The Diophantine Equation \(x^2 - Dy^2 = N, \ D > 0\)

Keith Matthews

Abstract. We describe a neglected algorithm, based on simple continued fractions, due to Lagrange, for deciding the solubility of \(x^2 - Dy^2 = N\), with \(\gcd(x, y) = 1\), where \(D > 0\) and is not a perfect square. In the case of solubility, the fundamental solutions are also constructed.

1. Introduction. In a memoir of 1768 (see [6, Oeuvres II, pages 377–535]), Lagrange gave a recursive method for solving \(x^2 - Dy^2 = N\), with \(\gcd(x, y) = 1\), where \(D > 1\) and is not a perfect square, thereby reducing the problem to the case where \(|N| < \sqrt{D}\), in which case the positive solutions \((x, y)\) will be found amongst the pairs \((p_n, q_n)\), with \(p_n/q_n\) a convergent of the simple continued fraction for \(\sqrt{D}\).

It does not seem to be widely known that Lagrange also gave another algorithm in a memoir of 1770 (see [6, Oeuvres II, pages 655–726]), which may be regarded as a generalisation of the well-known method of solving Pell’s equation \(x^2 - Dy^2 = \pm 1\) using the simple continued fraction for \(\sqrt{D}\).

In this paper, we give a version of Lagrange’s second algorithm which uses only the language of simple continued fractions. Also Lagrange’s proof of the necessity condition in Theorem 1 is long and not easy to follow and we have replaced it by a much simpler proof.

A. Nitaj has also given a related algorithm in his PhD. Thesis [4, pages 57–88]. His treatment of Theorem 1 requires the cases \(D = 2\) or \(3\) and \(N < 0\) to be treated separately. Also unlike our algorithm, his requires the calculation of the fundamental solution \(\eta\) of Pell’s equation.

Lagrange’s algorithm has been rediscovered by R. Mollin [2, pages 333–340]. His treatment is more complicated than ours, as it uses the language of ideals and semi-simple continued fractions, in addition to that of simple continued fractions.
2. Constructing solutions of $x^2 - Dy^2 = N$.

A necessary condition for the solubility of $x^2 - Dy^2 = N$, with $\gcd(x, y) = 1$, is that the congruence $u^2 \equiv D \pmod{Q_0}$ shall be soluble, where $Q_0 = |N|$. The sufficiency part of Lagrange's algorithm was given by Perron in his introduction to a paper of Patz [5]. Perron starts with a solution P_0 of the above congruence. If $x_n = (P_n + \sqrt{D})/Q_n$ is the n-th complete convergent of the simple continued fraction for $\omega = (P_0 + \sqrt{D})/Q_0$, A_n/B_n is the n-th convergent to ω and $G_{n-1} = Q_0A_{n-1} - P_1B_{n-1}$, then ([2, pages 246-248])

$$(1) \quad C_n^2 - DB_{n-1}^2 = (-1)^nQ_0Q_n.$$

Hence if $Q_n = (-1)^nN/|N|$, it follows that equation (1) gives a solution $(x, y) = (G_{n-1}, B_{n-1})$ of $x^2 - Dy^2 = N$. We also have $\gcd(x, y) = 1$.

For $\gcd(G_{n-1}, B_{n-1}) = \gcd(Q_0A_{n-1}, B_{n-1}) = \gcd(Q_0, B_{n-1})$ and equation (1) gives

$$\begin{align*}
(Q_0A_{n-1} - P_0B_{n-1})^2 - DB_{n-1}^2 &= N \\
Q_0^2A_{n-1}^2 - 2Q_0P_0A_{n-1}B_{n-1} + (P_0^2 - D)B_{n-1}^2 &= N \\
Q_0^2A_{n-1}^2 - 2P_0A_{n-1}B_{n-1} + \frac{(P_0^2 - D)}{Q_0}B_{n-1}^2 &= \frac{N}{|N|} = \pm 1.
\end{align*}$$

Hence $\gcd(Q_0, B_{n-1}) = 1$.

In part (a) of Theorem 2, we prove that this construction can be reversed, to provide a simple necessary condition for the solubility of $x^2 - Dy^2 = N$ where $\gcd(x, y) = 1$. (Such solutions are called primitive.)

In section 6, we give three numerical examples.

