We are dealing with the polynomial \(f(x, y) = ax^2 + bxy + cy^2 \), where \(a > 0 \) and \(d = b^2 - 4ac > 0 \) is not a square. Let \(\rho = (-b + \sqrt{d})/2a \) and \(\sigma = (-b - \sqrt{d})/2a \) be the roots of \(f(x, 1) \). The following was mentioned by M. Pavone in 1986.

Proposition 1. (Lemma 5 of [3].) Let \(\rho = [a_0, \ldots, a_m, b_1, \ldots, b_n] \) and \(\sigma = [c_0, \ldots, c_r, d_1, \ldots, d_n] \) be the roots of \(f \). Also let \(p_h/q_h \) and \(P_h/Q_h \) denote the convergents of \(\rho \) and \(\sigma \), respectively. We do not require the periods to have minimal lengths, but assume \(m \) and \(r \) are minimal, i.e., \(a_m \neq b_n \) and \(c_r \neq d_n \). It is also convenient to assume \(n \geq 4 \). We let \(m = -1 \) if there is no preperiod.

There exists an \(i, 1 \leq i \leq 3 \), such that

\[
\sigma = [c_0, \ldots, c_r, b_{n-i}, \ldots, b_1, b_n, b_{n-1}, \ldots, b_{n-i+1}].
\]

Also \(i = 3 \) implies \(b_{n-1} = 1 \). When \(b_n = b_{n-1} = 1 \), then \(i = 3 \) if and only if \(m \geq 0 \) and \(r \geq 0 \).

Proofs were not given by Pavone. We list all cases for (1) and give proofs. We need two lemmas.

Lemma 2. If \(\xi = [a_0, a_1, \ldots] \), then

\[
-\xi = \begin{cases}
[-a_0 - 1, 1, a_1 - 1, a_2, \ldots] & \text{if } a_1 > 1; \\
[-a_0 - 1, a_2 + 1, a_3, \ldots] & \text{if } a_1 = 1.
\end{cases}
\]
Remark 3. This is Lemma 3.1 of [1].

Lemma 4. Let $\rho = \frac{-b + \sqrt{d}}{2a} = [a_0, \ldots, a_m, b_1, \ldots, b_n]$ and $\bar{\rho} = \frac{-b - \sqrt{d}}{2a}$.

Then

$$\bar{\rho} = \begin{cases}
[a_0, \ldots, a_m, -1, 1, b_n - 1, b_{n-1}, b_{n-2}, \ldots, b_1, b_n] & \text{if } b_n > 1; \\
[a_0, \ldots, a_m, -1, b_{n-1} + 1, b_{n-2}, b_{n-3}, \ldots, b_1, b_n, b_{n-1}] & \text{if } b_n = 1.
\end{cases}$$

The preperiod a_0, \ldots, a_m can be absent.

Proof. We have $\rho = [a_0, \ldots, a_m, \theta]$, where $\theta = [b_1, \ldots, b_n]$. Taking conjugates gives

$$\bar{\rho} = [a_0, \ldots, a_m, \bar{\theta}] = [a_0, \ldots, a_m, -[0, b_n, \ldots, b_1]].$$

The desired conclusion now follows from Lemma 2. \qed

Our problem is to get rid of a negative partial quotient in the equations of Lemma 4. We use a matrix approach.

1. We first assume $b_n > 1$ and consider the identity

$$\begin{pmatrix} a_m & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} b_n - 1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} b_n - a_m & 1 \\ -1 & 0 \end{pmatrix}.$$

Case (a). Assume $m \geq 1$ and $b_n - a_m \geq 1$. We use the matrix product

$$\begin{pmatrix} a_{m-1} & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} b_n - a_m & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} a_{m-1} (b_n - a_m) - 1 & a_{m-1} \\ b_n - a_m & 1 \end{pmatrix}.$$

$$= \begin{pmatrix} a_{m-1} - 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} b_n - a_m - 1 & 1 \\ 1 & 0 \end{pmatrix}.$$

Hence if $b_n > 1, m \geq 2$ and $b_n - a_m \geq 1$, we have

$$\sigma = \begin{cases}
[a_0, \ldots, a_{m-2}, a_{m-1} - 1, 1, b_n - a_m - 1, b_{n-1}, \ldots, b_1, b_n] & \text{if } b_n - a_m > 1; \\
[a_0, \ldots, a_{m-2}, a_{m-1} - 1, 1 + b_{n-1}, b_{n-2}, \ldots, b_1, b_n, b_{n-1}] & \text{if } b_n - a_m = 1.
\end{cases}$$
while if \(b_n > 1, m = 1 \) and \(b_n - a_m \geq 1 \), we have

\[
\sigma = \begin{cases}
[a_{m-1} - 1, 1, b_n - a_m - 1, b_{n-1}, \ldots, b_1, b_n] & \text{if } b_n - a_m > 1; \\
[a_{m-1} - 1, 1 + b_{n-1}, b_{n-2}, \ldots, b_1, b_n, b_{n-1}] & \text{if } b_n - a_m = 1.
\end{cases}
\]

