) | 4+ | h(8041) | 4+ | h(8045) | 4+ | h(8049) | 10+ | h(8053) | 1- | h(8057) | 6+ | h(8061) | 2+ |
h(8065) | 2- | h(8069) | 3- | h(8077) | 4- | h(8081) | 1- | h(8089) | 1- | h(8093) | 1- | h(8097) | 14+ | h(8101) | 13- |
h(8105) | 16+ | h(8113) | 12+ | h(8117) | 1- | h(8121) | 10+ | h(8129) | 2+ | h(8133) | 2+ | h(8137) | 2+ | h(8141) | 2+ |
h(8149) | 8+ | h(8153) | 2+ | h(8157) | 2+ | h(8161) | 1- | h(8165) | 4+ | h(8169) | 4+ | h(8173) | 6+ | h(8177) | 4- |
h(8185) | 14- | h(8189) | 2+ | h(8193) | 2+ | h(8197) | 2+ | h(8201) | 2+ | h(8205) | 4+ | h(8209) | 1- | h(8213) | 2+ |
h(8221) | 1- | h(8229) | 16+ | h(8233) | 1- | h(8237) | 1- | h(8241) | 4+ | h(8245) | 4- | h(8249) | 2- | h(8257) | 2+ |
h(8261) | 2+ | h(8265) | 8+ | h(8269) | 1- | h(8273) | 1- | h(8277) | 12+ | h(8285) | 6- | h(8293) | 1- | h(8297) | 1- |
h(8301) | 2+ | h(8305) | 8+ | h(8309) | 10+ | h(8313) | 4+ | h(8317) | 1- | h(8321) | 10- | h(8329) | 1- | h(8333) | 4+ |
h(8337) | 4+ | h(8341) | 2+ | h(8345) | 4- | h(8353) | 1- | h(8357) | 4+ | h(8365) | 4+ | h(8369) | 1- | h(8373) | 6+ |
h(8377) | 1- | h(8385) | 8+ | h(8389) | 1- | h(8393) | 4+ | h(8401) | 2+ | h(8409) | 2+ | h(8413) | 2+ | h(8417) | 2+ |
h(8421) | 4+ | h(8429) | 1- | h(8437) | 4+ | h(8441) | 26+ | h(8445) | 4+ | h(8449) | 4+ | h(8453) | 2+ | h(8457) | 2+ |
h(8461) | 1- | h(8465) | 14- | h(8473) | 16+ | h(8481) | 4+ | h(8485) | 2- | h(8489) | 4+ | h(8493) | 4+ | h(8497) | 2- |
h(8501) | 5- | h(8509) | 2+ | h(8513) | 1- | h(8517) | 4+ | h(8521) | 1- | h(8529) | 2+ | h(8533) | 4+ | h(8537) | 1- |
h(8545) | 12- | h(8549) | 2+ | h(8553) | 2+ | h(8557) | 2+ | h(8561) | 2+ | h(8565) | 4+ | h(8569) | 20+ | h(8573) | 1- |
h(8581) | 3- | h(8585) | 8+ | h(8589) | 4+ | h(8593) | 2- | h(8597) | 3- | h(8601) | 8+ | h(8605) | 8+ | h(8609) | 1- |
h(8617) | 2+ | h(8621) | 4+ | h(8629) | 1- | h(8633) | 4+ | h(8637) | 6+ | h(8641) | 1- | h(8645) | 8+ | h(8653) | 8- |
h(8657) | 2+ | h(8661) | 14+ | h(8665) | 2- | h(8669) | 1- | h(8677) | 1- | h(8681) | 1- | h(8689) | 5- | h(8693) | 1- |
h(8697) | 4+ | h(8701) | 8+ | h(8705) | 8+ | h(8709) | 2+ | h(8713) | 3- | h(8717) | 2+ | h(8729) | 4+ | h(8733) | 4+ |
h(8737) | 1- | h(8741) | 1- | h(8745) | 24+ | h(8749) | 4+ | h(8753) | 1- | h(8761) | 27- | h(8765) | 2- | h(8769) | 12+ |
h(8773) | 14+ | h(8777) | 2+ | h(8781) | 2+ | h(8785) | 4+ | h(8789) | 12+ | h(8797) | 2+ | h(8801) | 8+ | h(8805) | 4+ |
h(8809) | 2+ | h(8813) | 2+ | h(8817) | 2+ | h(8821) | 1- | h(8837) | 3- | h(8841) | 8+ | h(8845) | 8+ | h(8849) | 1- |
h(8853) | 4+ | h(8857) | 2- | h(8861) | 1- | h(8873) | 2+ | h(8877) | 4+ | h(8881) | 2+ | h(8885) | 2- | h(8889) | 2+ |
