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BC — before calculators, π was 22/7 and AD — after decimals, π became
3.14159265 . . . . Apparently, π is quite well approximated by the vulgar fraction 22/7;
and some of us know that 355/113 does a yet better job; it yields as many as seven
correct decimal digits.
The ‘why this is so’ of the matter is this. It happens that

π = 3 +
1

7 +
1

15 +
1

1 +
1

292 +
1

1 + . . .
and in particular that

22/7 = 3 +
1
7

while 355/113 = 3 +
1

7 +
1

15 +
1
1

Obviously, the notation takes too much space (I had to reduce the font size to fit all this on
one slide). We also note that truncations of continued fraction expansions seem to
provide very good rational approximations.
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Simple Continued Fractions

In the example continued fraction for π it is only the partial quotients 3,
7, 15, . . . that matter so we may conveniently write
π = [ 3 , 7 , 15 , 1 , 292 , 1 , . . . ] .
In general, given an irrational number α , define its sequence (αh)h≥0
of complete quotients by setting α0 = α , and αh+1 = 1/(αh − ah) .
Here, the sequence (ah)h≥0 of partial quotients of α is given by
ah = bαhc where b c denotes the integer part of its argument. The
truncations [ a0 , a1 , . . . , ah ] plainly are rational numbers ph/qh .
Indeed, the continuants ph and qh are given by the matrix identities
h = 0, 1, 2, . . .„

a0 1
1 0

« „
a1 1
1 0

«
· · ·

„
ah−1 1

1 0

«
=

„
ph−1 ph−2
qh−1 qh−2

«
.

This follows readily by induction on h and the definition

[ a0 , a1 , . . . , ah ] = a0 + 1/[ a1 , . . . , ah ], [ a0 ] = a0 .
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Taking determinants in the matrix correspondence immediately implies
that the convergents ph/qh satisfy

ph/qh − ph−1/qh−1 = (−1)h−1/qh−1qh ,

and so
ph/qh = a0 +

h−1X
n=1

(−1)n−1/qn−1qn ,

showing that the convergents do converge to a limit, namely

α = a0 +
X∞

h=1
(−1)h−1/qh−1qh ;

and also that 0 < (−1)h−1(α− ph/qh) < 1/qhqh+1 < 1/ah+1q2
h . Thus,

in particular
|π − 22/7| < 1/15 · 72 and |π − 355/113| < 1/292 · 1132.

Conversely, suppose qh−1 < q < qh . Because gcd(qh−1, qh) = 1
there are integers a and b , with ab < 0, so that q = aqh−1 + bqh . Set
p = aph−1 + bph . Then qα− p is a(qh−1α− ph−1) + b(qhα− ph) and,
since the two terms have the same sign, each must be smaller than
|qα− p| in absolute value. Thus convergents yield locally best
approximations and it follows that certainly |qα− p| > 1/2q .
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5

The Matrix Correspondence

The principle underlying the matrix correspondence is the simple fact
that a unimodular integer matrix (here, of determinant ±1) has a
decomposition as a finite product of integer matrices

`
a 1
1 0

´
; this

product certainly is unique if all the integers are positive.
Example. By transposing the correspondence it follows that

[ ah , ah−1 , . . . , a1 ] = qh/qh−1

and [ ah , ah−1 , . . . , a1 , a0 ] = ph/qh−1.

By the way, most of my remarks are formal: Thus, integer may be
replaced by polynomial; and positive becomes of positive degree.
Question. Is it a surprise that a continued fraction expansion with
partial quotients in K [X ] converges to a Laurent series in K ((X−1))?
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6

Distance

With the standard notation ph/qh = [ a0 , a1 , . . . , ah ] , and because
α = [ a0 , a1 , . . . , ah , αh+1 ] , we have„

ph ph−1
qh qh−1

« „
αh+1 1

1 0

«
←→

αh+1ph + ph−1

αh+1qh + qh−1
= α .

So, inverting the first matrix,

αh+1 = −
qh−1α− ph−1

qhα− ph
.

The Distance Formula. It follows immediately that

α1α2 · · ·αh+1 = (−1)h+1(ph − αqh)
−1.

Here, I recall p−1 = 1, q−1 = 0. It turns out that one may usefully think
of | log |ph − αqh| | as measuring a weighted distance that the
continued fraction has traversed in moving from α to αh+1 .
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7

Linear Fractional Transformations

The matrix correspondence in effect identifies 2× 2 matrices ( r s
t u )

with linear fractional transformations α 7→ (rα + s)/(tα + u) . Thus, for
arbitrary k 6= 0, one should identify matrices kM and M . Then any
sequence

“
Ah Bh
Ch Dh

”
of nonsingular 2× 2 matrices so that Ah/Ch and

Bh/Dh have a common limit yields an expansion. For example, if„
Ah Bh
Ch Dh

«
=

hY
m=0

„
2m + 1 + z 2m + 1

2m + 1 2m + 1− z

«
,

then AhDh − BhCh = (−1)h+1z2(h+1) shows that the formal power
series Ah/Ch and Bh/Dh coincide in the limit. Here Ah(z) = Dh(−z)
and Bh(z) = Ch(−z) and we need confirm only that as h→∞ both
Ah(z) or Bh(z) times e−

1
2 zh!/(2h + 1)! converges to 1; so here the

common limit is ez . By
“

2m+2 2m+1
2m+1 2m

”
=

`
1 1
1 0

´̀
2m 1
1 0

´̀
1 1
1 0

´
we obtain

e − 1 = [ 1 , 1 , 2 , 1 , 1 , 4 , 1 , 1 , 6 , . . . ] = [ 1 , 2h , 1 ]
∞
h=1 .
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8

Summary of Basics

• The matric correspondence identifies unimodular matrices with
continued fraction expansions; basic properties of continued
fractions are immediate corollaries.

• The fundamental property is that p/q is a continued fraction
convergent of α if and only if p/q is a locally good approximation
to α , roughly speaking: in the sense that |qα− p| is somewhat
smaller than 1/q . If so, it is locally best in that there is no rational
with smaller denominator which is closer to α .

• Even the unexpected pattern in the expansion of e is, at a stretch,
a corollary of the matrix correspondence.

• I add that, two numbers are equivalent if the tails of their continued
fraction expansions are the same.

• We have met the distance formula

α1α2 · · ·αh+1 = (−1)h+1(ph − αqh)
−1.
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9

Continued Fractions of Quadratic Irrationals

In these remarks, ω is a quadratic irrational integer of norm n and
trace t ; that is, ω2 − tω + n = 0. Because ω is a integer, both its trace
t = ω + ω and norm n = ωω must be rational integers. Because ω is
irrational its discriminant (ω − ω)2 , that is t2 − 4n , is not a rational
square.
Further, set α := (ω + P)/Q where the positive integer Q divides the
norm (ω + P)(ω + P) . This last condition is a critical convention:
indeed Q dividing the norm is equivalent to the Z-module 〈Q, ω + P〉Z
being more, in fact it then is an ideal of the integral domain Z[ω] . To
see this, it suffices to notice that

ω(ω + P) = −(n + tP + P2) + (t + P)(ω + P)

is in 〈Q, ω + P〉Z if and only if Q divides the norm n + tP + P2 .

Writing β = (
√
−163+17)/21 is less than ideal; it is not admissible.

In fact, β = (
√
−7987 + 119)/147.
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Continued Fractions of Algebraic Numbers

It is quite straightforward to find the expansion of a real root of a
polynomial equation. I instance this by detailing the case
f (X ) = X 3 − X 2 − X − 1. Then f has one real zero, say γ , where
plainly 1 < γ < 2 so c0 = 1 and clearly γ1 = 1/(γ − c0) is a zero of
the polynomial f1(X ) = −X 3f (X−1 + c0) = 2X 3 − 2X − 1. One sees
that bγ1c = 1, so c1 = 1 and f2(X ) = −X 3f1(X−1 + c1) is given by
X 3 − 4X 2 − 6X − 2. A little more subtly, it happens that bγ2c = 5 and
so f3(X ) = 7X 3 − 29X 2 − 11X − 1 and the integer part of its real zero
γ3 is c3 = 4. That yields . . .
The algorithm is now perfectly clear and it barely seems worth
continuing, particularly as a glance at the tabulation shows it will soon
become very unwieldy.

The quadratic case is different in the critical fact that the coefficients of
the fh are bounded.
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The quadratic case is different in the critical fact that the coefficients of
the fh are bounded.