3. Equivalence of solutions (See Nagell [3, pages 204–205].)

Primitive solutions $\alpha_1 = x_1 + y_1\sqrt{D}$ and $\alpha_2 = x_2 + y_2\sqrt{D}$ of $x^2 - Dy^2 = N$ are called equivalent if their ratio is a solution $u + v\sqrt{D}$ of Pell’s equation $u^2 - Dv^2 = 1$.

A necessary and sufficient condition for α_1 and α_2 to be equivalent is that

$$(2) \quad x_1x_2 - Dy_1y_2 \equiv 0 \pmod{Q_0}, \quad x_1y_2 - y_1x_2 \equiv 0 \pmod{Q_0}.$$

Each primitive solution $x + y\sqrt{D}$ determines a unique integer P_0 satisfying $x \equiv -P_0y \pmod{Q_0}$ and $P_0^2 \equiv D \pmod{Q_0}$, with $-Q_0/2 < P_0 \leq Q_0/2$. We say that $x + y\sqrt{D}$ belongs to P_0.

$x + \sqrt{D}$ and $-x + \sqrt{D}$ determine conjugate classes.

If these classes are equal, the class is called ambiguous.

Ambiguous classes occur precisely when $P_0 = 0$ or $Q_0/2$. Also $P_0 = 0$ if and only if $Q_0|D$, while if Q_0 is even, $P_0 = Q_0/2$ if and only if either (a) $4|Q_0$ and $Q_0|D$ or (b) $Q_0|2D$ and D is odd.

There are finitely many equivalence classes and these are represented by fundamental solutions $x + y\sqrt{D}$, where y is positive and has least value for the class. If the class is ambiguous, we can assume that $x \geq 0$.

The equivalence class containing the fundamental solution $x_0 + y_0\sqrt{D}$ consists of the numbers $\pm (x_0 + y_0\sqrt{D})\eta^n$, $n \in \mathbb{Z}$, where $\eta = u + v\sqrt{D}$ is the fundamental solution of Pell’s equation $u^2 - Dv^2 = 1$.
4. A necessary condition for solvability of $x^2 - Dy^2 = N$.

Theorem 1. Suppose $x^2 - Dy^2 = N$ is soluble in integers $x > 0$ and $y > 0$, \(\gcd(x, y) = 1 \) and let $Q_0 = |N|$. Then $\gcd(Q_0, y) = 1$. Define P_0 by $x \equiv -P_0y \pmod{Q_0}$, where $D \equiv P_0^2 \pmod{Q_0}$ and $-Q_0/2 < P_0 \leq Q_0/2$.

Let $\omega = (P_0 + \sqrt{D})/Q_0$ and $x = Q_0X - P_0y$. Then

(i) X/y is a convergent A_{n-1}/B_{n-1} of ω;

(ii) $Q_n = (-1)^nN/|N|$.

We need a result which is an extension of Theorem 172 [1, pages 140—141].

Lemma. If $\omega = \frac{P\zeta + R}{Q\zeta + S}$, where $\zeta > 1$ and P, Q, R, S are integers such that $Q > 0, S > 0$ and $PS - QR = \pm 1$, or $S = 0$ and $Q = 1 = R$, then P/Q is a convergent to ω. Moreover if $Q \neq S > 0$, then $R/S = (p_{n-1} + kp_n)/(q_{n-1} + kq_n), k \geq 0$. Also $\zeta + k$ is the $(n + 1)$–th complete convergent to ω. Here $k = 0$ if $Q > S$, while $k \geq 1$ if $Q < S$.

Proof. Hardy and Wright deal only with the case $Q > S > 0$. They write

$$\frac{P}{Q} = [a_0, a_1, \ldots, a_n] = \frac{p_n}{q_n},$$

and assume $PS - QR = (-1)^{n-1}$. Then

$$p_nS - q_nR = PS - QR = p_nq_{n-1} - p_{n-1}q_n,$$

so $p_n(S - q_{n-1}) = q_n(R - p_{n-1})$.

Hence $q_n(S - q_{n-1})$. Then from $q_n = Q > S > 0$ and $q_n \geq q_{n-1} > 0$, we deduce $|S - q_{n-1}| < q_n$ and hence $S - q_{n-1} = 0$. Then $S = q_{n-1}$ and $R = p_{n-1}$.

Also

$$\omega = \frac{P\zeta + R}{Q\zeta + S} = \frac{p_0\zeta + p_{n-1}}{q_0\zeta + q_{n-1}} = [a_0, a_1, \ldots, a_n, \zeta].$$

If $S = 0$ and $Q = R = 1$, then $\omega = [P, \zeta]$ and $P/Q = P/1 = p_0/q_0$.

