Solving $x^2 - Dy^2 = N$ in integers, where $D > 0$ is not a perfect square.

Keith Matthews

We describe a neglected algorithm, based on simple continued fractions, due to Lagrange, for deciding the solubility of $x^2 - Dy^2 = N$, with $\gcd(x, y) = 1$, where $D > 0$ and is not a perfect square. In the case of solubility, the fundamental solutions are also constructed.
Lagrange’s well-known algorithm

In 1768, Lagrange showed that if $x^2 - Dy^2 = N$, $x > 0$, $y > 0$, $\gcd(x, y) = 1$ and $|N| < \sqrt{D}$, then x/y is a convergent A_n/B_n of the simple continued fraction of \sqrt{D}. For we have

$$(x + \sqrt{D}y)(x - \sqrt{D}y) = N$$

$$|x - \sqrt{D}y| = \frac{|N|}{x + \sqrt{D}y} < \frac{\sqrt{D}}{x + \sqrt{D}y}.$$

Hence

$$\frac{x}{y} > \sqrt{D} \implies \left| \frac{x}{y} - \sqrt{D} \right| < \frac{1}{2y^2}$$

and

$$\frac{x}{y} < \sqrt{D} \implies \left| \frac{y}{x} - \frac{1}{\sqrt{D}} \right| < \frac{1}{2x^2}.$$
If $\sqrt{D} = [a_0, a_1, \ldots, a_l]$, due to periodicity of $(-1)^{n+1}(A_n^2 - DB_n^2)$, for solubility, we need only check the values for the range $0 \leq n \leq \lfloor l/2 \rfloor - 1$. To find all solutions, we check the range $0 \leq n \leq l - 1$.
Example: \(x^2 - 13y^2 = 3. \)

\[\sqrt{13} = [3, 1, 1, 1, 1, 6]. \]

<table>
<thead>
<tr>
<th>(n)</th>
<th>(A_n/B_n)</th>
<th>(A_n^2 - 13B_n^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3/1</td>
<td>-4</td>
</tr>
<tr>
<td>1</td>
<td>4/1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>7/2</td>
<td>-3</td>
</tr>
<tr>
<td>3</td>
<td>11/3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>18/5</td>
<td>-1</td>
</tr>
</tbody>
</table>

The positive solutions \((x, y)\) are given by

\[x + y\sqrt{13} = \begin{cases} \eta^{2n}(4 + \sqrt{13}), & n \geq 0, \\ \eta^{2n+1}(7 + 2\sqrt{13}), & n \geq 0, \end{cases} \]

where \(\eta = 18 + 5\sqrt{13} \).

Note: \(7 + 2\sqrt{13} = -\eta(-4 + \sqrt{13}) \).
Example: \(x^2 - 221y^2 = 4 \).

\[
\sqrt{221} = [14, 1, 6, 2, 6, 1, 28].
\]

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\frac{A_n}{B_n})</th>
<th>(A_n^2 - 221B_n^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>14/1</td>
<td>−25</td>
</tr>
<tr>
<td>1</td>
<td>15/1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>104/7</td>
<td>−13</td>
</tr>
<tr>
<td>3</td>
<td>223/15</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>1442/97</td>
<td>−25</td>
</tr>
<tr>
<td>5</td>
<td>1665/112</td>
<td>1</td>
</tr>
</tbody>
</table>

The positive solutions \((x, y), \gcd(x, y) = 1\), are given by

\[
x + y\sqrt{221} = \begin{cases}
\eta^n(15 + \sqrt{221}), & n \geq 0, \\
\eta^n(223 + 15\sqrt{221}), & n \geq 0,
\end{cases}
\]

where \(\eta = 1665 + 112\sqrt{221} \).

Note: (i) \(x^2 - 221y^2 = -4 \) has no solution in positive \((x, y)\) with \(\gcd(x, y) = 1 \).

(ii) \(223 + 15\sqrt{221} = -\eta(-15 + \sqrt{221}) \).
In 1770, Lagrange gave a neglected algorithm for solving $x^2 - Dy^2 = N$ for arbitrary $N \neq 0$, using the continued fraction expansions of $(P \pm \sqrt{D})/|N|$, where $P^2 \equiv D \pmod{|N|}$, $-|N|/2 < P \leq |N|/2$.