α is the real zero of X3 −X2 −X − 1 :

α = [1, 1, 5, 4, 2, 305, 1, 8, 2, 1, 4, 6, 14, 3, 1, 13, . . .] .

h ch a
(h)
0 a

(h)
1 a

(h)
2 a

(h)
3

0 1 1 -1 -1 -1
1 1 2 0 -2 -1
2 5 1 -4 -6 -2
3 4 7 -29 -11 -1
4 2 61 -93 -55 -7
5 305 1 -305 -273 -61
6 1 83326 -92752 -610 -1
7 8 10037 -63864 -1 57226 -83326
8 2 2 89486 -7 48054 -1 77024 -10037
9 1 10 40413 -3 04592 -9 88862 -2 89486

10 4 5 42527 -15 23193 -28 16647 -10 40413
11 6 19 56361 -110 39105 -49 87131 -5 42527
12 14 52 99117 -738 30597 -241 75393 -19 56361
13 3 2704 31827 -10244 48687 -1487 32317 -52 99117
14 1 23698 74922 -10062 34890 -14094 37756 -2704 31827
15 13 3162 29551 -36877 17230 -61033 89876 -23698 74922

h ch xh yh x3
h − x2

hyh − xhy2
h − y3

h

0 1
1 0 1

0 1 1 1 -2
1 1 2 1 1
2 5 11 6 -7
3 4 46 25 61
4 2 103 56 -1
5 305 31461 17105 83326
6 1 31564 17161 -10037
7 8 2 83973 1 54393 2 89486
8 2 5 99510 3 25947 -10 40413
9 1 8 83483 4 80340 5 42527

10 4 41 33442 22 47307 -19 56361
11 6 256 84135 139 64182 52 99117
12 14 3637 11332 1977 45855 -2704 31827
13 3 11168 18131 6072 01747 23698 74922
14 1 14085 29463 8049 47602 -3162 29551
15 13

2

But wait, there’s more! Quite exceptionally, γ−17 = 56− 103γ−1 .
That’s the reason I chose the polynomial f .
Note that, indeed, y3

4 f (x4/y4) = −1.
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continuing, particularly as a glance at the tabulation shows it will soon
become very unwieldy. By the way, in real life, a fine idea applying
Vincent’s theorem makes it easy to produce many partial quotients at
once and to avoid detailing the intermediate polynomials fh .

The quadratic case is different in the critical fact that the coefficients of
the fh are bounded.
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Reduced Elements

Recall that α := (ω + P)/Q where the positive integer Q divides the
norm of its numerator. If ω is real, so if its discriminant t2 − 4n is
positive, then I distinguish ω from its conjugate ω by insisting that
ω > ω . One now says that α is reduced if and only if

α > 1 but − 1 < α < 0 .

If ω is imaginary then its discriminant t2 − 4n is negative. In this case
one says that α is reduced if and only if both

|α + α| ≤ 1 and αα ≥ 1 .

Exercise. Confirm that if a real α is reduced then necessarily both
2P + t and Q are positive and less than ω − ω .
All real quadratic irrationals have periodic continued fraction
expansions. I will show that a real α has a purely periodic expansion if
and only if it is reduced.
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The Continued Fraction Expansion

Write ah for the integer part bαhc of αh = (ω + Ph)/Qh ; so ah is a
partial quotient in the continued fraction expansionof αh , and the first
step in that expansion is

αh = (ω + Ph)/Qh = ah − (ω + Ph+1)/Q =: ah − ρ−h ;

here Ph+1 := ahQh − Ph − t . Then obviously −1 < ρ−h < 0 because
−ρ−h is the fractional part of αh . Now consider the conjugate step

ρ−h = (ω + Ph+1)/Qh = ah − (ω + Ph)/Qh = ah − αh .

One sees that ah , which began life as the integer part of αh , also is the
integer part of ρ−h and that also ρ−h is reduced. It now follows that
αh+1 := −1/ρ−h = (α + Ph+1)/Qh+1 , the next complete quotient in the
expansion, also is reduced.
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13

Thus the continued fraction expansion of a reduced quadratic irrational
α0 = (ω + P0)/Q0 is a sequence of steps h = 0, 1, 2, . . .

αh = (ω + Ph)/Qh = ah − (ω + Ph+1)/Qh = ah − ρ−h ;

where Ph + Ph+1 + t = ahQh ,
−QhQh+1 = (ω + Ph+1)(ω + Ph+1) ,

and αh+1 = (ω + Ph+1)/Qh+1 . Here all the complete quotients αh and
all the ‘remainders’ ρ−h are reduced quadratic irrationals.
Periodicity of the expansion. Because the αh are reduced it follows
that ω − ω bounds both 2Ph + t and Qh . Hence there are only finitely
many possibilities for a step in the expansion.
Exercise. For discussion: “Finitely many” only means “fewer than
infinity”. But here we have much more explicit information. Explain how
one might obtain a good upper bound on the length of an ideal cycle in
the domain Z[ω] , say as a function of D = t2 − 4n as D →∞ .



13

Thus the continued fraction expansion of a reduced quadratic irrational
α0 = (ω + P0)/Q0 is a sequence of steps h = 0, 1, 2, . . .

αh = (ω + Ph)/Qh = ah − (ω + Ph+1)/Qh = ah − ρ−h ;

where Ph + Ph+1 + t = ahQh ,
−QhQh+1 = (ω + Ph+1)(ω + Ph+1) ,

and αh+1 = (ω + Ph+1)/Qh+1 . Here all the complete quotients αh and
all the ‘remainders’ ρ−h are reduced quadratic irrationals.
Periodicity of the expansion. Because the αh are reduced it follows
that ω − ω bounds both 2Ph + t and Qh . Hence there are only finitely
many possibilities for a step in the expansion.
Exercise. For discussion: “Finitely many” only means “fewer than
infinity”. But here we have much more explicit information. Explain how
one might obtain a good upper bound on the length of an ideal cycle in
the domain Z[ω] , say as a function of D = t2 − 4n as D →∞ .



13

Thus the continued fraction expansion of a reduced quadratic irrational
α0 = (ω + P0)/Q0 is a sequence of steps h = 0, 1, 2, . . .

αh = (ω + Ph)/Qh = ah − (ω + Ph+1)/Qh = ah − ρ−h ;

where Ph + Ph+1 + t = ahQh ,
−QhQh+1 = (ω + Ph+1)(ω + Ph+1) ,

and αh+1 = (ω + Ph+1)/Qh+1 . Here all the complete quotients αh and
all the ‘remainders’ ρ−h are reduced quadratic irrationals.
Periodicity of the expansion. Because the αh are reduced it follows
that ω − ω bounds both 2Ph + t and Qh . Hence there are only finitely
many possibilities for a step in the expansion.
Exercise. For discussion: “Finitely many” only means “fewer than
infinity”. But here we have much more explicit information. Explain how
one might obtain a good upper bound on the length of an ideal cycle in
the domain Z[ω] , say as a function of D = t2 − 4n as D →∞ .



13

Thus the continued fraction expansion of a reduced quadratic irrational
α0 = (ω + P0)/Q0 is a sequence of steps h = 0, 1, 2, . . .

αh = (ω + Ph)/Qh = ah − (ω + Ph+1)/Qh = ah − ρ−h ;

where Ph + Ph+1 + t = ahQh ,
−QhQh+1 = (ω + Ph+1)(ω + Ph+1) ,

and αh+1 = (ω + Ph+1)/Qh+1 . Here all the complete quotients αh and
all the ‘remainders’ ρ−h are reduced quadratic irrationals.
Periodicity of the expansion. Because the αh are reduced it follows
that ω − ω bounds both 2Ph + t and Qh . Hence there are only finitely
many possibilities for a step in the expansion.
Exercise. For discussion: “Finitely many” only means “fewer than
infinity”. But here we have much more explicit information. Explain how
one might obtain a good upper bound on the length of an ideal cycle in
the domain Z[ω] , say as a function of D = t2 − 4n as D →∞ .