If $Q = S$, then $Q = S = 1$ and $P - R = \pm 1$. If $P = R + 1$, then $\omega = [R, 1, \zeta]$, so $P/Q = (R + 1)/1 = p_1/q_1$. If $P = R - 1$, then $\omega = [R - 1, 1 + \zeta]$ and $P/Q = (R - 1)/1 = p_0/q_0$.

If $Q < S$, then from $q_n(S - q_{n-1})$ and

$$S - q_{n-1} > Q - q_{n-1} = q_n - q_{n-1} = 0,$$

we have $S - q_{n-1} = kq_n$, where $k \geq 1$. Then

$$\omega = \frac{P\zeta + R}{Q\zeta + S} = \frac{p_0\zeta + p_{n-1} + kq_n}{q_0\zeta + q_{n-1} + kq_n} = \frac{p_n(\zeta + k) + p_{n-1}}{q_n(\zeta + k) + q_{n-1}},$$

and $\omega = [a_0, \ldots, a_n, \zeta + k]$.

Proof of the Theorem. With $Q_0 = |N|$, $x = Q_0X - P_0y$ and $x^2 - Dy^2 = N$, we have

$$P_0x + Dy \equiv -P_0^2y + Dy \equiv (-P_0^2 + D)y \equiv 0 \pmod{Q_0}.$$ \(\square\)

Hence the matrix

$$\begin{bmatrix} P & R \\ Q & S \end{bmatrix} \begin{bmatrix} X \\ y \end{bmatrix} \equiv \begin{bmatrix} \frac{P_0x + Dy}{Q_0} \\ \frac{Q_0y}{x} \end{bmatrix} \pmod{Q_0}.$$
has integer entries and determinant $\Delta = \pm 1$. For

$$\Delta = X x - \frac{y(P_0 x + Dy)}{Q_0} = \frac{(x + P_0 y)x - y(P_0 x + Dy)}{Q_0} = \frac{x^2 - Dy^2}{Q_0} = \pm 1.$$

Also if $\zeta = \sqrt{D}$ and $\omega = (P_0 + \sqrt{D})/Q_0$, it is easy to verify that $\omega = \frac{P_0 + \sqrt{D}}{Q_0 + \sqrt{D}}$. Then the lemma implies that X/y is a convergent to ω.

Finally $x = Q_0 X - P_0 y = Q_0 A_{n-1} - P_0 B_n = G_{n-1}$ and

$$N = x^2 - Dy^2 = G_{n-1}^2 - DB_{n-1}^2 = (-1)^n Q_0 Q_n.$$ Hence $Q_n = (-1)^n N/|N|.

Remark. The solutions u of $u^2 \equiv D \pmod{Q_0}$ come in pairs $\pm u_1, \ldots, \pm u_r$, where $0 < u_i \leq Q_0/2$, together with possibly $u_{r+1} = 0$ and $u_{r+2} = Q_0/2$. Hence we can state the following:

Corollary. Suppose $x^2 - Dy^2 = N$ is soluble, with $x \geq 0$ and $y > 0$, gcd$(x, y) = 1$ and $Q_0 = |N|$. Let $x \equiv -P_0 y \pmod{Q_0}$, where $P_0 \equiv \pm u_i \pmod{Q_0}$ and $x = Q_0 X - P_0 y$. Then X/y will be a convergent A_{n-1}/B_n of $\omega = (u_i + \sqrt{D})/Q_0$ or $\omega' = (\pm u_i + \sqrt{D})/Q_0$ and $Q_n = (-1)^n N/|N|$. ω'.

5. **An algorithm for solving** $x^2 - Dy^2 = N$. In view of the Corollary, we know that the primitive solutions to $x^2 - Dy^2 = N$ with $y > 0$ will be found by considering the continued fraction expansions of both ω_i and ω' for $1 \leq i \leq r + 2$.

One can show that each equivalence class contains solutions (x, y) with $x \geq 0$ and $y > 0$, so the necessary condition $Q_n = (-1)^n N/|N|$ shall occur for some n holds for both ω_i and ω'. Hence to check for solvability, we need only consider ω_i.

Suppose that $\omega_i = (u_i + \sqrt{D})/Q_0 = [a_0, \ldots, a_t, a_{t+1}, \ldots, a_{t+r}]$.