The difficulty is to show that all solutions arise from the continued fractions and Lagrange’s discussion of this was hard to follow. My contribution was to give a short proof using a unimodular matrix lemma (Theorem 172 of Hardy and Wright) which gives a sufficient test for a rational to be a convergent of a simple continued fraction.
Pell’s equation

The special case $N = 1$ is known as *Pell’s equation*. If

$$\eta_0 = x_0 + y_0 \sqrt{D}$$

denotes the fundamental solution of

$$x^2 - Dy^2 = 1,$$

ie, the solution with least positive x and y, then the general solution is given by

$$x + y \sqrt{D} = \pm \eta_0^n, n \in \mathbb{Z}.$$

We can calculate (x_0, y_0) by expanding \sqrt{D} as a periodic continued fraction:

$$\sqrt{D} = [a_0, a_1, \ldots, a_l].$$

Then

$$x_0/y_0 = \begin{cases}
\frac{A_{l-1}}{B_{l-1}}, & \text{if } l \text{ is even} \\
\frac{A_{2l-1}}{B_{2l-1}}, & \text{if } l \text{ is odd},
\end{cases}$$
Equivalence classes of primitive solutions of $x^2 - Dy^2 = N$.

The identity
\[
(x^2 - Dy^2)(u^2 - Dv^2) = (xu + yvD)^2 - D(uy + vx)^2
\]
shows that primitive solutions (x, y) of $x^2 - Dy^2 = N$ and (u, v) of Pell's equation $u^2 - Dv^2 = 1$, produce a primitive solution
\[
(x', y') = (xu + yvD, uy + vx)
\]
of $x'^2 - Dy'^2 = N$.

Note that the equation
\[
x' + y'\sqrt{D} = (x + y\sqrt{D})(u + v\sqrt{D})
\]
defines an equivalence relation on the set of all primitive solutions of $x^2 - Dy^2 = N$.
Associating a congruence class mod $|N|$ to each equivalence class

If $x^2 - Dy^2 = N$ with $\gcd(x, y) = 1$, then $\gcd(y, N) = 1$.

We define P by $x \equiv yP \pmod{|N|}$. Then

\[
\begin{align*}
x^2 - Dy^2 &\equiv 0 \pmod{|N|} \\
y^2P^2 - Dy^2 &\equiv 0 \pmod{|N|} \\
P^2 - D &\equiv 0 \pmod{|N|} \\
P^2 &\equiv D \pmod{|N|}.
\end{align*}
\]
Primitive solutions \((x, y)\) and \((x', y')\) are equivalent if and only if

\[
xx' - yy'D \equiv 0 \pmod{|N|}
\]
\[
yx' - xy' \equiv 0 \pmod{|N|}.
\]

Then \((x, y)\) and \((x', y')\) are equivalent if and only if

\[P \equiv P' \pmod{|N|}.
\]

Hence the number of equivalence classes is finite.
If \((x, y)\) is a solution for a class \(C\), then \((-x, y)\) is a solution for the \textit{conjugate} class \(C^*\).

It can happen that \(C^* = C\), in which case \(C\) is called an \textit{ambiguous} class.

A class is ambiguous if and only if \(P \equiv 0\) or \(|N|/2 \pmod{|N|})

The solution \((x, y)\) in a class with least \(y > 0\) is called a \textit{fundamental} solution.

For an ambiguous class, there are either two \((x, y)\) and \((-x, y)\) with least \(y > 0\) if \(x > 0\) and one if \(x = 0\), namely \((0, 1)\) and we choose the one with \(x \geq 0\).
Let \(\omega = \frac{P_0 + \sqrt{D}}{Q_0} = [a_0, a_1, \ldots] \), where \(Q_0 | (P_0^2 - D) \).

Then the \(n \)-th complete quotient
\[
x_n = [a_n, a_{n+1}, \ldots] = \frac{(P_n + \sqrt{D})}{Q_n}.
\]

There is a simple algorithm for calculating \(a_n, P_n \) and \(Q_n \):
\[
a_n = \left\lfloor \frac{P_n + \sqrt{D}}{Q_n} \right\rfloor, \quad (2)
\]
\[
P_{n+1} = a_n Q_n - P_n,
\]
\[
Q_{n+1} = \frac{D - P_{n+1}^2}{Q_n}.
\]

We also note the following important identity
\[
G_{n-1}^2 - DB_{n-1}^2 = (-1)^n Q_0 Q_n,
\]
where \(G_{n-1} = Q_0 A_{n-1} - P_0 B_{n-1} \).