14

2 Alf van der Poorten

12 1 16401 9545
13 1 31082 18089
14 10 3 27221 1 90435
15 1 3 58303 2 08524
16 1 6 85524 3 98959
17 12 85 84591 49 96032
18 1 92 70115 53 94991
19 1 178 54706 103 91023
20 14

We can be confident that 17854706/10391023 approximates e− 1 to within 10−15

since the next partial quotient is 14.

h ph qh

(
√

46 +0)/1 = 6 −(−
√

46 +6)/1 0 6 1
(
√

46 +6)/10 = 1 −(−
√

46 +4)/10 1 7 1
(
√

46 +4)/3 = 3 −(−
√

46 +5)/3 2 27 4
(
√

46 +5)/7 = 1 −(−
√

46 +2)/7 3 34 5
(
√

46 +2)/6 = 1 −(−
√

46 +4)/6 4 61 9
(
√

46 +4)/5 = 2 −(−
√

46 +6)/5 5 156 23
(
√

46 +6)/2 = 6 −(−
√

46 +6)/2 6 997 147
(
√

46 +6)/5 = 2 −(−
√

46 +4)/5 7 2150 317
(
√

46 +4)/6 = 1 −(−
√

46 +2)/6 8 3147 464
(
√

46 +2)/7 = 1 −(−
√

46 +5)/7 9 5297 781
(
√

46 +5)/3 = 3 −(−
√

46 +4)/3 10 19038 2807
(
√

46 +4)/10 = 1 −(−
√

46 +6)/10 11 24335 3588
(
√

46 +6)/1 = 12 −(−
√

46 +6)/1 12

(a) The only cases with solutions yield 243352−46 ·35882 = 1, 1562−46 ·232 = 2,
and 72 − 46 · 12 = 3 as smallest nontrivial solutions. (b) General theory implies
that solutions to x2 − Dy2 = k with |k| <

√
D arise from convergents to

√
D .

Mind you, congruences mod 8 will anyhow show that none of other cases (except
perhaps k = −2 which is eliminated mod 16) is possible. Specifically, a square is
≡ 0, 1 or 4 mod 8. So, modulo 8, the only possibilities for x2 − 46y2 , with x ,
y relatively prime, are 3, 1 and ±2. The last two cases yield 2 or 6 mod 16. It
is, incidentally, the Hasse-Minkowski criterion that if a quadratic equation has no
solutions then this will be shown by the impossiblity of a congruence.

(iii) If α is the real zero of X3 −X2 −X − 1 then:

α = [1 , 1 , 5 , 4 , 2 , 305 , 1 , 8 , 2 , 1 , 4 , 6 , 14 , 3 , 1 , 13 , . . . ] .
c© Alf van der Poorten Prepared at April 30, 2007 [3:36 ]

Here we see ω =
√

46 displaying its period of length r = 12.

The
convergents ph/qh also computed here provide interesting identities
p2

h − 46q2
h = (−1)h+1Qh+1 .

In particular, 243352 − 46 · 35882 = 1.
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Summary of Continued Fractions of Algebraic Numbers

• There is a fine algorithm for computing the continued fraction
expansion of any algebraic number. However, the quadratic case
is particularly good because only finitely many different complete
quotients can occur; so the expansion is eventually periodic.

• I deal with an arbitrary real irrational quadratic integer ω but, in
truth, I intend primarily the two cases ω =

√
D with n = −D and

t = 0, so ∆ = t2 − 4n = 4D ; and, provided that D is 1 mod 4,
ω = 1

2(1 +
√

D) , with n = 1
4(1− D) and t = 1, so ∆ = D .

• Here D is a positive integer, not a square. Actually, it’s
psychologically good always to take D to be a discriminant, so 0
or 1 mod 4; then the basic choices for ω are 1

2

√
D or 1

2(1 +
√

D)
according to the parity of D . Now the discriminant always is D .

• The useful observation is that a complete quotient is part of the
period if and only if it is reduced.
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A Useful Conjugation

Suppose then that step r − 1 is the first step in the tableau to coincide
with an earlier step. Then the period length of the expansion of α is at
most r and, unless step r − 1 happens to coincide with step 0, the
expansion will have a pre-period.
However, consider the continued fraction expansion of ρ−r+1 , recalling
that it commences with the step

(ω + Pr )/Qr−1 = ar−1 − (ω + Pr−1)/Qr−1 = ar−1 − αr−1 .

Because this expansion is the conjugate of the continued fraction
expansion of α it too must have a period of length at most r . Because
it commences with the conjugate of the first repeated line and runs in
the direction opposite to that of the expansion of α , it must be purely
periodic. But any putative pre-period of α would provide a post-period
for ρ−r+1 ; which is absurd. So also the expansion of α is purely
periodic.



16

A Useful Conjugation

Suppose then that step r − 1 is the first step in the tableau to coincide
with an earlier step. Then the period length of the expansion of α is at
most r and, unless step r − 1 happens to coincide with step 0, the
expansion will have a pre-period.
However, consider the continued fraction expansion of ρ−r+1 , recalling
that it commences with the step

(ω + Pr )/Qr−1 = ar−1 − (ω + Pr−1)/Qr−1 = ar−1 − αr−1 .

Because this expansion is the conjugate of the continued fraction
expansion of α it too must have a period of length at most r . Because
it commences with the conjugate of the first repeated line and runs in
the direction opposite to that of the expansion of α , it must be purely
periodic. But any putative pre-period of α would provide a post-period
for ρ−r+1 ; which is absurd. So also the expansion of α is purely
periodic.



16

A Useful Conjugation

Suppose then that step r − 1 is the first step in the tableau to coincide
with an earlier step. Then the period length of the expansion of α is at
most r and, unless step r − 1 happens to coincide with step 0, the
expansion will have a pre-period.
However, consider the continued fraction expansion of ρ−r+1 , recalling
that it commences with the step

(ω + Pr )/Qr−1 = ar−1 − (ω + Pr−1)/Qr−1 = ar−1 − αr−1 .

Because this expansion is the conjugate of the continued fraction
expansion of α it too must have a period of length at most r . Because
it commences with the conjugate of the first repeated line and runs in
the direction opposite to that of the expansion of α , it must be purely
periodic. But any putative pre-period of α would provide a post-period
for ρ−r+1 ; which is absurd. So also the expansion of α is purely
periodic.



16

A Useful Conjugation

Suppose then that step r − 1 is the first step in the tableau to coincide
with an earlier step. Then the period length of the expansion of α is at
most r and, unless step r − 1 happens to coincide with step 0, the
expansion will have a pre-period.
However, consider the continued fraction expansion of ρ−r+1 , recalling
that it commences with the step

(ω + Pr )/Qr−1 = ar−1 − (ω + Pr−1)/Qr−1 = ar−1 − αr−1 .

Because this expansion is the conjugate of the continued fraction
expansion of α it too must have a period of length at most r . Because
it commences with the conjugate of the first repeated line and runs in
the direction opposite to that of the expansion of α , it must be purely
periodic. But any putative pre-period of α would provide a post-period
for ρ−r+1 ; which is absurd. So also the expansion of α is purely
periodic.



16

A Useful Conjugation

Suppose then that step r − 1 is the first step in the tableau to coincide
with an earlier step. Then the period length of the expansion of α is at
most r and, unless step r − 1 happens to coincide with step 0, the
expansion will have a pre-period.
However, consider the continued fraction expansion of ρ−r+1 , recalling
that it commences with the step

(ω + Pr )/Qr−1 = ar−1 − (ω + Pr−1)/Qr−1 = ar−1 − αr−1 .

Because this expansion is the conjugate of the continued fraction
expansion of α it too must have a period of length at most r . Because
it commences with the conjugate of the first repeated line and runs in
the direction opposite to that of the expansion of α , it must be purely
periodic. But any putative pre-period of α would provide a post-period
for ρ−r+1 ; which is absurd. So also the expansion of α is purely
periodic.



16

A Useful Conjugation

Suppose then that step r − 1 is the first step in the tableau to coincide
with an earlier step. Then the period length of the expansion of α is at
most r and, unless step r − 1 happens to coincide with step 0, the
expansion will have a pre-period.
However, consider the continued fraction expansion of ρ−r+1 , recalling
that it commences with the step

(ω + Pr )/Qr−1 = ar−1 − (ω + Pr−1)/Qr−1 = ar−1 − αr−1 .

Because this expansion is the conjugate of the continued fraction
expansion of α it too must have a period of length at most r . Because
it commences with the conjugate of the first repeated line and runs in
the direction opposite to that of the expansion of α , it must be purely
periodic. But any putative pre-period of α would provide a post-period
for ρ−r+1 ; which is absurd. So also the expansion of α is purely
periodic.



