(Joint work with G. Havas and B. Majewski – appeared in Experimental Mathematics)

CENTRAL PROBLEM:

If $d_1, \ldots, d_m, \ m \geq 2$, are nonzero integers, find integers x_1, \ldots, x_m such that
\[d = \gcd(d_1, \ldots, d_m) = x_1d_1 + \cdots + x_md_m, \]
with $x_1^2 + \cdots + x_m^2$ small. We call (x_1, \ldots, x_m) a multiplier vector.

Euclid’s algorithm solves the problem for $m = 2$.

Various algorithms (Jacobi 1868, Brun 1919) use integer row operations to convert
\[
\begin{bmatrix}
1 & \cdots & 0 & d_1 \\
0 & \cdots & 0 & d_2 \\
\vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 1 & d_m
\end{bmatrix}
\rightarrow
\begin{bmatrix}
b_{11} & \cdots & b_{1m} & 0 \\
b_{21} & \cdots & b_{2m} & 0 \\
\vdots & \ddots & \vdots & \vdots \\
b_{m1} & \cdots & b_{mm} & d
\end{bmatrix}
\]

Then $B = [b_{ij}]$ is unimodular and $b_m = (b_{m1}, \ldots, b_{mm})$ is a multiplier vector.

With $b_i = (b_{i1}, \ldots, b_{im})$, then
\[
\Lambda = \{ (x_1, \ldots, x_m) \in \mathbb{Z}^m | d_1x_1 + \cdots + d_mx_m = 0 \}
\]
is an $(m – 1)$-dimensional lattice in \mathbb{Z}^m with basis b_1, \ldots, b_{m-1}. The lattice determinant $d(\Lambda)$ is given by
\[
d(\Lambda) = \frac{1}{d} \sqrt{(d_1^2 + \cdots + d_m^2)}.
\]
The general multiplier has the form
\[
b = b_m + y_1b_1 + \cdots + y_{m-1}b_{m-1},
\]
where $y_1, \ldots, y_{m-1} \in \mathbb{Z}$.

PHILOSOPHY. Try to find short basis vectors b_1, \ldots, b_{m-1} for Λ and integers y_1, \ldots, y_{m-1} which make $||b||$ small.

(An idea which goes back to L. Babai – See Geometric algorithms and combinatorial optimization, M. Grötschel, L. Lovász, A. Schrijver, 139–150.)

JACOBI’S ALGORITHM

Iterative step ($m = 3$):
\[
(d_1, d_2, d_3) \rightarrow (d_2 \text{ mod } d_1, \ d_3 \text{ mod } d_1, d_1).
\]

EXAMPLE: $\gcd(4, 6, 9).

\[
\begin{bmatrix}
1 & 0 & 0 & 4 \\
0 & 1 & 0 & 6 \\
0 & 0 & 1 & 9
\end{bmatrix}
\rightarrow
\begin{bmatrix}
-1 & 1 & 0 & 2 \\
-2 & 0 & 1 & 1 \\
1 & 0 & 0 & 4
\end{bmatrix}
\rightarrow
\begin{bmatrix}
-2 & 0 & 1 & 1 \\
3 & -2 & 0 & 0 \\
-1 & 1 & 0 & 2
\end{bmatrix}
\rightarrow
\begin{bmatrix}
3 & -2 & 0 & 0 \\
3 & 1 & -2 & 0 \\
-2 & 0 & 1 & 1
\end{bmatrix}
\]

$\gcd(4, 6, 9) = 1$; multipliers $-2, 0, 1$.

THE LLL REDUCED MATRIX

Let B be an $m \times n$ matrix of integers, with LI rows b_1, \ldots, b_m over the rationals and Gram–Schmidt basis b_1^*, \ldots, b_m^*, where
\[
b_1^* = b_1, \quad b_k^* = b_k - \sum_{j=1}^{k-1} \mu_{kj}b_j^*
\]
and $\mu_{kj} = \frac{b_k^* \cdot b_j^*}{b_j^* \cdot b_j^*}$ for $1 \leq j < k \leq m$.