With \(\omega^* = \frac{P_0 - \sqrt{D}}{Q_0} \), we have
\[
G_{n-1}^2 - DB_{n-1}^2 = (-1)^{n+1} Q_0 Q_n.
\]
Necessary conditions for solubility of $x^2 - Dy^2 = N$

Suppose $x^2 - Dy^2 = N$, $\gcd(x, y) = 1$, $y > 0$.

Let $x \equiv yP \pmod{|N|}$. Then by dealing with the conjugate class instead, if necessary, we can assume $0 \leq P \leq |N|/2$. Also $P^2 \equiv D \pmod{|N|}$.

Let $x = Py + |N|X$.

Lagrange substituted for $x = Py + |N|X$ in the equation $x^2 - Dy^2 = N$ to get

$$|N|X^2 + 2PXy + \frac{(P^2-D)}{|N|}y^2 = \frac{N}{|N|}.$$

He then appealed to a result on a general homogeneous equation $f(X, y) = 1$ and deduced that X/y is a convergent to a root of equation $f(X, y) = 0$.

Our main result is:

(i) If $x > 0$, then X/y is a convergent A_{n-1}/B_{n-1} to $\omega = \frac{-P + \sqrt{D}}{|N|}$, $x = G_{n-1}$ and $Q_n = (-1)^n \frac{N}{|N|}$.

(ii) If $x \leq 0$, then X/y is a convergent A_{m-1}/B_{m-1} to $\omega^* = \frac{-P - \sqrt{D}}{|N|}$, $x = G_{n-1}$ and $Q_m = (-1)^{m+1} \frac{N}{|N|}$.
We prove part (i) by using the following extension of Theorem 172 in Hardy and Wright’s book:

Lemma. If \(\omega = \frac{U\zeta + R}{V\zeta + S} \), where \(\zeta > 1 \) and \(U, V, R, S \) are integers such that \(V > 0, S > 0 \) and \(US - VR = \pm 1 \), or \(S = 0 \) and \(V = R = 1 \), then \(U/V \) is a convergent to \(\omega \).
We apply the Lemma to the matrix

\[
\begin{bmatrix}
U & R \\
V & S
\end{bmatrix} = \begin{bmatrix}
X & -P_x + D_y \\
y & \frac{-P_x + D_y}{|N|}
\end{bmatrix}.
\]

The matrix has integer entries. For

\[x \equiv yP \pmod{|N|}\] and \[P^2 \equiv D \pmod{|N|}\].

Hence

\[-P_x + D_y \equiv -P^2 y + D y \pmod{|N|}
\equiv (D - P^2)y \equiv 0 \pmod{|N|}.
\]
The matrix \[
\begin{bmatrix}
X & \frac{-P_x+Dy}{|N|} \\
y & x
\end{bmatrix}
\] has determinant
\[
\Delta = Xx - \frac{y(-P_x + D_y)}{|N|} = (x - P_y)x - y(-P_x + D_y) = \frac{(x - P_y)x - y(-P_x + D_y)}{|N|} = \frac{x^2 - D_y^2}{|N|} = \frac{N}{|N|} = \pm 1.
\]
Also if \(\zeta = \sqrt{D} \) and \(\omega = (-P + \sqrt{D})/|N| \), it is easy to verify that

\[
\omega = \frac{U\zeta + R}{V\zeta + S}.
\]

The lemma now implies that \(U/V = X/y \) is a convergent \(A_{n-1}/B_{n-1} \) to \(\omega \). Also

\[
G_{n-1} = Q_0 A_{n-1} - P_0 B_{n-1} = |N|X + Py = x.
\]

Hence

\[
N = x^2 - Dy^2 = G_{n-1}^2 - DB_{n-1}^2 = (-1)^n|N|Q_n,
\]

so \(Q_n = (-1)^n N/|N| \).
Refining the necessary condition for solubility

Lemma. An equivalence class of solutions contains an \((x, y)\) with \(x \geq 0\) and \(y > 0\).

Proof. Let \((x_0, y_0)\) be fundamental solution of a class \(C\). Then if \(x_0 \geq 0\) we are finished. So suppose \(x_0 < 0\) and let \(u + v\sqrt{D}\), \(u > 0, v > 0\), be a solution of Pell’s equation.