17

Denote the integer part of ω by A . In the particular case
α0 = ω + A− t , step 0 is

α0 = ω + A− t = 2A− t − (ω + A− t) = 2A− t − ρ0 ,

and is symmetric, that is unchanged under conjugation. Though it is
more natural to expand ω rather than ω + A− t , I choose the latter
because, unlike ω , it certainly is reduced.
Exercise. (a) Observe in the case ω + A− t that the period must have
a second symmetry (at any rate, if r > 1). Moreover, if r = 2k is even
then this symmetry is given by αk = ρ−k , and if r = 2k + 1 is odd then
ρ−k+1 = αk . (b) It has been compellingly put to me that “Mathematics
is the study of degeneracy”. The degenerate case here is r = 1. Does
claim (a) remain true in essence (as it certainly should) for r = 1? (c) It
is not true that every α has a symmetric period. Comment on the claim
that the period of α has symmetries if and only if either (i) there is an h
so that αh has integral trace or (ii) so that αhαh = −1. (d) Give
examples illustrating the various claims just now made.
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Vincent’s Theorem

As before, set α = [ a0 , a1 , a2 , . . . ] with its convergents denoted by
[ a0 , a1 , . . . , ah ] = ph/qh . Suppose I am a great supporter of the
number α = [ a0 , a1 , a2 , . . . ] , so much so that, no matter what
number, γ say, I am expanding, I always compute
γ = [ a0 , a1 , a2 , . . . , ah , γh ] using the wrong partial quotients. We
have γh+1 = −(qh−1γ − ph−1/(qhγ − ph) so we readily compute the
α-complete quotients. What more can one say about them?
Vincent (1836) reports that either the γh all lie in the left hand half of
the unit circle once h is sufficiently large, or γ = α and they all are
greater than 1. So what?
Suppose α is a real quadratic irrational and consider the αh , recalling
complete quotients all are greater than 1. But their conjugates αh are
the result of α having suffered the ignominy of being α-expanded.
Hence, once h is large enough, they all satisfy −1 < αh < 0. In other
words, the continued fraction process eventually reduces any real
quadratic irrational.
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The Dirichlet Box Principle

Let a and b be be positive integers. Then a > b means that if each of
a objects is placed in one of b boxes then there will be at least one box
containing more than one object. Accordingly, take the Q + 1 numbers
{0, α, 2α, . . . , Qα} , divide the unit interval into Q half-open intervals
[(i − 1)/Q, i/Q[ , and place jQ into the i -th interval if its fractional part
falls into that interval. Then there will be at least one interval containing
two of the numbers, proving that there is a positive integer q ≤ Q so
that the distance ‖qα‖ of qα to its nearest integer satisfies

‖qα‖ < 1/Q ; say |qα− p| < 1/q , some integer 0 < q ≤ Q .

I next apply the box principle and its useful corollary to showing that
real quadratic domains Z[ω] contain non-trivial units, to wit elements
different from ±1, yet dividing 1. The periodicity of the continued
fraction expansion of a real quadratic irrational is a corollary. The
argument is independent of our earlier one.



19

The Dirichlet Box Principle

Let a and b be be positive integers. Then a > b means that if each of
a objects is placed in one of b boxes then there will be at least one box
containing more than one object. Accordingly, take the Q + 1 numbers
{0, α, 2α, . . . , Qα} , divide the unit interval into Q half-open intervals
[(i − 1)/Q, i/Q[ , and place jQ into the i -th interval if its fractional part
falls into that interval. Then there will be at least one interval containing
two of the numbers, proving that there is a positive integer q ≤ Q so
that the distance ‖qα‖ of qα to its nearest integer satisfies

‖qα‖ < 1/Q ; say |qα− p| < 1/q , some integer 0 < q ≤ Q .

I next apply the box principle and its useful corollary to showing that
real quadratic domains Z[ω] contain non-trivial units, to wit elements
different from ±1, yet dividing 1. The periodicity of the continued
fraction expansion of a real quadratic irrational is a corollary. The
argument is independent of our earlier one.



19

The Dirichlet Box Principle

Let a and b be be positive integers. Then a > b means that if each of
a objects is placed in one of b boxes then there will be at least one box
containing more than one object. Accordingly, take the Q + 1 numbers
{0, α, 2α, . . . , Qα} , divide the unit interval into Q half-open intervals
[(i − 1)/Q, i/Q[ , and place jQ into the i -th interval if its fractional part
falls into that interval. Then there will be at least one interval containing
two of the numbers, proving that there is a positive integer q ≤ Q so
that the distance ‖qα‖ of qα to its nearest integer satisfies

‖qα‖ < 1/Q ; say |qα− p| < 1/q , some integer 0 < q ≤ Q .

I next apply the box principle and its useful corollary to showing that
real quadratic domains Z[ω] contain non-trivial units, to wit elements
different from ±1, yet dividing 1. The periodicity of the continued
fraction expansion of a real quadratic irrational is a corollary. The
argument is independent of our earlier one.



19

The Dirichlet Box Principle

Let a and b be be positive integers. Then a > b means that if each of
a objects is placed in one of b boxes then there will be at least one box
containing more than one object. Accordingly, take the Q + 1 numbers
{0, α, 2α, . . . , Qα} , divide the unit interval into Q half-open intervals
[(i − 1)/Q, i/Q[ , and place jQ into the i -th interval if its fractional part
falls into that interval. Then there will be at least one interval containing
two of the numbers, proving that there is a positive integer q ≤ Q so
that the distance ‖qα‖ of qα to its nearest integer satisfies

‖qα‖ < 1/Q ; say |qα− p| < 1/q , some integer 0 < q ≤ Q .

I next apply the box principle and its useful corollary to showing that
real quadratic domains Z[ω] contain non-trivial units, to wit elements
different from ±1, yet dividing 1. The periodicity of the continued
fraction expansion of a real quadratic irrational is a corollary. The
argument is independent of our earlier one.



19

The Dirichlet Box Principle

Let a and b be be positive integers. Then a > b means that if each of
a objects is placed in one of b boxes then there will be at least one box
containing more than one object. Accordingly, take the Q + 1 numbers
{0, α, 2α, . . . , Qα} , divide the unit interval into Q half-open intervals
[(i − 1)/Q, i/Q[ , and place jQ into the i -th interval if its fractional part
falls into that interval. Then there will be at least one interval containing
two of the numbers, proving that there is a positive integer q ≤ Q so
that the distance ‖qα‖ of qα to its nearest integer satisfies

‖qα‖ < 1/Q ; say |qα− p| < 1/q , some integer 0 < q ≤ Q .

I next apply the box principle and its useful corollary to showing that
real quadratic domains Z[ω] contain non-trivial units, to wit elements
different from ±1, yet dividing 1. The periodicity of the continued
fraction expansion of a real quadratic irrational is a corollary. The
argument is independent of our earlier one.



19

The Dirichlet Box Principle

Let a and b be be positive integers. Then a > b means that if each of
a objects is placed in one of b boxes then there will be at least one box
containing more than one object. Accordingly, take the Q + 1 numbers
{0, α, 2α, . . . , Qα} , divide the unit interval into Q half-open intervals
[(i − 1)/Q, i/Q[ , and place jQ into the i -th interval if its fractional part
falls into that interval. Then there will be at least one interval containing
two of the numbers, proving that there is a positive integer q ≤ Q so
that the distance ‖qα‖ of qα to its nearest integer satisfies

‖qα‖ < 1/Q ; say |qα− p| < 1/q , some integer 0 < q ≤ Q .

I next apply the box principle and its useful corollary to showing that
real quadratic domains Z[ω] contain non-trivial units, to wit elements
different from ±1, yet dividing 1. The periodicity of the continued
fraction expansion of a real quadratic irrational is a corollary. The
argument is independent of our earlier one.



19

The Dirichlet Box Principle

Let a and b be be positive integers. Then a > b means that if each of
a objects is placed in one of b boxes then there will be at least one box
containing more than one object. Accordingly, take the Q + 1 numbers
{0, α, 2α, . . . , Qα} , divide the unit interval into Q half-open intervals
[(i − 1)/Q, i/Q[ , and place jQ into the i -th interval if its fractional part
falls into that interval. Then there will be at least one interval containing
two of the numbers, proving that there is a positive integer q ≤ Q so
that the distance ‖qα‖ of qα to its nearest integer satisfies

‖qα‖ < 1/Q ; say |qα− p| < 1/q , some integer 0 < q ≤ Q .

I next apply the box principle and its useful corollary to showing that
real quadratic domains Z[ω] contain non-trivial units, to wit elements
different from ±1, yet dividing 1. The periodicity of the continued
fraction expansion of a real quadratic irrational is a corollary. The
argument is independent of our earlier one.