If $x^2 - Dy^2 = N$ is soluble with $x \geq 0$ and $y > 0$, there are infinitely many such solutions and hence $Q_n = \pm 1$ holds for ω_i for some $n > t + l$ and hence, by periodicity, also in the range $t + 1 \leq n \leq t + l$. Any such n must have $Q_n = 1$, as $(P_n + \sqrt{D})/Q_n$ is reduced for n in this range and so $Q_n > 0$. Moreover if l is even, the condition $Q_n = (-1)^n N/|N|$ is also preserved.

Moreover there can be at most one n in the range $t + 1 \leq n \leq t + l$ for which $Q_n = 1$. For if $P_n + \sqrt{D}$ is reduced, then $P_n = \sqrt{D}$ and hence two such occurrences of $Q_n = 1$ within a period would give a smaller period.

We also remark that l is odd, if and only if the fundamental solution η_0 of the Pell equation $x^2 - Dy^2 = \pm 1$ has norm equal to -1. Consequently a solution of $x^2 - Dy^2 = N$ gives rise to a solution of $x^2 - Dy^2 = -N$; indeed we see that if $t + 1 \leq n \leq t + l$ and $k \geq 1$, then $G_{n+kt-1} + B_{n+kt-1}\sqrt{D} = \eta_0(G_{n-1} + B_{n-1}\sqrt{D})$. Hence $G_{n+kt-1}^2 - DB_{n+kt-1}^2 = -(G_{n-1}^2 - DB_{n-1}^2)$ if Norm$(\eta_0) = -1$.

Putting these observations together, we have the following:

Theorem 2. For $1 \leq i \leq r + 2$, let

$$\omega_i = (u_i + \sqrt{D})/Q_0 = [a_0, \ldots, a_t, a_{t+1}, \ldots, a_{t+r}].$$
(a) Then a necessary condition for \(x^2 - Dy^2 = N \), \(\gcd(x, y) = 1 \), to be soluble is that for some \(i \) in \(i = 1, \ldots, r + 2 \), we have \(Q_n = 1 \) for some \(n \) in \(t + 1 \leq n \leq t + l \), where if \(l \) is even, then \((-1)^n N/|N| = 1\).

(b) Conversely, suppose for \(\omega_i \), we have \(Q_n = 1 \) for some \(n \) with \(t + 1 \leq n \leq t + l \). Then

(i) If \(l \) is even and \((-1)^n N/|N| = 1\), then \(x^2 - Dy^2 = N \) is soluble with solution \(G_{n+1} + B_{n+1} \sqrt{D} \).

(ii) If \(l \) is odd, then \(G_{n+1} + B_{n+1} \sqrt{D} \) is a solution of \(x^2 - Dy^2 = (-1)^n |N| \), while \(G_{n+l+1} + B_{n+l+1} \sqrt{D} \) will be a solution of \(x^2 - Dy^2 = (-1)^{n+1} |N| \).

(iii) At least one of the \(G_{n+1} + B_{n+1} \sqrt{D} \) with least \(B_{m-1} \) satisfying \(Q_m = (-1)^m N/|N| \), which arise from the continued fraction expansions of \(\omega_i \) and \(\omega_i' \), will be a fundamental solution of \(x^2 - Dy^2 = N \).

Remarks.

1. Unlike the case of Pell’s equation, \(Q_n = \pm 1 \) can also occur for \(n < t + 1 \) and can contribute to a fundamental solution. If \(\text{Norm}(\eta) = 1 \), one sees that to find the fundamental solution for \(x^2 - Dy^2 = N \), it suffices to examine only the cases \(Q_n = \pm 1, n \leq t + l \). However if \(\text{Norm}(\eta) = -1 \), one may have to examine the range \(t + l + 1 \leq n \leq t + 2l \) as well.

2. It can happen that \(l \) is even and that \(x^2 - Dy^2 = N \) is soluble with \(x \equiv \pm (-u,y) \mod{Q_0} \), while \(x^2 - Dy^2 = -N \) is soluble with \(x \equiv \pm (-u,y) \mod{Q_0} \), with \(i \neq j \). (Of course if \(|N| = p \) is prime, this cannot happen, as the congruence \(u^2 \equiv D \mod{p} \) has two solutions if \(p \) does not divide \(D \) and one solution if \(p \) divides \(D \).)