On removing a zero partial quotient if \(a_{m-1} = 1 \), we obtain a continued fraction expansion for \(\sigma \) of the form \([1]\), where \(i = 1 \) if \(b_n - a_m > 1 \), and \(i = 2 \) if \(b_n - a_m = 1 \).

Case (b). Assume \(m \geq 1 \) and \(b_n - a_m = -b < 0 \), or \(m = 0 \). Let \(c = b_{n-1} \). Then

\[
\begin{pmatrix}
 b_n - a_m & 1 \\
 -1 & 0
\end{pmatrix}
\begin{pmatrix}
 b_{n-1} & 1 \\
 1 & 0
\end{pmatrix}
= \begin{pmatrix}
 -b & 1 \\
 -1 & 0
\end{pmatrix}
\begin{pmatrix}
 c & 1 \\
 1 & 0
\end{pmatrix}
= \begin{pmatrix}
 -bc + 1 & -b \\
 -c & -1
\end{pmatrix}
= -\begin{pmatrix}
 b - 1 & 1 \\
 1 & 0
\end{pmatrix}
\begin{pmatrix}
 1 & 1 \\
 1 & 0
\end{pmatrix}
\begin{pmatrix}
 c - 1 & 1 \\
 1 & 0
\end{pmatrix}.
\]

Hence if \(b_n > 1, m \geq 1 \) and \(b_n - a_m < 0 \), we have

\[
\sigma = \begin{cases}
[a_0, \ldots, a_{m-1}, a_m - b_n - 1, 1, b_{n-1} - 1, b_{n-2}, \ldots, b_1, b_n, b_{n-1}] & \text{if } b_{n-1} > 1; \\
[a_0, \ldots, a_{m-1}, a_m - b_n - 1, b_{n-2} + 1, b_{n-3}, \ldots, b_1, b_n, b_{n-1}, b_{n-2}] & \text{if } b_{n-1} = 1.
\end{cases}
\]

while if \(b_n > 1 \) and \(m = 0 \), we have

\[
\sigma = \begin{cases}
[a_0 - b_n - 1, 1, b_{n-1} - 1, b_{n-2}, \ldots, b_1, b_n, b_{n-1}] & \text{if } b_{n-1} > 1; \\
[a_0 - b_n - 1, b_{n-2} + 1, b_{n-3}, \ldots, b_1, b_n, b_{n-1}, b_{n-2}] & \text{if } b_{n-1} = 1.
\end{cases}
\]

On removing a zero partial quotient if \(a_m - b_n = 1 \) and \(m \geq 1 \), we obtain a continued fraction expansion for \(\sigma \) which has the form \([1]\), where \(i = 2 \) if \(b_{n-1} > 1 \) and \(i = 3 \) if \(b_{n-1} = 1 \).

2. We now assume \(b_n = 1 \). Then

\[
\begin{pmatrix}
 a_m & 1 \\
 1 & 0
\end{pmatrix}
\begin{pmatrix}
 -1 & 1 \\
 1 & 0
\end{pmatrix}
\begin{pmatrix}
 b_{n-1} + 1 & 1 \\
 1 & 0
\end{pmatrix}
= -\begin{pmatrix}
 b_{n-1}(a_m - 1) & a_m - 1 \\
 b_{n-1} & 1
\end{pmatrix}
\begin{pmatrix}
 a_m - 2 & 1 \\
 1 & 0
\end{pmatrix}
\begin{pmatrix}
 b_{n-1} - 1 & 1 \\
 1 & 0
\end{pmatrix}.
\]
Note that \(a_m \geq 2 \) if \(m \geq 1 \). Hence if \(b_n = 1 \) and \(m > 1 \), we get the continued fraction
\[
\sigma = \begin{cases}
[a_0, \ldots, a_{m-1}, a_m - 2, 1, \overline{b_{n-1} - 1, b_n, \ldots, b_1, b_2} & \text{if } b_n - 1 > 1; \\
[a_0, \ldots, a_{m-1}, a_m - 2, 1 + b_{n-2}, \overline{b_{n-3}, \ldots, b_1, b_2, b_n, b_n - 2} & \text{if } b_n - 1 = 1.
\end{cases}
\]
while if \(b_n = 1 \) and \(m = 0 \), we get the continued fraction
\[
\sigma = \begin{cases}
[a_0 - 2, 1, b_{n-1} - 1, \overline{b_n - 2, \ldots, b_1, b_2} & \text{if } b_{n-1} > 1; \\
[a_0 - 2, 1 + b_{n-2}, \overline{b_n - 3, \ldots, b_1, b_2, b_n, b_n - 2} & \text{if } b_{n-1} = 1.
\end{cases}
\]
On removing a zero partial quotient if \(a_m = 2 \), we obtain the continued fraction expansion for \(\sigma \) in the form (1), with \(i = 2 \) if \(b_{n-1} > 1 \), and \(i = 3 \) if \(b_{n-1} = 1 \).