The lattice basis b_1, \ldots, b_m is reduced if
\[
(i) \quad ||\mu_{kj}|| \leq 1/2 \text{ for } 1 \leq j < k \leq m
\]
\[
(ii) \quad ||b_k||^2 \geq (\alpha - ||b_{k-1}||^2)||b_{k-1}||^2 \quad (C2)
\]
for $1 < k \leq m$. (Here $1/4 < \alpha \leq 1$)

b_k is size-reduced if $||\mu_{kj}|| \leq 1/2$ for $1 \leq j < k$.
THE LLL LATTICE BASIS REDUCTION ALGORITHM

Start with row \(k = 2 \) of \(B \). (Row 1 has to be nonzero.) Partially size–reduce \(b_k \) by

\[
b_k \rightarrow b_k - \lfloor \mu_{k-1} \rfloor b_{k-1},
\]

where \(\lfloor \theta \rfloor \) is the nearest integer symbol, with \(\lfloor \theta \rfloor = \theta - \frac{1}{2} \), if \(\theta \) is a half–integer.

If (C2) does not hold, we swap \(b_k \) and \(b_{k-1} \) and decrement \(k \).

Otherwise size–reduce \(b_k \) completely by

\[
b_k \rightarrow b_k - \lfloor \mu_j \rfloor b_j, \quad j = k - 2, \ldots, 1,
\]

then increment \(k \).

PSEUDO–CODE FOR THE LLL ALGORITHM (de Weger)

INPUT: \(m \times n \) integer matrix \(B \);

\[
m_1 := 1; \quad n_1 := 1; \quad \alpha := m_1/n_1; \quad D_0 := 1;
\]

for \(i = 1, \ldots, m \{
\]

\[
c_j := b_i; \quad \lambda_i := b_i \cdot c_j; \quad c_i := (D_i c_i - \lambda_i c_j) / D_{i-1};
\]

\[
D_i := (c_i - c_j) / D_{i-1}; \quad \lambda_k := D_i \mu_j / D_{i-1} \ast /
\]

\[
\}
\]

while \(k \leq m \{
\]

\[
Reduce(k, k - 1); \quad \lambda_k := \lambda_k / D_k \\
\}
\]

\[
\}
\]

OUTPUT: \(B \), whose rows are LLL reduced;

Reduce \((k, i)\)

if \(2|\lambda_k| > D_k \)

\[
q := \lfloor \lambda_k / D_k \rfloor; \quad \lambda_k := \lambda_k - qD_k,
\]

else \(q := 0 \);

if \(q \neq 0 \{
\]

\[
b_k := b_k - q b_i; \quad \lambda_k := \lambda_k - q \lambda_j;
\]

\[
\}
\]

Swap \((k)\)

\[
b_k := b_k - b_{k-1};
\]

for \(j = 1, \ldots, k - 2 \)

\[
\lambda_k := \lambda_k - 1;
\]

for \(i = k + 1, \ldots, m \{
\]

\[
t := \lambda_{k+1} D_k - \lambda_k \lambda_{k-1}; \quad \lambda_{k+1} := (\lambda_{k+1} + \lambda_k D_{k-2}) / D_{k-1};
\]

\[
\lambda_k := t / D_{k-1};
\]

\[
D_{k-1} := (D_{k-2} D_k + \lambda_{k+1}^2) / D_{k-1};
\]

}
THE LARGE N EXTENDED GCD ALGORITHM

Let $D = [d_1, \ldots, d_m]^T$. Then if $N \geq N_0(D)$, under the LLL algorithm, the steps of the algorithm become identical and

$$
\begin{bmatrix}
1 & \cdots & 0 & N d_1 \\
0 & \cdots & 0 & N d_2 \\
\vdots & \cdots & \vdots & \vdots \\
0 & \cdots & 1 & N d_m
\end{bmatrix}
\rightarrow
\begin{bmatrix}
b_{11} & \cdots & b_{1m} & 0 \\
b_{21} & \cdots & b_{2m} & 0 \\
\vdots & \cdots & \vdots & \vdots \\
b_{m1} & \cdots & b_{mm} & Ng
\end{bmatrix},
$$

where $g = \gcd(d_1, \ldots, d_m)$.

The resulting multiplier vector (b_{m1}, \ldots, b_{mm}) is small in practice.

The large N extended gcd algorithm has the disadvantage that LLL has to be performed on matrices with large entries.

On studying what the sequence of operations for large N, one sees how to modify the LLL algorithm, starting instead with the matrix $[I_m | D]$, so as to perform essentially the same sequence of operations.

AN EXAMPLE OF THE LARGE N EXTENDED GCD ALGORITHM

Take $m = 2$ and $(d_1, d_2) = (2, 5), \alpha = 1$.

Let $B = \begin{bmatrix} 1 & 0 & 2N \\ 0 & 1 & 5N \end{bmatrix}$.