19

The Dirichlet Box Principle

Let a and b be be positive integers. Then a > b means that if each of
a objects is placed in one of b boxes then there will be at least one box
containing more than one object. Accordingly, take the Q + 1 numbers
{0, α, 2α, . . . , Qα} , divide the unit interval into Q half-open intervals
[(i − 1)/Q, i/Q[ , and place jQ into the i -th interval if its fractional part
falls into that interval. Then there will be at least one interval containing
two of the numbers, proving that there is a positive integer q ≤ Q so
that the distance ‖qα‖ of qα to its nearest integer satisfies

‖qα‖ < 1/Q ; say |qα− p| < 1/q , some integer 0 < q ≤ Q .

I next apply the box principle and its useful corollary to showing that
real quadratic domains Z[ω] contain non-trivial units, to wit elements
different from ±1, yet dividing 1. The periodicity of the continued
fraction expansion of a real quadratic irrational is a corollary. The
argument is independent of our earlier one.
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Units in Quadratic Orders

Given ω , it follows from Dirichlet’s argument that there are infinitely
many integers q so that ‖qω‖ = |qω − p| < 1/q ; whence, after
multiplying and because |ω − p/q| < 1, indeed so that
|(qω − p)(qω − p)| < (ω − ω) + 1.
Again by the box principle, it follows that there is some integer k ( with
|k | < (ω − ω) + 1 ) for which there are are infinitely many pairs of
integers (p, q) so that |(qω − p)(qω − p)| = k .
Yet again, it follows by the box principle that there is a pair of those
pairs so that p ≡ p′ and q ≡ q′ (mod k) .
Then (qω − p)(qω − p)

(q′ω − p′)(q′ω − p′)
= (x − ωy)(x − ωy) = ±1

displays a unit x − ωy ; here x and y are rational integers given by
x = (pp′ − tpq′ + nqq′)/k and y = (pq′ − p′q)/k .
Exercise. Verify (or correct) all these many remarks.
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The Matrix Correspondence: RL-Sequences

It is often convenient to set L =
`

1 0
1 1

´
, J =

`
0 1
1 0

´
, R =

`
1 1
0 1

´
, whence„

a 1
1 0

«
= RaJ = JLa.

Thus a continued fraction expansion [ a0 , a1 , a2 , . . . ] corresponds to
an RL-sequence Ra0La1Ra2La3Ra4 . . . . It follows, for example, that a
zero partial quotient is readily dealt with by the rule

[ . . . , a , 0 , b , . . . ] = [ . . . , a + b , . . . ].

Now let A =
`

2 0
0 1

´
, and A′ =

`
1 0
0 2

´
. Multiplying a continued fraction by

2 is the same as multiplying its RL-sequence on the left by A . But to
turn that product back into an RL-sequence we now need rules for
commuting the A through the sequence . . . .
Exercise. (a) Verify that AR = R2A , ALR = RLA′ , and AL2 = LA ; and
obtain the corresponding transition rules for A′ . (b) Define ω by
ω2 − ω − 15 = 0. Compute its cfe, and thence that of

√
61.
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Units and Periodicity

Given that x − ωy is a unit, the matrix N =
“

x −ny
y x−ty

”
has determinant

±1 and hence decomposes as a product

N =

„
w0 1
1 0

« „
w1 1
1 0

«
· · ·

„
wr 1
1 0

« „
0 1
1 0

«
;

there is a concluding zero because −ny > x .
Theorem. The continued fraction expansion of ω is given by

ω = [ w0 , w1 , . . . , wr , 0 ] = [ w0 , w1 , . . . , wr + w0 ].

Indeed, suppose [ w0 , w1 , . . . , wr , 0 ] = γ , in other words
γ = [ w0 , w1 , . . . , wr , 0 , γ ] . Then, by the correspondence,

γ ←→ N
„

γ 1
1 0

«
=

„
γx − ny x

γy + x − ty y

«
←→

γx − ny
γy + x − ty

.

Thus (γ2 − tγ + n)y = 0. Because the given unit is nontrivial we have
y 6= 0, so γ2 − tγ + n = 0, as I said we’d prove.
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We can also see that the period has a symmetry. If is plain that NJLt is
a symmetric matrix, so it follows that the word

w0 , w1 , . . . , wr−1 , wr + t

must be symmetric. In particular, w0 is bωc = A so wr = A− t . Note
that all this would not make sense if t were not a rational integer.
All this should explain why starting with ω + A− t does painlessly yield
a purely periodic expansion.
Exercise. Set α = (ω + P)/Q . (a) Given that x − ωy is a unit, find
integers a and b so that a− bα is a unit. (b) Next, construct the matrix
Nα =

“
a −nαb
b a−tαb

”
, with nα = αα and tα = α + α and decompose it as a

product of matrices
“

ci 1
0 1

”
. (c) Show that such decompositions do

yield a period for α , in complete analogy with the special case ω .
(d) For discussion. But this cannot be quite right. Distinguish the cases
α reduced and α not reduced in your discussion. What remarks are
needed to correct the argument?
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All this should explain why starting with ω + A− t does painlessly yield
a purely periodic expansion.
Exercise. Set α = (ω + P)/Q . (a) Given that x − ωy is a unit, find
integers a and b so that a− bα is a unit. (b) Next, construct the matrix
Nα =

“
a −nαb
b a−tαb

”
, with nα = αα and tα = α + α and decompose it as a

product of matrices
“

ci 1
0 1

”
. (c) Show that such decompositions do

yield a period for α , in complete analogy with the special case ω .
(d) For discussion. But this cannot be quite right. Distinguish the cases
α reduced and α not reduced in your discussion. What remarks are
needed to correct the argument?
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Periodicity and Units

Recall the recursion formula (ω + Ph+1)(ω + Ph+1) = −QhQh+1 and,
after my deciding to denote convergents by xh/yh rather than ph/qh ,
the distance formula

α1α2 · · ·αh+1 = (−1)h+1(xh − αyh)
−1.

Because αhαh = −Qh−1/Qh and Q0 = Q , taking norms yields

Qx2
h − (2P + t)xhyh +

`
(n + tP + P2)/Q

´
y2

h = (−1)h+1Qh+1 .

In particular, if α = ω , then P = 0 and Q = 1 so

(xh − ωyh)(xh − ωyh) = x2
h − txhyh + ny2

h = (−1)h+1Qh+1 .

But ω + A− t , and so of course also ω , is periodic with period r if and
only if Qr = 1, in which case x2

r−1 − txr−1yr−1 + ny2
r−1 = (−1)h+1 and

xr−1 − ωyr−1 is a unit.
Thus the existence of a unit in Z[ω] and the periodicity of the continued
fraction expansion of elements of Z[ω] are equivalent.
The equation (x − ωy)(x − ωy) = 1 is known as Pell’s equation.
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I start with

√
62 = ω = 7 + (ω − 7) := c0 + (ω − P1) , and Q0 = 1 .

At each step I obtain ch as the integer part of (ω + Ph)/Qh . This only needs the
knowledge that, in the present example, 7 < ω < 8. The principal computation
is the inversion of the surd (ω − Pn)/Qn−1 . Miraculously, it turns out that Qn−1

always divides ω2 − P 2
n = 62 − P 2

n so that the required reciprocal is of the shape
(ω + Pn)/Qn , with Qn an integer. My computer found it convenient to tabulate
the results as follows:

Ph Qh h ah xh yh x2
h − 62y2

h

0 1
1 0 1

0 1 0 7 7 1 -13
7 13 1 1 8 1 2
6 2 2 6 55 7 -13
6 13 3 1 63 8 1
7 1 4 14 937 119 -13
7 13 5 1 1000 127 2
6 2 6 6 6937 881 -13
6 13 7 1 7937 1008 1
7 1 8 14 118055 14993 -13
7 13 9 1 125992 16001 2
6 2 10 6 874007 110999 -13
6 13 11 1 999999 127000 1
7 1 12 14 14873993 1888999 -13
7 13 13 1 15873992 2015999 2

Thus

ω =
√

62 = [7, 1, 6, 1, 14, 1, 6, 1, 14, 1, 6, 1, 14, . . . . . . ] = [7, 1, 6, 1, 14 ] .