h(8893) | 1- | h(8897) | 4+ | h(8905) | 12- | h(8909) | 6+ | h(8913) | 2+ | h(8917) | 2- | h(8921) | 2+ | h(8929) | 1- |
h(8933) | 1- | h(8941) | 1- | h(8945) | 4- | h(8949) | 8+ | h(8953) | 2+ | h(8961) | 4+ | h(8965) | 4+ | h(8969) | 1- |
h(8977) | 2+ | h(8981) | 2+ | h(8985) | 4+ | h(8989) | 2- | h(8997) | 2+ | h(9001) | 1- | h(9005) | 4+ | h(9013) | 1- |
h(9017) | 2+ | h(9021) | 16+ | h(9029) | 7- | h(9033) | 2+ | h(9037) | 2+ | h(9041) | 1- | h(9049) | 7- | h(9053) | 2+ |
h(9057) | 2+ | h(9061) | 4- | h(9069) | 2+ | h(9073) | 6+ | h(9077) | 4+ | h(9085) | 4+ | h(9089) | 4- | h(9093) | 4+ |
h(9097) | 2+ | h(9101) | 14+ | h(9105) | 4+ | h(9109) | 1- | h(9113) | 4+ | h(9121) | 2+ | h(9129) | 4+ | h(9133) | 3- |
h(9137) | 1- | h(9141) | 4+ | h(9145) | 8+ | h(9149) | 6+ | h(9157) | 1- | h(9161) | 1- | h(9165) | 8+ | h(9169) | 2- |
h(9173) | 1- | h(9177) | 8+ | h(9181) | 5- | h(9185) | 4+ | h(9193) | 2- | h(9197) | 2- | h(9201) | 2+ | h(9205) | 4+ |
h(9209) | 1- | h(9213) | 8+ | h(9217) | 18- | h(9221) | 1- | h(9229) | 10+ | h(9233) | 2+ | h(9237) | 2+ | h(9241) | 1- |
h(9249) | 2+ | h(9253) | 2+ | h(9257) | 1- | h(9265) | 4- | h(9269) | 4+ | h(9273) | 4+ | h(9277) | 1- | h(9281) | 3- |
h(9285) | 4+ | h(9289) | 14+ | h(9293) | 3- | h(9301) | 6+ | h(9305) | 8- | h(9309) | 4+ | h(9313) | 2+ | h(9321) | 20+ |
h(9329) | 2+ | h(9337) | 1- | h(9341) | 1- | h(9345) | 16+ | h(9349) | 1- | h(9353) | 2+ | h(9357) | 2+ | h(9361) | 4+ |
h(9365) | 2- | h(9373) | 4+ | h(9377) | 1- | h(9381) | 4+ | h(9385) | 2- | h(9389) | 2- | h(9393) | 4+ | h(9397) | 1- |
h(9401) | 4+ | h(9413) | 3- | h(9417) | 4+ | h(9421) | 1- | h(9429) | 4+ | h(9433) | 1- | h(9437) | 1- | h(9445) | 4+ |
h(9449) | 2+ | h(9453) | 4+ | h(9461) | 1- | h(9465) | 4+ | h(9469) | 4+ | h(9473) | 1- | h(9481) | 2+ | h(9485) | 4+ |
h(9489) | 2+ | h(9493) | 2+ | h(9497) | 1- | h(9501) | 2+ | h(9505) | 28+ | h(9509) | 2- | h(9517) | 6+ | h(9521) | 1- |
h(9529) | 2- | h(9533) | 1- | h(9541) | 4+ | h(9545) | 4+ | h(9553) | 10- | h(9557) | 2+ | h(9561) | 2+ | h(9565) | 6- |
h(9569) | 2+ | h(9573) | 2+ | h(9577) | 2- | h(9581) | 4+ | h(9589) | 2+ | h(9593) | 2- | h(9597) | 8+ | h(9601) | 1- |
h(9605) | 4- | h(9609) | 2+ | h(9613) | 1- | h(9617) | 2+ | h(9629) | 1- | h(9637) | 2+ | h(9641) | 2+ | h(9645) | 4+ |
h(9649) | 1- | h(9661) | 1- | h(9665) | 2- | h(9669) | 20+ | h(9673) | 4- | h(9677) | 1- | h(9681) | 4+ | h(9685) | 4- |
h(9689) | 1- | h(9697) | 1- | h(9701) | 4+ | h(9705) | 4+ | h(9709) | 4+ | h(9713) | 2+ | h(9717) | 4+ | h(9721) | 1- |
h(9733) | 1- | h(9737) | 4+ | h(9741) | 4+ | h(9745) | 12+ | h(9749) | 3- | h(9753) | 2+ | h(9757) | 10+ | h(9761) | 2+ |