An example of this is \(D = 221, N = 217 \) (see Example 2 later). Then \(u_1 = 2, u_2 = 33 \). Also \(l = 6 \) and \((2 + \sqrt{221})/217 \) produces the solution \(-2 + \sqrt{221}\) of \(x^2 - 221 y^2 = -217 \), whereas \((33 - \sqrt{221})/217 \) produces the solution \(-179 + 12 \sqrt{221}\) of \(x^2 - 221 y^2 = 217 \).

6. **Example 1** (Lagrange [6, pages 719–723]). \(x^2 - 13y^2 = \pm 101 \).

 We find the solutions of \(P_0^2 \equiv 13 \mod{101} \) are \(\pm 35 \).

 (a) \(\frac{35 + \sqrt{13}}{101} = [0, 2, 1, 1, 1, 1, 1, 6] \).

 \[
 \begin{array}{c|cccccccc}
 i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
 \hline
 P_i & 35 & -35 & 11 & -2 & 3 & 1 & 2 & 1 & 3 \\
 Q_i & 101 & -12 & 9 & 1 & 4 & 3 & 3 & 4 & 1 \\
 A_i & 0 & 1 & 1 & 2 & 3 & 5 & 8 & 13 & 86 \\
 B_i & 1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 & 225 \\
 \end{array}
 \]

 We observe that \(Q_3 = Q_8 = 1 \). The period length is odd, so both the equations \(x^2 - 13y^2 = \pm 101 \) are soluble. With \(G_n = Q_n A_n - P_n B_n \), we have

 \[
 \begin{align*}
 G_2 &= 101 \cdot 1 - 35 \cdot 3 = -4, \quad x + y \sqrt{13} = -4 + 3 \sqrt{13}, \quad x^2 - 13y^2 = -101; \\
 G_7 &= 101 \cdot 13 - 35 \cdot 34 = 123, \quad x + y \sqrt{13} = 123 + 34 \sqrt{13}, \quad x^2 - 13y^2 = 101. \\
 \end{align*}
 \]

(b) \(\frac{-35 + \sqrt{13}}{101} = [-1, 1, 2, 4, 1, 1, 1, 1, 6] \).

 \[
 \begin{array}{c|cccccccc}
 i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
 \hline
 P_i & -35 & -66 & 23 & 1 & 3 & 1 & 2 & 1 & 3 \\
 Q_i & 101 & -43 & 12 & 1 & 4 & 3 & 3 & 4 & 1 \\
 A_i & -1 & 0 & -1 & -4 & -5 & -9 & -14 & -23 & -152 \\
 B_i & 1 & 1 & 3 & 13 & 16 & 29 & 45 & 74 & 489 \\
 \end{array}
 \]
We observe that $Q_3 = Q_8 = 1$. Hence

$G_2 = 101 \cdot (-1) - (35) \cdot 3 = 4 \cdot x + y\sqrt{13} = 4 + 3\sqrt{13}, x^2 - 13y^2 = -101$;

$G_7 = 101 \cdot (-23) - (35) \cdot 74 = 267 \cdot x + y\sqrt{13} = 267 + 74\sqrt{13}, x^2 - 13y^2 = 101$.

Hence $-4 + 3\sqrt{13}$ and $123 + 34\sqrt{13}$ are fundamental solutions for the equations

$x^2 - 13y^2 = -101$ and $x^2 - 13y^2 = 101$ respectively.

We have $\eta = 649 + 180\sqrt{13}$, so the complete solution of $x^2 - 13y^2 = -101$ is given by $x + y\sqrt{13} = \pm \eta^n(\pm 4 + 3\sqrt{13}), n \in \mathbb{Z}$, while the complete solution of $x^2 - 13y^2 = 101$ is given by $x + y\sqrt{13} = \pm \eta^n(\pm 123 + 34\sqrt{13}), n \in \mathbb{Z}$.

Example 2. $x^2 - 221y^2 = \pm 217$.

We find the solutions of $P_0^2 \equiv 221 \ (\mod 217)$ are ± 2 and ± 33.

(a) $\frac{2 + \sqrt{221}}{217} = [0, 12, 1, 6; 2, 6, 1, 28]$.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>2</td>
<td>-2</td>
<td>14</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>Q_1</td>
<td>217</td>
<td>1</td>
<td>25</td>
<td>4</td>
<td>13</td>
<td>4</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>A_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>15</td>
<td>97</td>
<td>112</td>
<td>3233</td>
</tr>
<tr>
<td>B_1</td>
<td>1</td>
<td>12</td>
<td>13</td>
<td>90</td>
<td>193</td>
<td>1248</td>
<td>1441</td>
<td>41596</td>
</tr>
</tbody>
</table>

We observe that $Q_1 = Q_7 = 1$. The period length is even and $(-1)^7 = -1$.