Typeset by AMS-TEX

Revision of April 30, 2007 [2:47 ]

Here ω =
√

62 and I display only the necessary data. We see that
ω = [7, 1, 6, 1, 14 ] and observe the fundamental unit η = 63− 8ω , and
its powers η2 = 7937− 1008ω , η3 = 999999− 127000ω .
Exercise. For discussion. Notice that α = 8− ω has norm 2 and
plainly α2 = 2η . But 7− ω has norm −13, yet . . . .
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Both 347986362−1891·8002332 = −3 and 353089816992−1891·8119689622 = −3.
In detail

h xh yh

(
√

1891 + 0 )/1 = 43−(−
√

1891 + 43 )/1 0 43 1
(
√

1891 + 43 )/42 = 2−(−
√

1891 + 41 )/42 1 87 2
(
√

1891 + 41 )/5 = 16−(−
√

1891 + 39 )/5 2 1435 33
(
√

1891 + 39 )/74 = 1−(−
√

1891 + 35 )/74 3 1522 35
(
√

1891 + 35 )/9 = 8−(−
√

1891 + 37 )/9 4 13611 313
(
√

1891 + 37 )/58 = 1−(−
√

1891 + 21 )/58 5 15133 348
(
√

1891 + 21 )/25 = 2−(−
√

1891 + 29 )/25 6 43877 1009
(
√

1891 + 29 )/42 = 1−(−
√

1891 + 13 )/42 7 59010 1357
(
√

1891 + 13 )/41 = 1−(−
√

1891 + 28 )/41 8 102887 2366
(
√

1891 + 28 )/27 = 2−(−
√

1891 + 26 )/27 9 264784 6089
(
√

1891 + 26 )/45 = 1−(−
√

1891 + 19 )/45 10 367671 8455
(
√

1891 + 19 )/34 = 1−(−
√

1891 + 15 )/34 11 632455 14544
(
√

1891 + 15 )/49 = 1−(−
√

1891 + 34 )/49 12 1000126 22999
(
√

1891 + 34 )/15 = 5−(−
√

1891 + 41 )/15 13 5633085 129539
(
√

1891 + 41 )/14 = 6−(−
√

1891 + 43 )/14 14 34798636 800233
(
√

1891 + 43 )/3 = 28−(−
√

1891 + 41 )/3 15 979994893 22536063
(
√

1891 + 41 )/70 = 1−(−
√

1891 + 29 )/70 16 1014793529 23336296
(
√

1891 + 29 )/15 = 4−(−
√

1891 + 31 )/15 17 5039169009 115881247
(
√

1891 + 31 )/62 = 1−(−
√

1891 + 31 )/62 18 6053962538 139217543
(
√

1891 + 31 )/15 = 4−(−
√

1891 + 29 )/15 19 29255019161 672751419
(
√

1891 + 29 )/70 = 1−(−
√

1891 + 41 )/70 20 35308981699 811968962
(
√

1891 + 41 )/3 = . . .
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Ideal Matrices

Consider integer matrices of the shape N =
“

x −ny
y x−ty

”
. Suppose that x

and y are relatively prime, that is gcd(x , y) = 1, and det N = ±Q , with
Q > 0. Then N has a decomposition

N =

„
x −ny
y x − ty

«
=

„
x x ′

y y ′

« „
1 P
0 Q

«
with integers x ′ , y ′ so that xy ′ − x ′y = ±1 and some integer
P ∈ [0, Q[ . In brief, the decomposition provides a correspondence
between N and an ideal 〈Q, ω + P〉Z of Z[ω] and, this is the point, this
correspondence preserves multiplication variously of the matrices and
of the ideals.
Remark. We identify matrices kM and M for nonzero constants k ;
therefore, when multiplying matrices (or ideals) the relevant product is
the one after removal of any common factor of all the elements.
Exercise. (a) Show that if Q is squarefree then it divides the matrix N2

if and only if Q divides the discriminant D = t2 − 4n . (b) Show that if
Q = 4 then 8 divides the matrix N3 .
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the one after removal of any common factor of all the elements.
Exercise. (a) Show that if Q is squarefree then it divides the matrix N2

if and only if Q divides the discriminant D = t2 − 4n . (b) Show that if
Q = 4 then 8 divides the matrix N3 .
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What’s going on here? The secret of the ideal matrices lies in this: if Q
is small relative to x and y , then one of the two factors of
x2 − txy + ny2 is small, say |x − ωy | is small. But then the beginning
of the continued fraction expansion of x/y must coincide with the initial
terms of the expansion of ω . Suppose h is maximal so that the
convergent xh/yh of ω also is a convergent of x/y . Then one may
think of the ideal 〈Qh+1, ω + Ph+1〉 as the reduced ideal nearest to the
unreduced ideal 〈Q, ω + P〉 . In fact if small is small enough,
2Q < ω − ω will certainly do, then necessarily x/y = xh/yh is a
convergent of ω . In that case the decomposition of N = Nh is precisely
the remark that the matrix correspondence yields

ω = [ a0 , a1 , . . . , ah , (ω + Ph+1)/Qh+1 ]←→„
xh −nyh
yh xh − tyh

«
=

„
a0 1
1 0

« „
a1 0
0 1

«
· · ·

„
ah 0
0 1

« „
1 Ph+1
0 Qh+1

«
.

Exercise. (a) Show that the product of any two ideal matrices is indeed
again a matrix of that special shape. (b) Explain why that is obvious
from the word ‘go’ without a laboured multiplication.
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Summary of Period Cycles

• We have seen several proofs that a reduced element is part of a
period, or cycle, of equivalent reduced elements. Because
elements (ω + P)/Q correspond to Z[ω]-ideals 〈Q, ω + P〉 we
may equally speak of ideal cycles.

• Moreover, a cycle provides a (nontrivial) unit in Z[ω] ; conversely a
unit induces a cycle.

• The distance formula entails that the fundamental unit, say
x − ωy , provides the length − log |x − ωy | of the cycle. This
quantity is also known as the regulator of Z[ω] .

• Roughly, this length is log r ; where r is the number of steps of the
period. However, r is usually quite large,

√
D log log D or so.

Hence, for serious D , units are mostly enormous, typically so big
that it is totally infeasible to display them in any naïve way.

• In brief, in practice one cannot detail the continuants xh and yh .
The ideal matrices truly are “ideal”, but only in the sense “unreal”
or “theoretical”.
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Continued Fractions in Function Fields

We suppose integer←polynomial, and positive←of positive degree.
To fix matters we suppose the polynomials to be defined over some
base field K and remark that K may be infinite or finite. A useful
analogue for the real numbers is provided by the field of Laurent series
K ((X−1)) , instanced by

F (X ) =
∞X

h=−m

f−hX−h .

The example series F has degree m and its integer part is the
polynomial bFc = fmX m + fm−1X m−1 + · · · + f1X + f0 .
Matters are exactly as or more simple than in the numerical case.
Convergents are quotients of relatively prime polynomials, continued
fractions converge to Laurent series; but x/y is a convergent of F if
and only if deg(x − Fy) < − deg y . One point that needs care is,
however, that the non-zero elements of K all are (trivial) units of K [X ] ;
this fact has some seemingly nontrivial consequences.
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Multlipying a Continued Fraction by a Constant

Multiplying a continued fraction [ a0 , a1 , a2 , a3 , . . . ] by x leads to
[ xa0 , a1/x , xa2 , a3/x , . . . ] , with the partial quotients alternately being
multiplied and divided. An elegant version of the rule is given by

x [ ya0 , xa1 , ya2 , xa3 , ya4 , . . . ] = y [ xa0 , ya1 , xa2 , ya3 , xa4 , . . . ].