h(9769) | 1- | h(9773) | 2- | h(9777) | 2+ | h(9781) | 1- | h(9785) | 4+ | h(9789) | 8+ | h(9793) | 2+ | h(9797) | 8+ |
h(9805) | 12- | h(9809) | 4+ | h(9813) | 6+ | h(9817) | 1- | h(9821) | 4+ | h(9829) | 5- | h(9833) | 3- | h(9841) | 8+ |
h(9845) | 8+ | h(9853) | 2+ | h(9857) | 1- | h(9861) | 4+ | h(9865) | 2- | h(9869) | 6+ | h(9877) | 4+ | h(9881) | 4- |
h(9885) | 4+ | h(9889) | 4+ | h(9893) | 2- | h(9897) | 6+ | h(9901) | 1- | h(9905) | 12+ | h(9913) | 2+ | h(9917) | 2+ |
h(9921) | 2+ | h(9929) | 1- | h(9933) | 8+ | h(9937) | 6+ | h(9941) | 1- | h(9949) | 1- | h(9953) | 8- | h(9957) | 2+ |
h(9961) | 2+ | h(9965) | 2- | h(9969) | 2+ | h(9973) | 1- | h(9977) | 2+ | h(9985) | 2- | h(9989) | 2+ | h(9993) | 2+ |
h(8) | 1- | h(12) | 2+ | h(24) | 2+ | h(28) | 2+ | h(40) | 2- | h(44) | 2+ | h(56) | 2+ | h(60) | 4+ |
h(76) | 2+ | h(88) | 2+ | h(92) | 2+ | h(104) | 2- | h(120) | 4+ | h(124) | 2+ | h(136) | 4+ | h(140) | 4+ |
h(152) | 2+ | h(156) | 4+ | h(168) | 4+ | h(172) | 2+ | h(184) | 2+ | h(188) | 2+ | h(204) | 4+ | h(220) | 4+ |
h(232) | 2- | h(236) | 2+ | h(248) | 2+ | h(264) | 4+ | h(268) | 2+ | h(280) | 4+ | h(284) | 2+ | h(296) | 2- |
h(312) | 4+ | h(316) | 6+ | h(328) | 4- | h(332) | 2+ | h(344) | 2+ | h(348) | 4+ | h(364) | 4+ | h(376) | 2+ |
h(380) | 4+ | h(408) | 4+ | h(412) | 2+ | h(424) | 2- | h(428) | 2+ | h(440) | 4+ | h(444) | 4+ | h(456) | 4+ |
h(460) | 4+ | h(472) | 2+ | h(476) | 4+ | h(488) | 2- | h(492) | 4+ | h(508) | 2+ | h(520) | 4- | h(524) | 2+ |
h(536) | 2+ | h(552) | 4+ | h(556) | 2+ | h(568) | 6+ | h(572) | 4+ | h(584) | 4+ | h(604) | 2+ | h(616) | 4+ |
h(620) | 4+ | h(632) | 2+ | h(636) | 4+ | h(652) | 2+ | h(664) | 2+ | h(668) | 2+ | h(680) | 4- | h(696) | 4+ |
h(712) | 4+ | h(716) | 2+ | h(728) | 4+ | h(732) | 4+ | h(744) | 4+ | h(748) | 4+ | h(760) | 4+ | h(764) | 2+ |
h(776) | 4+ | h(780) | 8+ | h(796) | 2+ | h(808) | 2- | h(812) | 4+ | h(824) | 2+ | h(840) | 8+ | h(844) | 2+ |
h(856) | 2+ | h(860) | 4+ | h(872) | 2- | h(876) | 8+ | h(888) | 4+ | h(892) | 6+ | h(904) | 8- | h(908) | 2+ |
h(920) | 4+ | h(924) | 8+ | h(940) | 12+ | h(952) | 4+ | h(956) | 2+ | h(984) | 4+ | h(988) | 4+ | h(1004) | 2+ |
h(1016) | 6+ | h(1020) | 8+ | h(1032) | 4+ | h(1036) | 4+ | h(1048) | 2+ | h(1052) | 2+ | h(1064) | 4+ | h(1068) | 4+ |
h(1084) | 2+ | h(1096) | 4- | h(1112) | 2+ | h(1128) | 4+ | h(1132) | 2+ | h(1144) | 4+ | h(1148) | 4+ | h(1160) | 4- |
h(1164) | 8+ | h(1180) | 4+ | h(1192) | 2- | h(1196) | 4+ | h(1208) | 2+ | h(1212) | 4+ | h(1228) | 2+ | h(1240) | 4+ |
h(1244) | 2+ | h(1256) | 2- | h(1272) | 4+ | h(1276) | 4+ | h(1288) | 8+ | h(1292) | 8+ | h(1304) | 6+ | h(1308) | 4+ |