Define \(X\) and \(Y\) by
\[
X + Y\sqrt{D} = (x_0 + y_0\sqrt{D})(u + v\sqrt{D}).
\]

Then it can be shown that

(a) \(X < 0\) and \(Y < 0\) if \(N > 0\),

(b) \(X > 0\) and \(Y > 0\) if \(N < 0\).

Hence \(C\) contains a solution \((X', Y')\) with \(X' > 0\) and \(Y' > 0\).

Hence a necessary condition for solubility of \(x^2 - Dy^2 = N\) is that \(Q_n = (-1)^n N / |N|\) holds for some \(n\) in the continued fraction for \(\omega = \frac{-P + \sqrt{D}}{|N|}\).
Limiting the search range when testing for necessity

Let \(\omega = [a_0, \ldots, a_t, \overline{a_{t+1}, \ldots, a_{t+l}}] \).

Then by periodicity of the \(Q_i \), we can assume that
\(Q_n = (-1)^n N / |N| \) holds for some \(n \leq t + l \) if \(l \) is even, or
\(n \leq t + 2l \) if \(l \) is odd.
Suppose $P^2 \equiv D \pmod{|N|}$, $0 \leq P \leq |N|/2$ and that

$$\omega = \frac{-P + \sqrt{D}}{|N|} = [a_0, \ldots, a_t, \overline{a_{t+1}}, \ldots, a_{t+l}] .$$

(i) Suppose $Q_n = (-1)^n N/|N|$ for some n in $1 \leq n \leq t + l$ if l is even, or $1 \leq n \leq t + 2l$ if l is odd.

Then with $G_{n-1} = |N| A_{n-1} + PB_{n-1}$, the equation $x^2 - Dy^2 = N$ has the solution (G_{n-1}, B_{n-1}).

(ii) Also let $\omega^* = \frac{-P - \sqrt{D}}{|N|} = [b_0, \ldots, b_s, \overline{b_{s+1}}, \ldots, b_{s+l}]$ and suppose $Q_m = (-1)^{m+1} N/|N|$ for some m in $1 \leq m \leq s + l$ if l is even, or $1 \leq m \leq s + 2l$ if l is odd. Then $x^2 - Dy^2 = N$ also has the solution (G_{m-1}, B_{m-1}).

(iii) The solution (x, y) in (i) and (ii) with smaller y, will be a fundamental solution for the class P.
Primitivity of solutions

For $\omega = (-P + \sqrt{D})/|N|$,
$\gcd (G_{n-1}, B_{n-1}) = 1$ if $Q_n = -1)^n N/|N|$. For

$$\gcd (G_{n-1}, B_{n-1}) = \gcd (Q_n A_{n-1} - P_n B_{n-1}, B_n - 1)$$
$$= \gcd (Q_n A_{n-1}, B_n - 1)$$
$$= \gcd (Q_n, B_n - 1).$$

Also

$$(Q_n A_{n-1} - P_n B_{n-1})^2 - DB_{n-1}^2 = N$$
$$Q_n^2 A_{n-1}^2 - 2Q_n P_n A_{n-1} B_{n-1} + (P_n^2 - D) B_{n-1}^2 = N$$
$$Q_n^2 A_{n-1}^2 - 2P_n A_{n-1} B_{n-1} + \frac{(P_n^2 - D)}{Q_n} B_{n-1}^2 = N/|N| = \pm 1.$$

Hence $\gcd(Q_0, B_{n-1}) = 1$.
An example: $x^2 - 221y^2 = 217$ and -221

We find the solutions of $P^2 \equiv 221 \pmod{217}$ satisfying $0 \leq P \leq 103$ are $P = 2$ and $P = 33$.

(a) $\frac{-2 + \sqrt{221}}{217} = [0, 16, \overline{1, 6, 2, 6, 1, 28}]$.

\[
\begin{array}{|c|c|c|c|c|c|c|c|c|}
\hline
i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline
P_i & -2 & 2 & 14 & 11 & 13 & 13 & 11 & 14 \\
\hline
Q_i & 217 & 1 & 25 & 4 & 13 & 4 & 25 & 1 \\
\hline
A_i & 0 & 1 & 1 & 7 & 15 & 97 & 112 & 3233 \\
\hline
B_i & 1 & 16 & 17 & 118 & 253 & 1636 & 1889 & 54528 \\
\hline
\end{array}
\]

The period length is 6 and $Q_1 = 1 = (-1)^1(-217)/| - 217|$. Hence $(G_0, B_0) = (2, 1)$ is a solution of $x^2 - 221y^2 = -217$ and this is clearly a fundamental one, so there is no need to examine the continued fraction expansion of $\frac{-2 - \sqrt{221}}{217}$.
(b) $\frac{-33 + \sqrt{221}}{217} = [-1, 1, 10, 1, 28, 1, 6, 2, 6]$.

