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In this note we remark that while much of the theory of a recent paper of 
Matthews and Watts on mappings T: Z + Z generalizing the Syracuse algorithm 
also goes over to mappings Tz F,[.Y] *F&t-], the conjecturaf picture is not as 
clear for polynomials. We exhibit two divergent trajectories which possess an 
unexpected regularity, and which do not obey a certain expected uniformity of 
distribution. ’ 1987 Academic Press, Inc 

1. INTRODUCTION 

Let F,[x] be the ring of polynomials over F,, a field with q elements. 
Let d E F,,[x], t = deg d > 0 and let R, be a complete set of residues mod d. 
Then R,= {x ,,..., xNCd,), where N(d) = qdegd. For i= l,..., N(d), let 
miE FJx], gcd(mj, d) = 1. Also let Y, E Rd be defined by T, =mixj(mod d). 
Then we can define a mapping T: F,[.u] + F,[x] by 

m&r, 
T(.f) = d if f = .u,(mod d). 

This mapping is the analogue for E;[x] of a mapping T: Z -+ Z studied 
by Matthews and Watts [ 11. As in [ 1 ] we are interested in the distribution 
mod d” of sequences of iterates TK( f ), K 2 0, f E F,[x], where the sequence 
is not eventually periodic. (We call these sequences divergent trajectories.) 

As in [ 11, T extends to a continuous mapping, T: G -+ G, where G is the 
d-adic completion of FJx]; also T is measure-preserving and strongly 
mixing with respect to the Haar measure p on G which satisfies 
p(B(j, da)) = l/N(d”), where B(j, d”) = {f E F,[x] 1 f =j(mod S)}. 

It is natural to suggest that analogs of Conjectures (i-iv) of [ 1 ] exist. 
However the situation appears to be more complicated and harder to 
predict here. It is the purpose of this note to give examples of the failure of 
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Conjecture (iv); i.e., we will produce divergent trajectories { TK(f)} Ka 0 for 
which 

!--~~ard{R~NITL(f)~j(rnodd)l (1.2) 

does not exist. 
In the second example it seems fairly certain that most trajectories are 

eventually periodic. We show only that there are infinitely many periods. 

2. THE EXAMPLES 

We need the following result about certain 
in G. 

LEMMA 2.1. Let f E G and suppose that 

f=? , 
r;,d” 

d-adically convergent series 

where i,, K 2 0, is a sequence of integers satkjjing 1 5 i, 5 N(d). Then for 
s 2 0, 

% 
T”(f)= c r&- 

K=.,mi,"'mi, 

(2.2 1 

and hence 

T(f) = x,(mod d) if s 10. (2.3) 

Proof: (2.2) follows from induction. 
Then (2.3) follows from the congruence 

T”(f) E r,,/m,, s x&mod d). 

EXAMPLE 1. Let T: F2[x] -+ Fz[.~] be defined by 

/ 

f iff- 0 (mod x), 

T(f)= (x+ 1-b f+ 1 (2.4) 
if f = 1 (mod x). 

X 

(Here d=x, Ry={x,,xz}, where x,=O, x2=1, m,=l, m,=(x+1)3, 
r,=O, r7= 1.) 
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We prove that the trajectory { rK( l)}, L 0 is divergent by showing that if 
K,, = 6(2” - 1 ), n 2 0, then 

TK”(l)=(l +x2+x3)*n~‘. (2.5) 

We also prove that if i, is defined for K 2 0 by 

2 if K,sK<K,+2”+‘, 

1 
i,= 

I 

ifK,,+2”+‘jK<K,+3.2”, 
2 if Kn+3~2”~K<K,,+2”+*, 

1 if K ,1 +2”+*~K<K,+,, 

then 

T‘( 1) z x,(mod x) for s 2_ 0. 

(2.6) 

(2.7) 

Remarks. 1. It is then easy to verify that 

card(K< K,,I P(l)-0 (modx)} 

=card{K<K,K,,(7’K(f)%1 (modx))=K,/2 (2.8) 

and that 

card{K<2”+3- 6)TK(l)EO(modx)}=3~2”--3 (2.9) 

and 

card(K<2”‘3 -6\T”(l)~l (modx)}=5.2”-3. (2.10) 

Consequently the limit ( 1.2) does not exist for j = 0 or 1. 

2. Most trajectories seem to be divergent, though not necessarily 
possessing the above regularity exhibited by (2.7). 

Proof. Let fe G be defined by (2.1), where i,, K 2 0, is defined by (2.6). 
Also let 

Jr=(l +x’+x3)*‘P’ for n 2 0. (2.11) 

Then if S,, E G is defined by 

we easily verify that 

(2.12) 

*ti+, 3-2” *2’+z 
+$+- 

P P3’2n 
(1 +x2+x3), (2.13) 

where p = (1 + x)~. 
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We then verify that thef, satisfy 

f,=s.+~f~+,. 

(The proof is straightforward and is omitted.) 
Repeated use of (2.14) gives 

(2.14) 

(2.15) 
= TKn(f) by (2.21, 

thereby proving (2.5), since it now follows that & =f, and from (2.11) we 
also have f. = 1. Then (2.7) follows from (2.3). 

EXAMPLE 2. Let 7’1 F, [x] * Fz [x] be defined by 

(2.16) 

We can similarly prove that the trajectory { TK( 1 +x + x3)}Kt0 is 
divergent by showing that if L,, = 5(2” - I), n 2 0, then 

TLn(l +x+.u3)= 
1+x 3.2”+1 +x3.2”+2 

1 +x+-u2 
(2.17) 

Also 

TK(I +x+x3)- 1 (modx) if L,, 5 K < L,, + 3 .2”, 

while if L,, + 3 .2” 5 K < L, + , then 

TK(l +x+x’)- 1 (mod.u)oKr 1 (mod2). 

Again the limits ( 1.2) do not exist when j = 0 or 1. 
Finally let 

(2.18) 

(2.19) 

g,=l+.x+ ... +x2n-2J+x 
2”- I 

1 +x 
for n 3 1. (2.20) 

We prove that the trajectory { TK(g,)},,o is periodic by showing that 

T’“kn) = g,. (2.21) 
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We also prove that 

Vg,,) = 
1 (mod x) if O<s<2”- 1, s odd, or s=O; 
0 (mod X) if O<s<2”, seven, or s=2”-1. 

(2.22) 

Proof: Using the notation of Lemma 2.1, let yI =O, r2 = 1, x, =O, 
x2 = 1. Also let 

i 

2 
i, = 

ifO<j<2”-l,jodd,orj=O; 

1 if O<j<2”,j even, orj=2”- 1, 
(2.23) 

ii + 2n = i, forj>O. (2.24) 

Then if feG is defined by (2.1), it follows from (2.2) and (2.24) that 
T”‘(f) =f: Also (2.22) follows from (2.3) and (2.23). It remains to prove 
that ,f= g,,. If n 3 2, we have from (2.1) that 

,f= T,,+x?” T,,+ 
4- 

(2.25) 

where 

q=.u’+ 1 and 

Hence 

j;, = T,, 
Iv+,- 1 

4 = q2-‘T,,, 

which easily reduces to g,,. 
In conclusion we wish to express our gratitude to John Zornig for 

programming assistance, and to the Department of Mathematics, Univer- 
sity of Rochester, for its hospitality, where part of this work was done 
while the first author was on study leave. 
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