h(1320) | 8+ | h(1324) | 2+ | h(1336) | 2+ | h(1340) | 4+ | h(1356) | 4+ | h(1384) | 6- | h(1388) | 2+ | h(1416) | 4+ |
h(1420) | 4+ | h(1432) | 2+ | h(1436) | 6+ | h(1448) | 2- | h(1464) | 4+ | h(1468) | 2+ | h(1480) | 4- | h(1484) | 4+ |
h(1496) | 4+ | h(1516) | 2+ | h(1528) | 2+ | h(1532) | 2+ | h(1544) | 4+ | h(1560) | 8+ | h(1564) | 4+ | h(1576) | 2- |
h(1580) | 4+ | h(1592) | 2+ | h(1596) | 16+ | h(1608) | 4+ | h(1612) | 4+ | h(1624) | 4+ | h(1628) | 4+ | h(1640) | 8+ |
h(1644) | 4+ | h(1660) | 4+ | h(1672) | 4+ | h(1676) | 2+ | h(1688) | 2+ | h(1704) | 4+ | h(1708) | 12+ | h(1720) | 4+ |
h(1724) | 2+ | h(1736) | 8+ | h(1740) | 8+ | h(1752) | 8+ | h(1756) | 10+ | h(1768) | 8- | h(1772) | 6+ | h(1784) | 2+ |
h(1788) | 4+ | h(1804) | 4+ | h(1816) | 2+ | h(1820) | 8+ | h(1832) | 2- | h(1848) | 8+ | h(1852) | 2+ | h(1864) | 4+ |
h(1868) | 2+ | h(1880) | 4+ | h(1884) | 4+ | h(1896) | 4+ | h(1912) | 2+ | h(1916) | 2+ | h(1928) | 4+ | h(1932) | 8+ |
h(1948) | 2+ | h(1964) | 2+ | h(1976) | 4+ | h(1992) | 4+ | h(1996) | 10+ | h(2008) | 2+ | h(2012) | 2+ | h(2024) | 12+ |
h(2040) | 8+ | h(2044) | 4+ | h(2056) | 8+ | h(2060) | 4+ | h(2072) | 4+ | h(2076) | 4+ | h(2092) | 2+ | h(2104) | 2+ |
h(2108) | 4+ | h(2120) | 4- | h(2136) | 4+ | h(2140) | 4+ | h(2152) | 2- | h(2168) | 2+ | h(2172) | 4+ | h(2184) | 8+ |
h(2188) | 2+ | h(2204) | 4+ | h(2216) | 2- | h(2220) | 8+ | h(2236) | 4+ | h(2248) | 4+ | h(2252) | 2+ | h(2264) | 2+ |
h(2280) | 8+ | h(2284) | 2+ | h(2296) | 12+ | h(2316) | 8+ | h(2328) | 8+ | h(2332) | 4+ | h(2344) | 2- | h(2348) | 2+ |
h(2360) | 4+ | h(2364) | 4+ | h(2380) | 8+ | h(2392) | 4+ | h(2396) | 2+ | h(2408) | 4+ | h(2424) | 4+ | h(2428) | 2+ |
h(2440) | 4- | h(2444) | 4+ | h(2456) | 2+ | h(2460) | 8+ | h(2472) | 4+ | h(2476) | 2+ | h(2488) | 2+ | h(2492) | 4+ |
h(2504) | 4- | h(2508) | 8+ | h(2524) | 2+ | h(2536) | 2- | h(2540) | 4+ | h(2552) | 4+ | h(2568) | 4+ | h(2572) | 2+ |
h(2584) | 16+ | h(2588) | 2+ | h(2604) | 8+ | h(2616) | 4+ | h(2620) | 4+ | h(2632) | 8+ | h(2636) | 6+ | h(2648) | 2+ |
h(2652) | 8+ | h(2668) | 4+ | h(2680) | 4+ | h(2684) | 4+ | h(2696) | 8+ | h(2712) | 4+ | h(2716) | 4+ | h(2728) | 4+ |
h(2732) | 2+ | h(2748) | 4+ | h(2760) | 8+ | h(2764) | 2+ | h(2776) | 2+ | h(2780) | 4+ | h(2792) | 2- | h(2796) | 4+ |
h(2812) | 4+ | h(2824) | 8+ | h(2828) | 4+ | h(2840) | 4+ | h(2856) | 8+ | h(2860) | 8+ | h(2872) | 2+ | h(2876) | 2+ |
h(2892) | 8+ | h(2908) | 10+ | h(2920) | 12- | h(2924) | 8+ | h(2936) | 2+ | h(2956) | 2+ | h(2968) | 4+ | h(2972) | 2+ |
h(2984) | 2- | h(3004) | 2+ | h(3016) | 4- | h(3020) | 4+ | h(3032) | 2+ | h(3036) | 8+ | h(3048) | 4+ | h(3052) | 4+ |
h(3064) | 2+ | h(3068) | 4+ | h(3080) | 8+ | h(3084) | 4+ | h(3112) | 2- | h(3116) | 4+ | h(3128) | 4+ | h(3144) | 12+ |