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_i</td>
<td>-33</td>
<td>-184</td>
<td>29</td>
<td>11</td>
<td>14</td>
<td>14</td>
<td>11</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Q_i</td>
<td>217</td>
<td>-155</td>
<td>4</td>
<td>25</td>
<td>1</td>
<td>25</td>
<td>4</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>A_i</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>-29</td>
<td>-30</td>
<td>-209</td>
<td>-448</td>
<td>-2897</td>
</tr>
<tr>
<td>B_i</td>
<td>1</td>
<td>1</td>
<td>11</td>
<td>12</td>
<td>347</td>
<td>359</td>
<td>2501</td>
<td>5361</td>
<td>34667</td>
</tr>
</tbody>
</table>

We observe that $Q_4 = 1 = (-1)^4 \cdot \frac{217}{|217|}$ and the period length is 6. Hence $(G_3, B_3) = (179, 12)$ is a solution of $x^2 - 221y^2 = 217$.
c) \(\frac{-33 - \sqrt{221}}{217} = [-1, 1, 3, 1, 1, 6, 1, 28, 1, 6, 2] \).

\[
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline
i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline
P_i & 33 & 184 & -29 & 17 & 0 & 13 & 11 & 14 \\
\hline
Q_i & -217 & 155 & -4 & 17 & 13 & 4 & 25 & 1 \\
\hline
A_i & -1 & 0 & -1 & -1 & -2 & -13 & -15 & -433 \\
\hline
B_i & 1 & 1 & 4 & 5 & 9 & 59 & 68 & 1963 \\
\hline
\end{array}
\]

We observe that \(Q_7 = 1 = (-1)^8 \cdot 217/|217| \). Hence \((G_6, B_6) = (-1011, 68) \) is a solution of \(x^2 - 221y^2 = 217 \).

It follows from (b) and (c) that \((179, 12)\) is a fundamental solution.

Here \(\eta_0 = 1665 + 112 \sqrt{221} \) is the fundamental solution of Pell's equation. Then the complete solution of \(x^2 - 221y^2 = -217 \) is given by

\[
x + y \sqrt{221} = \pm (\pm 2 + \sqrt{221}) \eta_0^n, \ n \in \mathbb{Z}.
\]

The complete solution of \(x^2 - 221y^2 = 217 \) is given by

\[
x + y \sqrt{221} = \pm (\pm 179 + 12\sqrt{221}) \eta_0^n, \ n \in \mathbb{Z}.
\]
Lagrange also discussed the general equation $ax^2 + bxy + cy^2 = N$, where $D = b^2 - 4ac > 0$ is not a perfect square and $\gcd(a, N) = 1$.

The continued fraction approach goes through with suitable modifications.

However an exceptional case, not noted by Lagrange, arises when $D = 5$ and $aN < 0$, in which there is a solution not arising directly from convergents.

This was pointed out by Serret in 1877 and dealt with in 1986 by M. Pavone.

An example is $x^2 - xy - y^2 = -1$, where the solution $(0, 1)$ is such an exception.
We use the following extension of Theorem 172 in Hardy and Wright’s book:

Lemma. If \(\omega = \frac{U\zeta + R}{V\zeta + S} \), where \(\zeta > 1 \) and \(U, V, R, S \) are integers such that \(V > 0, S > 0 \) and \(US - VR = \pm 1 \), or \(S = 0 \) and \(V = R = 1 \), then \(U/V \) is a convergent to \(\omega \).

Moreover if \(Q \neq S > 0 \), then
\[
R/S = (A_{n-1} + kA_n)/(B_{n-1} + kB_n), \quad k \geq 0.
\]
Also \(\zeta + k \) is the \((n+1)\)-th complete convergent to \(\omega \). Here \(k = 0 \) if \(Q > S \), while \(k \geq 1 \) if \(Q < S \).
Theorem. Suppose

\[ax^2 + bxy + cy^2 = N, \]

where \(N \neq 0 \), \(\gcd(x, y) = 1 = \gcd(a, N) \) and \(y > 0 \) and \(D = b^2 - 4ac > 0 \) is not a perfect square.