Then

$$
\mu_{21} = \frac{b_2 \cdot b_1}{b_1 \cdot b_1} = \frac{10N^2}{1 + 4N^2}
$$

Hence $2 < \mu_{21} < 5/2$ and $[\mu_{21}] = 2$.

We thus perform $R_2 \rightarrow R_2 - 2R_1$:

$$
B \rightarrow \begin{bmatrix} 1 & 0 & 2N \\ -2 & 1 & N \end{bmatrix}.
$$

Here $\|b_1\|^2 = 1 + 4N^2$, $\|b_2\|^2 = 5 + N^2$.

So if $N = 1$, $\|b_1\|^2 \leq \|b_2\|^2$ and B is LLL reduced.

If $N > 1$, $\|b_1\|^2 > \|b_2\|^2$ and we swap rows:

$$
B \rightarrow \begin{bmatrix} -2 & 1 & N \\ 1 & 0 & 2N \end{bmatrix}.
$$

$$
\mu_{21} = -\frac{2 + 2N^2}{5 + N^2} = 2 - \frac{12}{5 + N^2},
$$

so $\frac{3}{2} < \mu_{21} < 2 \Rightarrow N \geq 5$.

$N = 2, 3, 4$: Here

$$
\mu_{21} = 2/3, 8/7, 10/7, \text{ so } [\mu_{21}] = 1
$$

and we perform $R_2 \rightarrow R_2 - R_1$:

$$
B \rightarrow \begin{bmatrix} -2 & 1 & N \\ 3 & -1 & N \end{bmatrix}
$$

and B is LLL reduced.
\[N \geq 5: \text{ Here} \]
\[
3/2 < \mu_{21} < 2, \text{ so } [\mu_{21}] = 2
\]
and we perform \(R_2 \rightarrow R_2 - 2R_1 \):
\[
B \rightarrow \begin{bmatrix}
-2 & 1 & | & N \\
5 & -2 & | & 0
\end{bmatrix}.
\]
Then \(\|b_2\|^2 = 29, \|b_1\|^2 = 5 + N^2 \geq 30 \), so we swap rows:
\[
B \rightarrow \begin{bmatrix}
5 & -2 & | & 0 \\
-2 & 1 & | & N
\end{bmatrix}.
\]
Finally \(-1/2 < \mu_{21} = -12/29 < 0 \) and \(B \) is LLL reduced.

A LLL BASED EXTENDED GCD ALGORITHM

INPUT: Positive integers \(d_1, \ldots, d_m \);
\(B := I_m \);

for \(r = 2, \ldots, m \)

for \(s = 1, \ldots, r - 1 \)

\(\lambda_{si} := 0; \)

\(D_i := 1; \)

\(a_i := d_s; \)

\(a_1 := 1; \)

\(m_1 := 1; \)

\(n_1 := 1; \)

\(\alpha := m_1/n_1 \star \)

\(k := 2; \)

while \(k \leq m \)

\(\text{Reduce1}(k, k - 1); \)

if \(a_{s-1} \neq 0 \) **or** \(\{ a_{s-1} = 0 \text{ and } a_k = 0 \text{ and } a_1(\lambda_{k-1}D_1 + \lambda_{s-1}^2D_{s-1}) < m_1D_{s-1} \} \)

\(\text{Swap1}(k); \)

if \(k > 2 \)

\(k := k - 1; \)

else

\(\text{Reduce1}(k, i); \)

\(i := k - 2, \ldots, 1; \)

\(k := k + 1; \)

if \(a_m < 0 \)

\(a_m := -a_m; \)

\(b_m := -b_m; \)

OUTPUT: \(a_0 = \gcd(d_1, \ldots, d_m); \)

small multipliers \(b_{1l}, \ldots, b_{1m}; \)

small null space basis \(b_1, \ldots, b_{m-1}; \)

We perform LLL on the rows of \([B|A] = [I_m|D]\), except that when processing rows \(k \) and \(k - 1 \), if we encounter
\(a_1 = 0, \ldots, a_{k-2} = 0, a_{k-1} \neq 0 \), instead of the usual partial size-reduction, we perform
\[
R_k \rightarrow R_k - \frac{a_k}{a_{k-1}} R_{k-1}.
\]

We then interchange rows \(k - 1 \) and \(k \) and perform the LLL algorithm on the first \(k \) rows with no interchange of row \(k \).