Hence the equation $x^2 - 221y^2 = -217$ is soluble.

$G_0 = 217 \cdot 0 - 2 \cdot 1 = -2 \cdot x + y\sqrt{221} = -2 + \sqrt{221}, x^2 - 221y^2 = -217$.

There is no need to expand $\frac{-2 + \sqrt{221}}{217}$, as $-2 + \sqrt{221}$ is a fundamental solution.

(b) $\frac{33 + \sqrt{221}}{217} = [0, 4, 1, 1, 6; 1, 28, 1, 6, 2]$.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>33</td>
<td>-33</td>
<td>17</td>
<td>0</td>
<td>13</td>
<td>11</td>
<td>14</td>
<td>14</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>Q_1</td>
<td>217</td>
<td>-4</td>
<td>17</td>
<td>13</td>
<td>4</td>
<td>25</td>
<td>1</td>
<td>25</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>A_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>13</td>
<td>15</td>
<td>433</td>
<td>448</td>
<td>3121</td>
<td>6690</td>
</tr>
<tr>
<td>B_1</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>9</td>
<td>59</td>
<td>68</td>
<td>1963</td>
<td>2031</td>
<td>14149</td>
<td>30329</td>
</tr>
</tbody>
</table>

We observe that $Q_6 = 1$. The period length is even and $(-1)^6 = 1$. Hence the equation $x^2 - 221y^2 = 217$ is soluble.

$G_5 = 217 \cdot 15 - 33 \cdot 68 = 1011, x + y\sqrt{221} = 1011 + 68\sqrt{221}, x^2 - 221y^2 = 217$.

(c) $\frac{-33 + \sqrt{221}}{217} = [-1, 1, 10, 1, 28, 1, 6, 2, 6]$.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>-33</td>
<td>-184</td>
<td>29</td>
<td>11</td>
<td>14</td>
<td>14</td>
<td>11</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Q_1</td>
<td>217</td>
<td>-155</td>
<td>4</td>
<td>25</td>
<td>1</td>
<td>25</td>
<td>4</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>A_1</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>-29</td>
<td>-30</td>
<td>-209</td>
<td>-448</td>
<td>-2897</td>
</tr>
<tr>
<td>B_1</td>
<td>1</td>
<td>1</td>
<td>11</td>
<td>12</td>
<td>347</td>
<td>359</td>
<td>2501</td>
<td>5361</td>
<td>34667</td>
</tr>
</tbody>
</table>

We observe that $Q_4 = 1$. The period length is even and $(-1)^4 = 1$. Hence the equation $x^2 - 221y^2 = 217$ is soluble. We have

$G_3 = 217 \cdot (-1) - (-33) \cdot 12 = 179, x + y\sqrt{221} = 179 + 12\sqrt{221}, x^2 - 221y^2 = 217$.

It follows from (b) and (c) that $179 + 12\sqrt{221}$ is a fundamental solution.
We have $\eta = 1665 + 112\sqrt{221}$, so the complete solution of $x^2 - 221y^2 = -217$ is given by $x + y\sqrt{221} = \pm\eta^n(\pm 2 + \sqrt{221}), n \in \mathbb{Z}$, while the complete solution of $x^2 - 221y^2 = 217$ is given by $x + y\sqrt{221} = \pm\eta^n(\pm 179 + 12\sqrt{221}), n \in \mathbb{Z}$.

Example 3. (Lagrange [6, pages 723–725]) $x^2 - 79y^2 = \pm 101$. We find the solutions of $P_0^2 \equiv 79 \pmod{101}$ are ± 33. However $(33 + \sqrt{79})/101 = [0, 2, 2, 3, 5, 1, 1, 1]$ and from the table

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_i</td>
<td>33</td>
<td>-33</td>
<td>13</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Q_i</td>
<td>101</td>
<td>-10</td>
<td>9</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>9</td>
</tr>
</tbody>
</table>

we see that the condition $Q_n = 1$ does not hold for $3 \leq n \leq 8$. Hence the equations $x^2 - 79y^2 = \pm 101$ are not soluble.

The calculations were carried out with the author’s number theory program CALC and bc program surd.

References

Keith Matthews
Department of Mathematics
University of Queensland
Brisbane
Australia 4072
e–mail: krm@maths.uq.edu.au