Obviously, unless the multiplier is a unit, in general multiplication (or
division) leads to drastically inadmissible partial quotients seriously
polluting the expansion. There are tricks whereby one readies an
expansion for the multiplication, as in the ‘elegant version’ above. Or,
there is a fine algorithm of George Raney viewing the multiplication as
a multiple state transduction of an RL-sequence.
Even when the multiplication is by a unit, so that no great harm is done,
the effect on the expansion may be startling and unexpected. In the
case of quadratic irrationals over function fields, it creates the
possibility of quasi-periodicity, where a ‘wannabe’ period in fact
presents as a sequence of multiples of itself by k , k2 , k3 . . . . .
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there is a fine algorithm of George Raney viewing the multiplication as
a multiple state transduction of an RL-sequence.
Even when the multiplication is by a unit, so that no great harm is done,
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Continued Fraction of the Square Root of a Polynomial

Set Y 2 = D(X ) where D 6= � is a monic polynomial of degree 2g + 2.
Then we may write

D(X ) =
`
A(X )

´2
+ 4R(X ) ,

where A is the polynomial part of the square root Y of D and 4R , with
deg R ≤ g , is the remainder. We then take

Y = A
`
1 + 4R/A2´1/2

= A(X ) + c1X−1 + c2X−2 + · · ·

thereby viewing Y as an element of K ((X−1)) , Laurent series in the
variable 1/X . All this makes sense over any base field K not of
characteristic 2.
However, below I deal with the quadratic irrational function Z defined
by

C : Z 2 − AZ − R = 0 ; in effect Z = 1
2(Y + A) . (‡)

Then deg Z = deg A = g + 1, while its conjugate satisfies deg Z < 0;
so Z is reduced. Note that Z makes sense in arbitrary characteristic,
including characteristic two.
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Quadratic Function Fields

Let Z 2 − AZ − R = 0. In my remarks Z will denote a nontrivial
quadratic irrational function of polynomial trace A and polynomial norm
−R , with deg R < deg A . The word ‘irrational’ entails that Z not be a
polynomial; thus R 6= 0.
Exercise. Confirm that (a) given that Z is in K ((X−1)) , there plainly is
no loss of generality in supposing, as I have, that deg R < deg A ,
equivalently that A is the polynomial part of

√
D = Z − Z , the square

root of the discriminant D = A2 + 4A of Z ; and (b) given that
deg Z > deg Z , the conditions deg Z > 0 and deg Z < 0 precisely
affirm that Z is reduced, in the sense that the continued fraction
process on a quadratic irrational always leads to and then sustains the
conditions.
Technically, Z is a real quadratic irrational function; quadratic
irrationals defined over K [X ] but not in K ((X−1)) are imaginary.
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Periodicity of Continued Fraction Expansions

Set Zh = (Z + Ph)/Qh where Ph and Qh are polynomials with Qh
dividing the norm (Z + Ph)(Z + Ph) . Suppose that deg Zh > 0 and
deg Z h < 0; in other words that Zh is reduced.
Exercise (a) Show that Zh is reduced if and only if deg P ≤ g − 1 and
deg Qh ≤ g . (b) Denote the polynomial part of Zh by ah and set
Zh = ah − R−h . Parody the argument of the numerical case to confirm
that R−h and Zh+1 = −1/R−h are reduced.
It seems to follow that every reduced element must have a purely
periodic continued fraction expansion. And that’s true, but only sort of.
The trouble is that if the base field K is infinite then the period is
generically of infinite length. The point is that the box principle does not
apply because if K is infinite then there are infinitely many polynomials
of bounded degree.
More, it is then rare and unusual happenstance for any reduced Z0 to
have a periodic expansion.
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Continued Fractions and Hyperelliptic Curves

Note that (Z + Ph)(Z + Ph) = −R + APh + P2
h . Suppose ϑh denotes a

typical zero of Qh . Then the condition: Qh divides the norm
(Z + Ph)(Z + Ph) asserts that R(ϑh) =

`
A(ϑh) + Ph(ϑh)

´
Ph(ϑh) .

However, recall that Z defines the hyperelliptic curve

C : Z 2 − AZ − R = 0

of genus g . Of course C is defined over K but, for a moment
disregarding that, it follows from the remarks above that the point`
ϑh,−Ph(ϑh)

´
is a point on C . In general deg Qh = g and so has g

conjugate zeros. That gives a g -tuple of conjugate points on C , or in
proper language, a divisor defined over K on C .
Equivalence classes of divisors provide the points of the Jacobian of C .
So the continued fraction provides a sequence of points on Jac(C) . It
turns out that consecutive such points differ by some multiple (in fact
the degree of ah ) of the class of the divisor at infinity on C .
If g = 1, C is an elliptic curve equal to its Jacobian; and this story is
about honest-to-goodness points on the curve.
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Negative Continued Fraction Expansions

We get the sequence of positive partial quotients, say (ah) , of a simple
continued fraction expansion by underestimating each successive
complete quotient by its floor. We obtain

[ a0 , a1 , a2 , . . . ] = a0 +
1
a1 +

1
a2 +

1
a3 +

1
a4 + · · ·

If, instead, we define the partial quotients by overestimating the
successive complete quotients by their ceiling, we obtain a negative
continued fraction with partial quotients (bh) , say. But a negative
continued fraction is just a regular continued fraction with partial
quotients of alternating sign:

[ b0 , b1 , b2 , . . . ]− = b0−
1
b1 −

1
b2 −

1
b3 −

1
b4 − · · ·

= b0 +
1

b1 +

1
b2 +

1

b3 +

1
b4 + · · ·

= [ b0 , b1 , b2 , b3 , b4 , b5 , . . . ].

Here, b is a convenient shorthand for − b .
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Of course, formulas for evaluating continued fractions cannot know or
care about the signs of partial quotients. If one is so moved, one may
and can change the sign of all succeeding partial quotients in an
expansion by inserting the string 0 , 1 , 1 , 1 , 0 into an expansion.
Then, for example,
− π = [ 3 , 7 , 15 , 1 , 292 , 1 , . . . ]

= [ 3 , 0 , 1 , 1 , 1 , 0 , 7 , 15 , 1 , 292 , 1 , . . . ]

= [ 4 , 1 , 6 , 15 , 1 , 292 , 1 , . . . ].

Negation Lemma. The computation
−β = 0 + β

− 1/β = 1 + (β − 1)/β

β/(β − 1) = 1 + 1/(β − 1)

β − 1 = 1 + β

1/β = 0 + 1/β

β = · · ·

shows that −β = [ 0 , 1 , 1 , 1 , 0 , β ] .
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Exercise.
(a) Explain why obviously, and in what sense, inserting the word

0 , 1 , 1 , 1 , 0 must have the same effect as inserting the word
0 , 1 , 1 , 1 , 0 .

(b) Does the Negation Lemma above fully justify my insertion claim?
(c) Confirm the ‘zeros are eaten’ rule.

All this is enough to provide a succinct summary of just how a simple
continued fraction expansion [ a0 , a1 , a2 , . . . ] — thus with all the ah
positive, may be transformed into a negative continued fraction
[ b0 , b1 , b2 , b3 , b4 , . . . ] — where the entries have alternating sign. In
brief, one arranges the alternation of sign by alternately inserting the
appropriate word 0 , 1 , 1 , 1 , 0 or 0 , 1 , 1 , 1 , 0 between the first pair of
consecutive partial quotients that still have the same sign. One finds
that [ a0 , a1 , a2 , . . . ] becomes the negative continued fraction

[ a0 + 1 , 2 , 2 , . . . , 2| {z }
a1 − 1 times

, a2 + 2 , 2 , 2 , . . . , 2| {z }
a3 − 1 times

, a4 + 2 , . . . ]−
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An Astonishing Result

Set ω =
√

p where p ≡ 3 (mod 4) is a prime number other than 3
with the property that Q(ω) has class number h(p) = 1 (that is, the
reduced elements of Q(ω) make up just one cycle). Then
1
3(b0 + b1 + · · ·+ br−1)− r is the number h(−p) of distinct equivalence
classes of quadratic forms of discriminant −p; here b0 , b1 , . . . , br−1
is the (minimal) period of the negative continued fraction expansion of√

p + d√pe .
Even if one does not at all understand what the theorem alleges, the
incidental implication that the sum b0 + b1 + · · · + br−1 must be
divisible by 3 should astonish. Note that experimentally and
conjecturally a majority of primes p = 4n + 3 have class number 1.
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163 surprises

A reasonably hefty example may be helpful. Take p = 163 and set
ω =
√

163; note that bωc = 12. Then
(ω + 12)/1 = 24−(ω + 12)/1
(ω + 12)/19 = 1 −(ω + 7 )/19
(ω + 7 )/6 = 3 −(ω + 11)/6
(ω + 11)/7 = 3 −(ω + 10)/7
(ω + 10)/9 = 2 −(ω + 8 )/9
(ω + 8 )/11 = 1 −(ω + 3 )/11
(ω + 3 )/14 = 1 −(ω + 11)/14
(ω + 11)/3 = 7 −(ω + 10)/3
(ω + 10)/21 = 1 −(ω + 11)/21
(ω + 11)/2 = 11−(ω + 11)/2

