A MIDPOINT CRITERION FOR THE DIOPHANTINE EQUATION $ax^2 - by^2 = \pm 1$

KEITH MATTHEWS

Let $1 < a < b$, $\gcd(a, b) = 1$, $d = ab$, where d is not a perfect square. Then it is well-known (Satz 3.10,[2, p. 81]) that the continued fraction expansion of $\alpha = \sqrt{b/a} = \sqrt{d/a}$ is periodic, with period length l:

$$\sqrt{b/a} = [a_0, a_1, \ldots, a_{l-1}, 2a_0]$$

and that the sequence a_1, \ldots, a_{l-1} is palindromic, as are P_1, \ldots, P_l and Q_1, \ldots, Q_l, where $(P_i + \sqrt{d})/Q_i$ is the i–th complete quotient to α.

Now assume (x, y) is a positive solution of the diophantine equation (1)

$$ax^2 - by^2 = \pm 1.$$

Then $\gcd(x, y) = 1$ and

$$\frac{|x/y - \sqrt{b/a}|}{(x\sqrt{a} + y\sqrt{b})\sqrt{a}} = \frac{1}{(\frac{x}{\sqrt{b}} + 1)y^2\sqrt{ab}} < 1/2y^2.$$

Hence by Lagrange’s criterion, $x/y = A_{t-1}/B_{t-1}$, a convergent to α. Also $aA_{t-1}^2 - bB_{t-1}^2 = (-1)^tQ_t$, where $(P_t + \sqrt{d})/Q_t$ is the t–th complete quotient for α. Hence $Q_t = 1$. As $(P_t + \sqrt{d})/Q_t$ is reduced, it follows that $P_t = \lfloor \sqrt{d} \rfloor$ and hence $P_t = P_{t+1}$, as $(P_{t+1} + \sqrt{d})/Q_{t+1}$ is also the first complete quotient in the continued fraction expansion of \sqrt{d}. This means that the period length l of $(\sqrt{d})/a$ is even, $l = 2h$ and that $t = (2k + 1)h$, or $t = 2kh$. But $t = 2kh$ implies $Q_t = Q_0 = 1$, and so $a = Q_0 = 1$. Hence $t = (2k + 1)h$ and $Q_t = Q_h = 1$.

Conversely assume $l = 2h$ and $Q_h = 1$. Then

$$aA_{h-1}^2 - bB_{h-1}^2 = (-1)^hQ_h = (-1)^h.$$

Also $Q_i > 1$ if $1 \leq i < h$. Hence (A_{h-1}, B_{h-1}) is the least positive solution of $ax^2 - by^2 = \pm 1$. Also the evenness of h implies $ax^2 - by^2 = 1$ is soluble, but $ax^2 - by^2 = -1$ is insoluble, while h odd implies $ax^2 - by^2 = -1$ is soluble. Hence we have proved the following.

\text{Date: 17th May 2012.}
THEOREM 0.1. Let $1 < a < b, \gcd(a, b) = 1, d = ab$, where d is not a perfect square. Then

(i) if (1) is soluble in positive integers (x, y), the period-length l is even, say $l = 2h$ and $Q_h = 1$.

(ii) Conversely if $l = 2h$ and $Q_h = 1$, then

(a) (A_{h-1}, B_{h-1}) is the least positive solution of $ax^2 - by^2 = \pm 1$.

(b) If h is odd, then $ax^2 - by^2 = -1$ is soluble, but $ax^2 - by^2 = 1$ is insoluble.

(c) If h is even, then $ax^2 - by^2 = 1$ is soluble, but $ax^2 - by^2 = -1$ is insoluble.

REMARK 0.1. Hence if the period length l is odd, or if l is even, say $l = 2h$ and $Q_h \neq 1$, then $ax^2 - by^2 = \pm 1$ is not soluble.

EXAMPLE 0.1. $a = 9, b = 200$. Here $l = 8, h = 4, Q_4 = 1$ and $9x^2 - 200y^2 = 1$ has least solution $(x, y) = (A_3, B_3) = (33, 7)$.

EXAMPLE 0.2. $a = 23, b = 52$. Here $l = 6, h = 3, Q_3 = 1$ and $23x^2 - 52y^2 = -1$ has least solution $(x, y) = (A_2, B_2) = (3, 2)$.

REMARK 0.2. We saw that the period lengths of \sqrt{ab} and $(\sqrt{ab})/a$ are equal if (1) is soluble. Hence if the diophantine equation $x^2 - aby^2 = -1$ is soluble and $1 < a < b, \gcd(a, b) = 1$ where ab is not a perfect square, it follows that $ax^2 - by^2 = \pm 1$ is not soluble in integers. As pointed out in [1], this was proved under more restrictive conditions in [3].

REMARK 0.3. In the case of solubility of $ax^2 - by^2 = \pm 1$, we have $a_h = 2P_h$.

Acknowledgment. Theorem 0.1 was pointed out to the author by Jim White. Theorem 3 of [1] states a corresponding result in terms of the continued fraction expansion of \sqrt{ab}.

REFERENCES

