On a transformation of Lagrange

Keith Matthews

September 22, 2014

At the end of a memoir in 1770, Lagrange [3, pp. 717–726] gave a method for finding the solutions of a positive definite binary form equation

\[bt^2 + ctu + du^2 = a, \tag{0.1} \]

where \(\gcd(t, u) = 1, \gcd(b, c, d) = 1 = \gcd(b, a), c^2 - 4bd < 0, b > 0, a > 0. \) Then \(\gcd(u, a) = 1 \) and hence the congruence \(\theta u \equiv t \pmod{a} \) has a unique solution \(\theta \) in the range \(-a/2 < \theta \leq a/2. \) Then

\[
\begin{align*}
bt^2 + ctu + du^2 & \equiv 0 \pmod{a} \\
b(\theta u)^2 + c(\theta u)u + du^2 & \equiv 0 \pmod{a} \\
b\theta^2 + c\theta + d & \equiv 0 \pmod{a}.
\end{align*}
\]

The transformation

\[t = \theta u - ay \tag{0.2} \]

was used by Lagrange ([3, p. 700]) to convert equation (0.1) to

\[Pu^2 + Quy + Ry^2 = 1, \tag{0.3} \]

where \(P = (b\theta^2 + c\theta + d)/a, Q = -(2b\theta + c), R = ab. \)

(We remark that if \((u, y)\) is a solution of (0.3), then \((t, u) = (\theta u - ay, u)\) is a solution of (0.1) with \(\gcd(t, u) = 1. \))

We note that \(D = c^2 - 4bd = Q^2 - 4PR. \) Clearly if \((u, y)\) is a solution of (0.3), so is \((-u, -y)\). There exists a transformation \(u = \alpha X + \beta Y, y = \gamma X + \delta Y, \alpha\delta - \beta\gamma = 1 \) such that

\[pu^2 + quy + ry^2 = AX^2 + BXY + CY^2, \]

where the form \((A, B, C)\) is reduced; i.e., \(-A < B \leq A \leq C\) and where \(A = C\) implies \(B \geq 0. \)
Lemma 0.1. If $F(X,Y) = AX^2 + BXY + CY^2$ is a reduced positive definite form, then A is the minimum value of $F(X,Y)$ over integer pairs (X,Y) not both zero. Moreover

(a) If $A < C$, the minimum is attained only at $\pm (1,0)$;

(b) If $A = C$ and $B < A$, the minimum is attained only at $\pm (1,0)$ and $\pm (0,1)$;

(c) If $A = C = B$, the minimum is attained only at $\pm (1,0), \pm (0,1)$ and $\pm (1,1)$.

Proof. See Theorem 2 of [2].

This leads to the following algorithm.

Input: Integers $b,c,d,a,c^2-4bd<0, a>0, \gcd(b,c,d) = 1 = \gcd(b,a)$.

Output: Solutions, if any, of $bt^2 + ctu + du^2 = a$ with $\gcd(t,u) = 1$.

Solve $b\theta^2 + c\theta + d \equiv 0 \pmod{a}$, $-a/2 < \theta < a/2$; if there are no solutions, exit.

Let $\theta_0,\ldots, \theta_{s-1}$ be the solutions in the range $(-a/2,a/2]$;

$D := c^2 - 4bd$.

for $k = 0,\ldots,s-1$, $P := (b\theta_k^2 + c\theta_k + d)/a, Q := 2b\theta_k + c, R := ab$;

 calculate $\alpha,\beta,\gamma,\delta$, with $\alpha\delta - \beta\gamma = 1$ such that the transformation $u = \alpha X + \beta Y, y = \gamma X - \delta Y$ converts (p,q,r) to reduced form (A,B,C);

if $A > 1$, continue to next k;

if $A = 1$:

if $C > 1$, $(u,y) := \pm (\alpha,\gamma)$;

if $C = 1$ and $B = 0$, $(u,y) := \pm (\alpha,\gamma), \pm (\beta,\delta)$;

if $C = 1$ and $B = 1$, $(u,y) := \pm (\alpha,\gamma), \pm (\beta,\delta), \pm (\alpha - \beta, -\gamma + \delta)$;

print solutions $(t,u) := (\theta_ku - ay, u)$;

continue to next k;

end for loop.

Remark. If $\gcd(b,a) > 1$, there exists a unimodular transformation of $bt^2 + ctu + du^2$ in which the first coefficient is now relatively prime to a. See [1] p. 286 for references.

Example. (Lagrange, [3, pp. 725–726]) Solve $t^2 + 7u^2 = 109, \gcd(t,u) = 1$.

The solutions of $\theta^2 + 7 \equiv 0 \pmod{109}$ in the range $-109/2 < \theta \leq 109/2$ are $\theta = 50, -50$.

2
\[\theta = 50: \] The transformation \(t = 50u - 109y \) converts \(t^2 + 7u^2 = 109 \) to \(23u^2 - 100uy + 109y^2 = 1 \).

The unimodular transformation \(u = 2X - 9Y, y = X - 4Y \) converts \(23u^2 - 100uy + 109y^2 \) into the reduced form \(X^2 + 7Y^2 \). Its minimum is attained at \((X,Y) = \pm(1,0)\), giving \((u,y) = \pm(2,1)\) and \((t,u) = \pm(-9,2)\).

Similarly \(\theta = -50 \) will give solutions \((t,u) = \pm(9,2)\).

References