3. Finally, we consider the case \(\rho = [b_1, \ldots, b_n] \). Then by Lemma 4
\[
\sigma = \begin{cases}
[-1, 1, b_n - 1, \overline{b_{n-1}, \ldots, b_1, b_2} & \text{if } b_n > 1; \\
[-1, b_{n-1} + 1, \overline{b_n - 2, \ldots, b_1, b_2, b_n} & \text{if } b_n = 1.
\end{cases}
\]
Table I gives an expanded summary of all cases. There is similar table at [2] which assisted in the fine–tuning of Table I.

References

<table>
<thead>
<tr>
<th>(r)</th>
<th>Cases</th>
<th>Continued fraction expansion of (r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A11</td>
<td>(m+1)</td>
<td>(b_n > 1, m \geq 2, b_n - a_m > 1, a_{m-1} > 1) [a_0, \ldots, a_{m-2}, a_{m-1} - 1, 1, b_n - a_m - 1, b_{n-1} - 1, b_n]</td>
</tr>
<tr>
<td>A12</td>
<td>(m-1)</td>
<td>(b_n > 1, m \geq 2, b_n - a_m > 1, a_{m-1} = 1) [a_0, \ldots, a_{m-3}, a_{m-2} + 1, b_n - a_m - 1, b_{n-1} - 1, b_n]</td>
</tr>
<tr>
<td>A13</td>
<td>1</td>
<td>(b_n > 1, m = 2, b_n - a_2 > 1, a_1 = 1) [a_0 + 1, b_n - a_2 - 1, b_{n-1} - 1, 1, b_n]</td>
</tr>
<tr>
<td>A21</td>
<td>(m)</td>
<td>(b_n > 1, m \geq 2, b_n - a_m = 1, a_{m-1} > 1) [a_0, \ldots, a_{m-2}, a_{m-1} - 1, 1, b_{n-1} - 1, b_n - 1]</td>
</tr>
<tr>
<td>A22</td>
<td>(m-2)</td>
<td>(b_n > 1, m \geq 2, b_n - a_m = 1, a_{m-1} = 1) [a_0, \ldots, a_{m-3}, a_{m-2} + 1 + b_{n-1}, b_{n-2} - 1, b_1, b_n, b_{n-1}]</td>
</tr>
</tbody>
</table>
| A23 | 0 | \(b_n > 1, m = 2, b_n - a_2 = 1, a_1 = 1, a_0 \neq -1 \) \[a_0 + 1 + b_{n-1}, b_{n-2} \ldots, b_1, b_n, b_{n-1} \]
| A24 | \(-1\) | \(b_n > 1, m = 2, b_n - a_2 = 1, a_1 = 1, a_0 = -1 \) \([b_{n-1} \ldots, b_1, b_n] \) |
| A25 | \(m+2 \) | \(b_n > 1, m \geq 1, a_m - b_1 > 1, b_{n-1} > 1 \) \[a_0, \ldots, a_{m-1}, a_m - b_n - 1, 1, b_{n-1} - 1, b_n, b_{n-1} - 1 \] |
| A251 | \(m \) | \(b_n > 1, m \geq 2, a_m - b_1 = 1, b_{n-1} > 1 \) \[a_0, \ldots, a_{m-2}, a_{m-1} + 1, b_{n-2} - 1, b_{n-1} - 1, b_1, b_n, b_{n-1} - 1 \] |
| A252 | 1 | \(b_n > 1, m = 1, a_m - b_1 = 1, b_{n-1} > 1 \) \[a_0 + 1, b_{n-1} - 1, b_n, b_{n-1} - 1 \] |
| A26 | \(m+1 \) | \(b_n > 1, m \geq 1, a_m - b_1 > 1, b_{n-1} = 1 \) \[a_0, \ldots, a_{m-1}, a_m - b_n - 1, 1, b_{n-2} + 1, b_{n-3} - 1, b_1, b_n, b_{n-1} - 2 \] |