h(3148) | 2+ | h(3160) | 4+ | h(3164) | 8+ | h(3176) | 2- | h(3180) | 8+ | h(3192) | 8+ | h(3196) | 16+ | h(3208) | 4+ |
h(3212) | 4+ | h(3224) | 4+ | h(3228) | 4+ | h(3244) | 2+ | h(3256) | 4+ | h(3260) | 4+ | h(3272) | 4- | h(3288) | 4+ |
h(3292) | 2+ | h(3304) | 4+ | h(3308) | 2+ | h(3320) | 4+ | h(3324) | 4+ | h(3336) | 4+ | h(3340) | 4+ | h(3352) | 2+ |
h(3356) | 6+ | h(3368) | 6- | h(3372) | 4+ | h(3404) | 4+ | h(3416) | 4+ | h(3432) | 8+ | h(3436) | 2+ | h(3448) | 2+ |
h(3452) | 2+ | h(3464) | 4+ | h(3480) | 16+ | h(3484) | 4+ | h(3496) | 12+ | h(3512) | 2+ | h(3516) | 4+ | h(3532) | 2+ |
h(3544) | 2+ | h(3548) | 2+ | h(3560) | 8+ | h(3576) | 12+ | h(3580) | 12+ | h(3592) | 12+ | h(3596) | 12+ | h(3608) | 4+ |
h(3612) | 8+ | h(3624) | 12+ | h(3628) | 2+ | h(3640) | 16+ | h(3644) | 2+ | h(3656) | 4- | h(3660) | 8+ | h(3676) | 2+ |
h(3688) | 2- | h(3692) | 4+ | h(3704) | 2+ | h(3720) | 8+ | h(3736) | 6+ | h(3740) | 8+ | h(3752) | 4+ | h(3756) | 8+ |
h(3768) | 4+ | h(3772) | 8+ | h(3784) | 4+ | h(3788) | 2+ | h(3804) | 4+ | h(3820) | 4+ | h(3832) | 2+ | h(3836) | 8+ |
h(3848) | 4- | h(3864) | 8+ | h(3868) | 2+ | h(3880) | 4- | h(3884) | 2+ | h(3896) | 2+ | h(3912) | 4+ | h(3916) | 8+ |
h(3928) | 10+ | h(3932) | 2+ | h(3944) | 4- | h(3948) | 8+ | h(3964) | 2+ | h(3976) | 16+ | h(3980) | 4+ | h(3992) | 2+ |
h(4008) | 4+ | h(4012) | 8+ | h(4024) | 2+ | h(4028) | 4+ | h(4040) | 4- | h(4044) | 8+ | h(4060) | 8+ | h(4072) | 2- |
h(4076) | 2+ | h(4088) | 4+ | h(4092) | 16+ | h(4108) | 4+ | h(4120) | 4+ | h(4124) | 2+ | h(4136) | 4+ | h(4152) | 4+ |
h(4156) | 2+ | h(4168) | 4- | h(4172) | 4+ | h(4184) | 2+ | h(4188) | 4+ | h(4204) | 2+ | h(4216) | 4+ | h(4220) | 4+ |
h(4236) | 4+ | h(4252) | 2+ | h(4264) | 4- | h(4268) | 8+ | h(4280) | 4+ | h(4296) | 4+ | h(4316) | 4+ | h(4328) | 2- |
h(4344) | 12+ | h(4348) | 14+ | h(4360) | 12- | h(4364) | 6+ | h(4376) | 2+ | h(4380) | 8+ | h(4396) | 4+ | h(4408) | 4+ |
h(4412) | 2+ | h(4424) | 8+ | h(4440) | 8+ | h(4444) | 20+ | h(4456) | 2- | h(4460) | 4+ | h(4472) | 4+ | h(4476) | 4+ |
h(4488) | 16+ | h(4492) | 2+ | h(4504) | 10+ | h(4520) | 4- | h(4524) | 8+ | h(4540) | 4+ | h(4552) | 4- | h(4556) | 8+ |
h(4568) | 2+ | h(4584) | 4+ | h(4588) | 4+ | h(4604) | 2+ | h(4616) | 8+ | h(4620) | 16+ | h(4632) | 8+ | h(4636) | 4+ |
h(4648) | 4+ | h(4652) | 2+ | h(4664) | 4+ | h(4668) | 4+ | h(4684) | 6+ | h(4696) | 2+ | h(4712) | 4+ | h(4728) | 4+ |
h(4744) | 8+ | h(4748) | 2+ | h(4760) | 8+ | h(4764) | 12+ | h(4776) | 4+ | h(4780) | 4+ | h(4792) | 2+ | h(4796) | 4+ |
h(4808) | 4+ | h(4812) | 4+ | h(4828) | 4+ | h(4844) | 12+ | h(4856) | 2+ | h(4872) | 8+ | h(4876) | 4+ | h(4888) | 4+ |