The effect is to successively produce for \(k = 2, \ldots, m \), a multiplier vector \((b_{k1}, \ldots, b_{kk}) \) for \(d_1, \ldots, d_k \) which is size-reduced with respect to a LLL reduced lattice basis \((b_{11}, \ldots, b_{1k}), \ldots, (b_{k-1}, \ldots, b_{kk}) \) for the lattice defined by \(x_1d_1 + \cdots + x_kd_k = 0 \).
Swap k,

\[a_k \leftarrow a_{k-1}; \]
\[b_k \leftarrow b_{k-1}; \]

for $j = 1, \ldots, k-2$

\[\lambda_{k-j} \leftarrow \lambda_{k-1-j}; \]

for $i = k + 1, \ldots, m$

\[t := \lambda_{i, k-1} D_i - \lambda_{i, k-1}; \]
\[\lambda_{i, k-1} := (\lambda_{i, k-1} \lambda_{k-1} + \lambda_{i, k-1} D_i) / D_{k-1}; \]
\[\lambda_{i, k-1} := t / D_{k-1}; \]

\[D_{k-1} := (D_{k-2} D_i + \lambda_{i, k-1}^2) / D_{k-1}; \]

Example 1: LLL BASED EXTENDED GCD ALGORITHM: \(\text{gcd}(4, 6, 9), a = 1 \)

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Example 2: Fibonacci numbers

\(F_n, \ldots, F_{n+m-1} \)

For $n \geq 2$ there is exactly one shortest multiplier vector and it can be described explicitly. (See K.R. Matthews, *Minimal multipliers for consecutive Fibonacci numbers*, Acta Arith. 75 (1996) 205-218.)

\[a = (1, 1, -1) \]

and performing our algorithm on \(\text{gcd}(9, 6, 4) \) yields this multiplier.

Hence \(\text{gcd}(4, 6, 9) = 1 \); multipliers \((-2, 0, 1)\).

The shortest multiplier vector is in fact

The Fibonacci and Lucas numbers are defined by
\[F_1 = F_2 = 1, \quad F_{n+2} = F_{n+1} + F_n, \quad n \geq 1; \]
\[L_1 = 1, L_2 = 3, \quad L_{n+2} = L_{n+1} + L_n, \quad n \geq 1. \]
\[
\begin{pmatrix}
 1 & 1 \\
 0 & 1
\end{pmatrix}
\ldots
\begin{pmatrix}
 1 & 1 \\
 1 & 0
\end{pmatrix}
= \begin{pmatrix}
 F_{n+1} & F_n \\
 F_n & F_{n-1}
\end{pmatrix}.
\]

Taking determinants of both sides gives
\[F_{n+1}F_{n-1} - F_n^2 = (-1)^n, \]
which in turn gives
\[F_{n-1}F_n - F_{n-2}F_{n+1} = (-1)^n. \]
Hence
\[M_n = ((-1)^nF_{n-1}, (-1)^{n+1}F_{n-2}, 0, \ldots, 0). \]
is a multiplier vector.

Λ is the lattice of \((x_1, \ldots, x_m) \in \mathbb{Z}^m\) satisfying
\[x_1F_n + x_2F_{n+1} + \cdots + x_mF_{n+m-1} = 0. \]
Λ has a lattice basis consisting of the vectors:
\[\mathcal{L}_1, \ldots, \mathcal{L}_{m-2}, \mathcal{M}_{n+2}, \]
where
\[\mathcal{L}_1 = (1, 1, -1, 0, \ldots, 0), \]
\[\mathcal{L}_2 = (0, 1, 1, -1, 0, \ldots, 0), \]
\[\vdots \]
\[\mathcal{L}_{m-2} = (0, \ldots, 0, 1, 1, -1). \]

The general multiplier vector has the form
\[M_n + y_1\mathcal{L}_1 + \cdots + y_{m-2}\mathcal{L}_{m-2} + y_{m-1}M_{n+2}, \]
where \(y_1, \ldots, y_{m-1}\) are integers.