Let \(\theta \) satisfy \(x \equiv y\theta \pmod{|N|} \), \(0 \leq \theta < |N| \). Then

\[a\theta^2 + b\theta + c \equiv 0 \pmod{|N|}. \]

Let \(x = y\theta + |N|X \), \(n = 2a\theta + b \), \(Q = a|N| \), \(\omega = \frac{-n + \sqrt{D}}{2Q} \) and \(\omega^* = \frac{-n - \sqrt{D}}{2Q} \).
Also let $n = 2P$ or $2P + 1$, according as b is even or odd. Then

(i) if $QX + Py > 0$, X/y is a convergent A_{i-1}/B_{i-1} to ω and $Q_i = (-1)^i 2N/|N|$.

(ii) Suppose $QX + Py \leq 0$. Then

(a) If $D \neq 5$, or $D = 5$ and $-(QX + Py) \geq y$, then X/y is a convergent A_{i-1}/B_{i-1} to ω^* and $Q_i = (-1)^{i+1} 2N/|N|$.
(b) If $D = 5$ and $y > -(QX + Py) \geq 0$, then $aN < 0$. Also

$$\frac{X}{y} = \frac{A_r - A_{r-1}}{B_r - B_{r-1}} = \frac{A'_s - A'_{s-1}}{B'_s - B'_{s-1}},$$

where A_r/B_r and A'_s/B'_s denote convergents to ω and ω^*, respectively and

$$\omega = [a_0, \ldots, a_r, \overline{1}], \quad \omega^* = [b_0, \ldots, b_s, \overline{1}],$$

where $a_r > 1$ if $r > 0$ and $b_s > 1$ if $s > 0$.

Moreover X/y is not a convergent to ω or ω^*.

The assumption that $\gcd(a, N) = 1$ involves no loss of generality. For as pointed out by Gauss in his Disquisitiones, if $\gcd(a, b, c) = 1$, there exist relatively prime integers α, γ such that $a\alpha^2 + b\alpha\gamma + c\gamma^2 = A$, where $\gcd(A, N) = 1$.

Then if $\alpha\delta - \beta\gamma = 1$, the unimodular transformation $x = \alpha X + \beta Y, y = \gamma X + \delta Y$ converts $ax^2 + bxy + cy^2$ to $AX^2 + BXY + CY^2$. Also the two forms represent the same integers.
Example: Solving \(x^2 - py^2 = - \left(\frac{2}{p} \right) \frac{p-1}{2} \), \(p = 4n + 3 \)

Let \(p \) be a prime of the form \(4n + 3 \). Then it is classical that the equation \(x^2 - py^2 = 2 \left(\frac{2}{p} \right) \) has a solution in integers.

So with \(\omega_1 = (1 + \sqrt{p})/2 = [\lambda, a_1, \ldots, a_{L-1}, 2\lambda + 1] \), there is exactly one \(n, 1 \leq n \leq L \) satisfying \(Q_n(-1)^n = \left(\frac{2}{p} \right) \). (\(Q_n = 1 \) and \(L \) is even and \(n = L/2 \).)

Now in solving the given equation, notice that \(P = 1 \) is a solution of \(P^2 \equiv p \) (mod \((p - 1)/2\)).

So with \(\omega_2 = (-1 + \sqrt{p})/((p - 1)/2) \), the first complete quotient is in fact \(\omega_1 \).

It follows that the corresponding \(Q_{n+1} \) is the old \(Q_n \) and so now \(Q_n(-1)^{n+1} = - \left(\frac{2}{p} \right) \). hence there is a solution of \(x^2 - py^2 = - \left(\frac{2}{p} \right) \frac{p-1}{2} \).
John Robertson (September 2004) has produced the following short proof of the previous result.

Assume $X^2 - pY^2 = 2 \left(\frac{2}{p} \right)$, $p = 4n + 3$.

Make the integer transformation

\[x = \frac{pY - X}{2}, \quad y = \frac{X - Y}{2}. \]

Then $x^2 - py^2 = - \left(\frac{2}{p} \right) (p - 1)/2$.