h(4892) | 6+ | h(4904) | 10- | h(4908) | 8+ | h(4920) | 8+ | h(4924) | 2+ | h(4936) | 4+ | h(4940) | 8+ | h(4952) | 2+ |
h(4956) | 16+ | h(4972) | 8+ | h(4984) | 4+ | h(4988) | 4+ | h(5016) | 8+ | h(5020) | 4+ | h(5032) | 4- | h(5036) | 2+ |
h(5048) | 2+ | h(5052) | 4+ | h(5064) | 4+ | h(5068) | 4+ | h(5080) | 4+ | h(5084) | 8+ | h(5116) | 2+ | h(5128) | 4+ |
h(5132) | 2+ | h(5144) | 2+ | h(5160) | 16+ | h(5164) | 2+ | h(5176) | 14+ | h(5180) | 8+ | h(5192) | 4+ | h(5196) | 16+ |
h(5208) | 8+ | h(5212) | 2+ | h(5224) | 2- | h(5228) | 2+ | h(5240) | 4+ | h(5244) | 8+ | h(5260) | 4+ | h(5272) | 2+ |
h(5276) | 2+ | h(5288) | 2- | h(5304) | 8+ | h(5308) | 10+ | h(5320) | 8+ | h(5336) | 4+ | h(5340) | 8+ | h(5352) | 4+ |
h(5356) | 12+ | h(5368) | 12+ | h(5372) | 4+ | h(5384) | 4+ | h(5388) | 4+ | h(5404) | 16+ | h(5416) | 2- | h(5420) | 4+ |
h(5432) | 4+ | h(5448) | 4+ | h(5452) | 4+ | h(5464) | 2+ | h(5468) | 6+ | h(5480) | 4- | h(5484) | 8+ | h(5496) | 4+ |
h(5512) | 4- | h(5516) | 4+ | h(5528) | 2+ | h(5532) | 4+ | h(5548) | 8+ | h(5560) | 4+ | h(5564) | 4+ | h(5576) | 8+ |
h(5592) | 4+ | h(5596) | 2+ | h(5608) | 2- | h(5612) | 4+ | h(5624) | 12+ | h(5628) | 8+ | h(5640) | 8+ | h(5644) | 8+ |
h(5656) | 4+ | h(5660) | 4+ | h(5672) | 2- | h(5676) | 8+ | h(5692) | 2+ | h(5704) | 8+ | h(5708) | 2+ | h(5720) | 8+ |
h(5736) | 4+ | h(5740) | 8+ | h(5752) | 2+ | h(5756) | 2+ | h(5768) | 8+ | h(5772) | 16+ | h(5784) | 16+ | h(5788) | 2+ |
h(5804) | 2+ | h(5816) | 2+ | h(5820) | 8+ | h(5836) | 2+ | h(5848) | 8+ | h(5852) | 8+ | h(5864) | 2- | h(5884) | 2+ |
h(5896) | 4+ | h(5912) | 6+ | h(5916) | 8+ | h(5928) | 8+ | h(5932) | 2+ | h(5944) | 10+ | h(5948) | 2+ | h(5960) | 4- |
h(5964) | 8+ | h(5980) | 24+ | h(5992) | 4+ | h(5996) | 2+ | h(6008) | 2+ | h(6024) | 4+ | h(6028) | 8+ | h(6040) | 4+ |
h(6044) | 2+ | h(6056) | 2- | h(6060) | 8+ | h(6072) | 8+ | h(6088) | 12- | h(6092) | 6+ | h(6104) | 4+ | h(6108) | 12+ |
h(6124) | 2+ | h(6136) | 28+ | h(6140) | 4+ | h(6152) | 4+ | h(6168) | 4+ | h(6172) | 2+ | h(6184) | 6- | h(6188) | 8+ |
h(6204) | 8+ | h(6216) | 8+ | h(6220) | 4+ | h(6232) | 4+ | h(6236) | 2+ | h(6248) | 4+ | h(6252) | 4+ | h(6268) | 6+ |
h(6280) | 4- | h(6284) | 2+ | h(6296) | 2+ | h(6312) | 4+ | h(6316) | 2+ | h(6328) | 8+ | h(6332) | 2+ | h(6344) | 4- |
h(6360) | 16+ | h(6364) | 4+ | h(6376) | 2- | h(6380) | 8+ | h(6392) | 8+ | h(6396) | 24+ | h(6412) | 4+ | h(6424) | 4+ |
h(6428) | 2+ | h(6440) | 8+ | h(6456) | 4+ | h(6460) | 8+ | h(6472) | 4- | h(6476) | 2+ | h(6488) | 2+ | h(6492) | 4+ |
h(6504) | 4+ | h(6508) | 6+ | h(6520) | 4+ | h(6524) | 8+ | h(6536) | 4+ | h(6540) | 8+ | h(6556) | 12+ | h(6568) | 2- |