If \(n \geq 2\), there is a unique multiplier vector \(W_{n,m}\) of least length and defined as follows:
\[W_{n,m} = M_n + (-1)^n \sum_{j=1}^{m-2} (-1)^j G_{n,j,m} \mathcal{L}_j, \]
where:

If \(m\) is even,
\[G_{n,r,m} = \begin{cases} H_{n,r,m} & r \text{ even,} \\ H_{n-1,r+1,m} & r \text{ odd.} \end{cases} \]
If \(m\) is odd,
\[G_{n,r,m} = \begin{cases} H_{n,r,m-1} & r \text{ even,} \\ H_{n-1,r+1,m+1} & r \text{ odd.} \end{cases} \]
\[H_{n,r,m} = \left[\frac{F_{n-r}(F_{n-2} + F_r)}{F_m} \right]. \]

Alternatively
\[W_{n,m} = (-1)^n(W_{n,1,m}, -W_{n,2,m}, \ldots, -W_{n,m,m}), \]
\[W_{n,r,m} = G_{n,r-2,m} + G_{n,r-1,m} - G_{n,r,m}. \]
The vectors
\[L_1 \ldots, L_{m-2}, W_{a+2,m} \]
form a \(\mathbb{Z} \)-basis for \(\Lambda \) and (apart from sign) this is the one always found by our LLL based algorithm.

THEOREM. If \(B \) is a unimodular \(3 \times 3 \) integer matrix such that the first 2 rows \(b_1, b_2 \) form a LLL-reduced basis for the lattice \(\Lambda \) with \(3/8 \leq \alpha \leq 1 \), while \(b_3 \) is size-reduced and is a multiplier vector for \(d_1, d_2, d_3 \), then the smallest multiplier is one of the vectors \(b_3 + \epsilon_1 b_1 + \epsilon_2 b_2 \), where \(\epsilon_i = -1, 0, 1 \) for \(i = 1, 2 \), \((\epsilon_1, \epsilon_2) \neq (\pm 1, 0) \).

PROOF. We look for smaller multipliers than \(b_3 \). These satisfy
\[
\|b_3 + z b_1 + y b_2\|^2 < \|b_3\|^2, \text{ or equivalently}
\]
\[
\|b_3\|^2 + (x + \mu_{21} y + \mu_{31}) \|b_1\|^2 + (y + \mu_{32}) \|b_2\|^2 < \|b_3\|^2 + \mu_{31} \|b_1\|^2 + \mu_{32} \|b_2\|^2.
\]
Hence
\[
(y + \mu_{32})^2 < \mu_{31} \frac{\|b_1\|^2}{\|b_2\|^2} + \mu_{32}
\]
\[
(y + \mu_{32})^2 < \frac{1}{4} \cdot \frac{8}{4} = \frac{9}{4}, \text{ if } \alpha \geq \frac{3}{8}
\]
\[
|y + \mu_{32}| < \frac{3}{2} \Rightarrow |y| < 2 \Rightarrow |y| \leq 1.
\]
Then as \(y(y + 2\mu_{32}) \geq 0 \) if \(y \in \mathbb{Z} \),
\[
(x + \mu_{21} y + \mu_{31})^2 |b_1|^2 + y(y + 2\mu_{32}) |b_2|^2
\leq \mu_{31}^2 |b_1|^2
\Rightarrow (x + \mu_{21} y + \mu_{31})^2 |b_1|^2 < \mu_{31}^2 |b_1|^2
\Rightarrow |x| < |\mu_{21} y + \mu_{31}| + |\mu_{31}|
\Rightarrow |x| < |\mu_{21}| + 2|\mu_{31}| \leq \frac{1}{2} + 1 = \frac{3}{2}
\Rightarrow |x| \leq 1.
\]
Also from inequality (1), \(y = 0 \) implies \(x = 0 \).

The argument above goes through with a slight twist for \(m = 4 \), as was pointed out to me by vacation scholar Sean Byrnes. One only needs to assume \(\alpha > (5 + \sqrt{33})/16 \).

For \(m = 5 \), the example \((d_1, d_2, d_3, d_4, d_5) = (2, 5, 14, 23, 29)\) has shortest multiplier \(b_5 - 2b_1 + b_2 + b_3 + b_4 \) with \(\alpha = 1 \) and this was the only example with an \(|\epsilon_i| > 1 \) in the range \(2 \leq d_i \leq 30 \).

A LLL BASED UPSIDE–DOWN ROW ECHELON FORM ALGORITHM

An \(m \times n \) integer matrix \(B \) is said to be in Hermite normal form if

(i) the first \(r \) rows of \(B \) are nonzero and the remaining rows are zero;

(ii) for \(1 \leq i \leq r \), if \(b_{ij} \) is the first nonzero entry in row \(i \) of \(B \), then \(j_1 < j_2 < \cdots < j_r \);

(iii) \(b_{ij} > 0 \) for \(1 \leq i \leq r \);

(iv) if \(1 \leq k < i \leq r \), then \(0 \leq b_{kj} < b_{ij} \).