| A261 | \(m-1 \) | \(b_n > 1, m \geq 2, a_m - b_1 = 1, b_{n-1} = 1 \) \[a_0, \ldots, a_{m-2}, a_{m-1} + b_{n-2} + 1, b_{n-3} - 1, b_1, b_n, b_{n-1} - 2 \] |
| A262 | 0 | \(b_n > 1, m = 1, a_m - b_1 = 1, b_{n-1} = 1 \) \[a_0 + b_{n-2} + 1, b_{n-3} - 1, b_1, b_n - 1, b_{n-2} \] |
| B1 | 2 | \(b_n > 1, m = 1, b_n - a_1 > 1 \) \[a_0 - 1, 1, b_n - a_1 - 1, b_n, b_{n-1} \] |
| B2 | 1 | \(b_n > 1, m = 1, b_n - a_1 = 1 \) \[-b_n + a_0 - 1, 1, b_n - a_1 - 1, b_n, b_{n-1} \] |
| B21 | 2 | \(b_n > 1, m = 0, b_n - a_1 > 1 \) \[-b_n + a_0 - 1, 1, b_n - a_2 - 1, b_n, b_{n-1} \] |
| B22 | 1 | \(b_n > 1, m = 0, b_n - a_1 = 1 \) \[-b_n + a_0 - 1, 1, b_n - a_2 = 1, b_n, b_{n-1} \] |
| C11 | \(m+2 \) | \(b_n = 1, b_{n-1} > 1, m \geq 1, a_m > 2 \) \[a_0, \ldots, a_{m-2}, a_{m-1} - 2, b_{n-2} - 1, b_{n-1} - 1, b_n - 1, b_{n-1} - 1 \] |
| C12 | \(m+1 \) | \(b_n = 1, b_{n-1} \geq 1, m \geq 1, a_m > 2 \) \[a_0, \ldots, a_{m-2}, a_{m-1} - 2, b_{n-2} + 1, b_{n-3} - 1, b_1, b_n, b_{n-1} - 2 \] |
| C21 | \(m \) | \(b_n = 1, b_{n-1} \geq 1, m \geq 2, a_m = 2 \) \[a_0, \ldots, a_{m-2}, a_{m-1} - 1, b_{n-2} + 1, b_{n-3} - 1, b_1, b_n, b_{n-1} - 2 \] |
| C22 | \(m-1 \) | \(b_n = 1, b_{n-1} \geq 1, m \geq 2, a_m = 2 \) \[a_0, \ldots, a_{m-2}, a_{m-1} - 1, b_{n-2} + 1, b_{n-3} - 1, b_1, b_n, b_{n-1} - 2 \] |
| C31 | 1 | \(b_n = 1, b_{n-1} > 1, m = 1, a_1 = 2 \) \[a_0 + b_{n-2} + 1, b_{n-3} - 1, b_1, b_n, b_{n-1} \] |
| C32 | 0 | \(b_n = 1, b_{n-1} = 1, m = 1, a_1 = 2, a_0 \neq -1 \) \[a_0 + b_{n-2} + 1, b_{n-3} - 1, b_1, b_n, b_{n-1} \] |
| C33 | \(-1\) | \(b_n = 1, b_{n-1} = 1, m = 1, a_1 = 2, a_0 = -1 \) \[b_{n-2} - 1, b_1, b_n, b_{n-1} \] |
| D1 | 2 | \(b_n = 1, b_{n-1} > 1, m = 0 \) \[a_0 = b_n - 1, 1, b_{n-1} - 1, b_{n-2} - 1, b_1, b_n, b_{n-1} \] |
| D2 | 1 | \(b_n = 1, b_{n-1} = 1, m = 0 \) \[a_0 = b_n - 1, b_{n-2} + 1, b_{n-3} - 1, b_1, b_n, b_{n-1} - 2 \] |
| G1 | 2 | \(b_n > 1, m = -1 \) \[-1, 1, b_n - 1, b_{n-1} - 1, b_1, b_n, b_{n-1} \] |
| G2 | 1 | \(b_n = 1, m = -1 \) \[-1, b_{n-1} + 1, b_{n-2} - 1, b_1, b_n, b_{n-1} \] |