h(6572) | 4+ | h(6584) | 6+ | h(6604) | 4+ | h(6616) | 18+ | h(6620) | 4+ | h(6632) | 2- | h(6636) | 8+ | h(6648) | 4+ |
h(6652) | 2+ | h(6668) | 2+ | h(6680) | 4+ | h(6684) | 4+ | h(6712) | 2+ | h(6716) | 8+ | h(6744) | 4+ | h(6748) | 4+ |
h(6764) | 4+ | h(6780) | 8+ | h(6792) | 4+ | h(6796) | 2+ | h(6808) | 4+ | h(6812) | 4+ | h(6824) | 2- | h(6828) | 4+ |
h(6844) | 4+ | h(6856) | 12- | h(6872) | 2+ | h(6888) | 8+ | h(6892) | 2+ | h(6904) | 2+ | h(6908) | 4+ | h(6920) | 4- |
h(6924) | 8+ | h(6940) | 12+ | h(6952) | 4+ | h(6956) | 4+ | h(6968) | 4+ | h(6972) | 16+ | h(6988) | 2+ | h(7004) | 8+ |
h(7016) | 2- | h(7032) | 12+ | h(7036) | 2+ | h(7048) | 8+ | h(7052) | 8+ | h(7064) | 10+ | h(7068) | 8+ | h(7080) | 8+ |
h(7084) | 24+ | h(7096) | 2+ | h(7112) | 8+ | h(7116) | 4+ | h(7132) | 2+ | h(7144) | 4+ | h(7148) | 6+ | h(7160) | 4+ |
h(7176) | 8+ | h(7180) | 4+ | h(7192) | 4+ | h(7196) | 4+ | h(7208) | 8+ | h(7212) | 8+ | h(7224) | 24+ | h(7228) | 4+ |
h(7240) | 4- | h(7244) | 6+ | h(7256) | 2+ | h(7276) | 4+ | h(7288) | 2+ | h(7292) | 2+ | h(7304) | 4+ | h(7320) | 8+ |
h(7324) | 2+ | h(7336) | 4+ | h(7340) | 4+ | h(7352) | 2+ | h(7356) | 4+ | h(7368) | 4+ | h(7372) | 4+ | h(7384) | 4+ |
h(7388) | 6+ | h(7404) | 12+ | h(7420) | 8+ | h(7432) | 4+ | h(7464) | 12+ | h(7468) | 2+ | h(7480) | 8+ | h(7484) | 2+ |
h(7496) | 4+ | h(7512) | 8+ | h(7516) | 2+ | h(7528) | 6- | h(7532) | 4+ | h(7544) | 8+ | h(7548) | 8+ | h(7564) | 4+ |
h(7576) | 2+ | h(7580) | 4+ | h(7592) | 4- | h(7608) | 4+ | h(7612) | 4+ | h(7624) | 4- | h(7628) | 6+ | h(7640) | 4+ |
h(7656) | 16+ | h(7660) | 4+ | h(7672) | 8+ | h(7676) | 4+ | h(7692) | 4+ | h(7708) | 4+ | h(7720) | 4- | h(7724) | 2+ |
h(7736) | 14+ | h(7752) | 8+ | h(7756) | 4+ | h(7768) | 2+ | h(7772) | 4+ | h(7784) | 4+ | h(7788) | 16+ | h(7804) | 2+ |
h(7816) | 12+ | h(7820) | 8+ | h(7832) | 8+ | h(7836) | 4+ | h(7852) | 4+ | h(7864) | 2+ | h(7868) | 8+ | h(7880) | 4- |
h(7896) | 8+ | h(7912) | 4+ | h(7916) | 2+ | h(7928) | 2+ | h(7932) | 4+ | h(7944) | 4+ | h(7948) | 6+ | h(7960) | 4+ |
h(7964) | 4+ | h(7976) | 2- | h(7980) | 16+ | h(7996) | 2+ | h(8008) | 8+ | h(8012) | 2+ | h(8024) | 8+ | h(8040) | 16+ |
h(8044) | 2+ | h(8056) | 4+ | h(8060) | 8+ | h(8072) | 4+ | h(8076) | 16+ | h(8088) | 8+ | h(8104) | 14- | h(8108) | 10+ |
h(8120) | 8+ | h(8124) | 20+ | h(8140) | 16+ | h(8152) | 2+ | h(8156) | 2+ | h(8168) | 2- | h(8184) | 8+ | h(8188) | 4+ |
h(8204) | 4+ | h(8216) | 4+ | h(8220) | 24+ | h(8236) | 4+ | h(8248) | 2+ | h(8252) | 2+ | h(8264) | 4+ | h(8268) | 8+ |
h(8284) | 4+ | h(8296) | 4- | h(8312) | 2+ | h(8328) | 4+ | h(8332) | 2+ | h(8344) | 4+ | h(8348) | 2+ | h(8360) | 8+ |