Let \(G \in M_{m \times n}(\mathbb{Z}) \). Then there are various algorithms for finding a unimodular matrix \(P \) such that \(PG = B \) is in Hermite normal form and which attempt to reduce coefficient explosion during their execution, eg. Kannan–Bachem (1979).

Let \(G = [G_1| \cdots |G_n] \in M_{m \times n}(\mathbb{Z}) \).

Then the LLL algorithm applied to the matrix
\[
G(N) = [In | N^aG_1 | N^{a-1}G_2 | \cdots | NG_n]
\]
(where \(G_i \) is the \(i \)th column of \(G \)) will perform the same sequence of steps for \(N \geq N_0(G) \)

Also the last \(n \) columns of the LLL reduced form of \(G(N) \) will be a matrix whose rows, starting from the bottom, are in row echelon form, corresponding to the indices \(j_1, \ldots, j_r \).
EXAMPLE If $G = \begin{pmatrix} 8 & 44 & 43 \\ 4 & 10 & 43 \\ 56 & -550 & -328 \\ 76 & 10 & 42 \end{pmatrix}$, then for $N \geq 2595$ and $a = 1$, the LLL algorithm applied to $B = [I_3 | N^3 G_1 | N^2 G_2 | NG_3]$ will almost certainly perform the same operations, reducing B to

$$
\begin{pmatrix}
12245 & -3855 & 878 & -1733 & 0 & 0 & 0 \\
530 & -167 & 38 & -75 & 0 & 0 & -5N \\
2134 & -672 & 153 & -302 & 0 & 6N^2 & -2N \\
502 & -158 & 36 & -71 & 4N^3 & -2N^2 & 2N
\end{pmatrix}.
$$

We can imitate the limiting form that LLL takes and perform the sequence instead on $[I_m | G]$ to get an algorithm for the upside-down HNF. If rank $G < m$, we expect the unimodular transformation matrix to have entries of moderate size.

LLL HNF ALGORITHM

INPUT: An $m \times n$ integer matrix G;

1. $B = I_m$
2. for $r = 2, \ldots, m$
 1. for $s = 1, \ldots, r - 1$
 1. $\lambda_{rs} := 0$;
 2. $A := \phi$;
 3. $D_i := 1$, $i = 0, \ldots, m$;
 4. $m_1 := 1$; $n_1 := 1$; $/ * \alpha = m_1/n_1 */$
 5. if (\exists $a_{ij} \neq 0$ in first nonzero column of G) and $a_{ij} < 0$ [$a_i := -a_i, b_j := -b_j$];
 6. $k := 2$;
 2. while $k \leq m$
 1. Reduce2(k, $k - 1$);
 2. if $\{\text{coll1 } \leq \text{col2} \text{ and } \text{col1 } \leq n\}$
 1. $n_1(D_{k-2} - D_{k-1} + \lambda_{k-1}^2) < m_1 D_{k-1}$
 1. Swap1(k);
 2. if $k > 2$
 1. $k := k - 1$;
 3. else
 1. Reduce2(k, i), $i = k - 2, \ldots, 1$
 2. $k := k + 1$;
 3. end

OUTPUT: A, the (upside-down) $HNF(G)$; B the corresponding transformation matrix;

We perform LLL on the rows of $[B | A] = [I_m | G_1 | \cdots | G_n]$, the difference when processing rows $k - 1$ and k being that if A has the form

$$
A = \begin{pmatrix}
0 & \ldots & 0 & 0 & \ldots \\
\vdots & \ddots & \vdots & \vdots & \ddots \\
0 & \ldots & 0 & a_{k-1, \text{col1}} & \ldots \\
a_{k1} & \ldots & a_{k, \text{col1}} & \ldots \\
\vdots & \ddots & \vdots & \vdots & \ddots \\
\end{pmatrix},
$$

where $a_{k-1, \text{col1}} \neq 0$, instead of the partial size-reduction, we perform

$$
R_k \rightarrow R_k - \frac{a_{k, \text{col1}}}{a_{k-1, \text{col1}}} R_{k-1}.
$$

Then we interchange rows $k - 1$ and k and perform the LLL algorithm on the first k rows with no interchange of row k.

Similarly with $k - 1$ replaced by $i < k - 1$, but with no swapping.
Minus \(j \)

\[
\begin{align*}
 \text{for } r &= 2, \ldots, m \\
 \text{for } s &= 1, \ldots, r - 1 \\
 \text{if } r &= j \text{ or } s = j \\
 \lambda_{rs} &:= -\lambda_{rs};
\end{align*}
\]