h(8364) | 8+ | h(8376) | 4+ | h(8380) | 4+ | h(8392) | 4+ | h(8396) | 6+ | h(8408) | 2+ | h(8412) | 4+ | h(8440) | 4+ |
h(8444) | 2+ | h(8456) | 8+ | h(8472) | 12+ | h(8476) | 4+ | h(8488) | 2- | h(8492) | 4+ | h(8504) | 2+ | h(8508) | 4+ |
h(8520) | 8+ | h(8524) | 2+ | h(8536) | 16+ | h(8540) | 8+ | h(8552) | 2- | h(8556) | 24+ | h(8572) | 6+ | h(8584) | 4- |
h(8588) | 4+ | h(8616) | 4+ | h(8620) | 4+ | h(8632) | 4+ | h(8636) | 8+ | h(8648) | 8+ | h(8652) | 8+ | h(8668) | 4+ |
h(8680) | 24+ | h(8684) | 4+ | h(8696) | 2+ | h(8716) | 2+ | h(8728) | 2+ | h(8732) | 4+ | h(8744) | 2- | h(8760) | 8+ |
h(8764) | 4+ | h(8776) | 4+ | h(8780) | 4+ | h(8792) | 4+ | h(8796) | 4+ | h(8808) | 4+ | h(8812) | 2+ | h(8824) | 2+ |
h(8828) | 6+ | h(8840) | 8- | h(8844) | 16+ | h(8860) | 4+ | h(8872) | 2- | h(8876) | 4+ | h(8888) | 4+ | h(8904) | 8+ |
h(8908) | 4+ | h(8920) | 12+ | h(8924) | 4+ | h(8936) | 2- | h(8940) | 8+ | h(8952) | 4+ | h(8956) | 2+ | h(8968) | 4+ |
h(8972) | 2+ | h(8984) | 2+ | h(8988) | 8+ | h(9004) | 14+ | h(9020) | 8+ | h(9032) | 4- | h(9048) | 8+ | h(9052) | 12+ |
h(9064) | 4+ | h(9068) | 2+ | h(9080) | 4+ | h(9084) | 4+ | h(9096) | 4+ | h(9112) | 8+ | h(9116) | 4+ | h(9128) | 4+ |
h(9132) | 4+ | h(9148) | 2+ | h(9160) | 4- | h(9164) | 4+ | h(9176) | 4+ | h(9192) | 12+ | h(9208) | 14+ | h(9224) | 8+ |
h(9228) | 8+ | h(9240) | 16+ | h(9244) | 2+ | h(9256) | 4- | h(9260) | 4+ | h(9272) | 4+ | h(9276) | 4+ | h(9292) | 4+ |
h(9304) | 2+ | h(9308) | 4+ | h(9320) | 4- | h(9336) | 4+ | h(9340) | 20+ | h(9352) | 8+ | h(9356) | 2+ | h(9368) | 2+ |
h(9372) | 8+ | h(9384) | 8+ | h(9388) | 2+ | h(9404) | 2+ | h(9416) | 4+ | h(9420) | 8+ | h(9436) | 8+ | h(9448) | 10- |
h(9452) | 4+ | h(9480) | 8+ | h(9484) | 2+ | h(9496) | 2+ | h(9512) | 4- | h(9516) | 16+ | h(9528) | 4+ | h(9532) | 2+ |
h(9544) | 4+ | h(9548) | 8+ | h(9560) | 4+ | h(9564) | 4+ | h(9580) | 4+ | h(9592) | 4+ | h(9596) | 10+ | h(9608) | 8- |
h(9624) | 4+ | h(9628) | 4+ | h(9640) | 16+ | h(9644) | 2+ | h(9656) | 4+ | h(9660) | 16+ | h(9672) | 8+ | h(9676) | 24+ |
h(9688) | 4+ | h(9692) | 2+ | h(9704) | 2- | h(9708) | 4+ | h(9724) | 8+ | h(9736) | 16+ | h(9740) | 4+ | h(9752) | 4+ |
h(9768) | 8+ | h(9772) | 4+ | h(9784) | 2+ | h(9788) | 2+ | h(9804) | 16+ | h(9816) | 8+ | h(9820) | 4+ | h(9832) | 2- |
h(9836) | 6+ | h(9848) | 2+ | h(9852) | 4+ | h(9868) | 14+ | h(9880) | 8+ | h(9884) | 4+ | h(9896) | 2- | h(9912) | 8+ |
h(9916) | 4+ | h(9928) | 8- | h(9932) | 4+ | h(9944) | 8+ | h(9948) | 4+ | h(9960) | 16+ | h(9964) | 4+ | h(9976) | 4+ |
h(9980) | 12+ | h(9992) | 8+ |
Last modified 22nd July 2011
Return to Keith Matthews' BCMATH page