So ω + 12 = [ 24 , 1 , 3 , 3 , 2 , 1 , 1 , 7 , 1 , 11 , 1 , 7 , 1 , 1 , 2 , 3 , 3 , 1 ] .
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Exercise. (a) List the reduced elements (ω + P)/Q , ω2 − 163 = 0, and
confirm that each reduced element appears in the computation above,
thus that h(163) = 1. (b) Compute the sum of the partial quotients of
the minimal period of the negative continued fraction expansion of
ω + 13 either indirectly from the expansion of ω + 12, or by direct
computation of the negative continued fraction (though that requires
adding two many partial quotients for my taste; there are eighteen 2 s).
Confirm that 3 divides the sum. (c) Deduce the class number
h(−163) .
Some 163 wonders. The polynomial f (x) = x2 + x + 41 has the
interesting property that f (0) = 41, f (1) = 43, f (2) = 47, f (3) = 53,
f (4) = 61, f (5) = 71, f (6) = 83, f (7) = 97, f (8) = 113, f (9) = 131,
f (10) = 151, . . . , with all those values prime.
Scientific American, April 1975, suggested that eπ

√
163 is an integer.
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Short Periods

The examples ω =
√

W 2 + 1 trivially provide

ω + |W | = 2|W | − (ω + |W |) ,

displaying period length 1.
Exercise. (a) Notice here that n = ωω = −1. Comment. (b) Is it
obvious, or even true, that the example gives all cases of period
length 1?
It turns out that the correct generalisation of our examples is the cases√

W 2 + c with c dividing 4W . I make the divisibility manifest by
considering the cases

√
a2W 2 + 4a .

Suppose we ask much more generally for polynomials F = F (W ) so
that, as W varies in Z , (i) F (W ) takes only integer values not all
square and (ii) the period length of the continued fraction expansion ofp
|F (W )| is bounded independent of W (thus in terms of F alone).
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obvious, or even true, that the example gives all cases of period
length 1?
It turns out that the correct generalisation of our examples is the cases√

W 2 + c with c dividing 4W . I make the divisibility manifest by
considering the cases

√
a2W 2 + 4a .

Suppose we ask much more generally for polynomials F = F (W ) so
that, as W varies in Z , (i) F (W ) takes only integer values not all
square and (ii) the period length of the continued fraction expansion ofp
|F (W )| is bounded independent of W (thus in terms of F alone).
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These questions, specifically (ii), were ingeniously asked and fully
answered by Andrzej Schinzel more than forty years ago†. In particular,
if F is of odd degree or if its leading coefficient is not a square then the
periods certainly are unbounded, so I presume from here on that F
has even degree and has square leading coefficient.
In that case, the period is bounded if and only if,

1 Y =
p

F (X ) has a periodic continued fraction expansion as a
quadratic irrational integral function in the domain Q[X , Y ] — such
expansions are only periodic by happenstance, because Q is
infinite; and

2 some resulting nontrivial unit of norm dividing 4 in the quadratic
function field Q(X , Y ) must have its coefficients in Z , that is, it
must be an element of Z[X , Y ] .

Roger Patterson and I have called this second criterion Schinzel’s
Condition. For F quadratic only Schinzel’s Condition is relevant.

†A. Schinzel, “On some problems of the arithmetical theory of continued fractions”,
Acta Arith. VI (1961), 393–413, and “On some problems of the arithmetical theory of
continued fractions II”, Acta Arith. VII (1962), 287–298.
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Exercise.
(a) Polynomials are usually thought of as having a basis consisting of

the powers 1, X , X 2 , X 3 , . . . of the variable. So if F (W ) takes
only integers values it seems natural to guess that all its coefficients
must be integral. Not. Just as good a basis is given by the running
powers 1, X , 1

2X (X + 1) , 1
6X (X + 1)(X + 2) , . . . so a polynomial

of degree s may have denominators as large as s! in its usual
presentation, yet take only integer values. Can one do better yet?

(b) Show that a polynomial F of even degree and with square leading
coefficient may be written uniquely as F = G2 + 4R , where the
‘remainder’ polynomial 4R has degree less than that of the
polynomial G .

(c) Hence, this is not at all dead obvious, show if F is not the square of
a polynomial, equivalently if R is not identically zero, that F (H)
cannot be a square for any sufficiently large integer H . It may here
be useful to recognise that a polynomial of degree s evaluated at
H has size of order Hs .
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Set Y 2 = F (W ) := a2W 2 + bW + c , not a square, and note that Y
has polynomial part aW + b/2a . Then the norm`

Y + (aW + b/2a)
´`

Y + (aW + b/2a)
´

= (b2 − 4a2c)/4a2

already displays a unit in R := Q[W , Y ] ; because any nonzero
constant divides 1 in Q[W ] .
Exercise. (a) Verify that there is a unit in R of norm dividing 4 if and
only if b2 − 4a2c divides both 16a4 and 4b2 . (b) Prove that b = 0 and
c

˛̨
4a in fact yields all the cases above (unless c and a2 share an odd

square factor). (i) Show that there is no loss of generality in presuming
that both a and b are even. (ii) Hence replace b ← 2b , and note the
the condition becomes b2 − a2c divides both 4a4 and 4b2 . (iii)
Confirm there is now no loss of generality whatsoever in assuming that
0 ≤ b < |a| . (iv) Show that each case with b 6= 0 corresponds to
cases with shorter period than the case b = 0. (v) If b = 0 deduce
there is a unit in R of norm dividing 4 for all integers W if and only if
c

˛̨
4a2 . (vi) Show that if p is an odd prime, then p times a short period

is always at least as long.
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Confirm there is now no loss of generality whatsoever in assuming that
0 ≤ b < |a| . (iv) Show that each case with b 6= 0 corresponds to
cases with shorter period than the case b = 0. (v) If b = 0 deduce
there is a unit in R of norm dividing 4 for all integers W if and only if
c

˛̨
4a2 . (vi) Show that if p is an odd prime, then p times a short period

is always at least as long.
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Set Y 2 = F (W ) := a2W 2 + bW + c , not a square, and note that Y
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Short Periods in Detail

I act on theory and experience by primarily considering ω given by
(i) ω2 − ω − 1

4(D − 1) = 0 or

(ii) ω2 − 1
4D = 0, according as D ≡ 1 or 0 mod 4;

(iii) ω2 − D = 0 otherwise.
I obtain the periods of

√
a2W 2 + 4c with c

˛̨
a , accordingly.

Indeed, presuming c
˛̨
a , we havep

a2W 2 − 4c + |aW | = [ 2 |aW | ,−1
2 |aW | /c ,

p
a2W 2 − 4c + |aW | ]

so, after a simple division by 2, if aW is odd

1
2(1 +

p
a2W 2 − 4c ) + 1

2(|aW | − 1) = [ |aW | ,− |aW | /c ] ,

and when aW is even, of course also

1
2

p
a2W 2 − 4c + 1

2 |aW | = [ |aW | ,− |aW | /c ] .
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In the latter case, aW even allows us to replace aW by 2aW and to
obtain p

a2W 2 − c + |aW | = [ 2 |aW | ,−2 |aW | /c ] ;

Therefore if c
˛̨
a and regardless of the parity of aWp
a2W 2 − 2c + |aW | = [ 2 |aW | ,− |aW | /c ] .

If c
˛̨
a but aW is odd, we may multiply by 2 to obtainp
a2W 2 − 4c+|aW | = [ 2 |aW | ,−1

2(1 + |aW | /c) , 2 ,−1
2(1 + |aW |),

2 |aW | /c ,−1
2(1 + |aW |) , 2 ,−1

2(1 + |aW | /c) ] ,

with rather longer period than one might naïvely have expected.
Confirming this is a nice exercise in multiplying by 2. One indirect way
to do that is to use the ideal matrices.
The cases detailed above are intended to be all those for which c

˛̨
a

and a2W 2 −mc , with m = 1, 2, or 4, is not divisible by a square.
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In the foregoing, I took −c rather than c to emphasise the manner in
which the sign influences the expansion.
Note that I do not observe the requirement that partial quotients should
be positive, both so as to leave some exercises and to make clear that
results that appear in the literature as dozens of distinct cases are in
fact just a handful of cases.
Exercise.
(a) I speak of “dozens of different cases”. If the computations above

were completed by rewriting each expansion so that it has only
positive partial quotients, and with c both positive and negative,
how many different cases do in fact result?

(b) Rewrite several of the cases.
(c) Suppose u = a + ωb is a unit of Z[ω] and set uh = a(h) + ωb(h) . If

both D = t2 − 4n and b = b(1) are odd show that b(k) is even if
and only if 3 divides k .

(d) [for negative readers] Redo (a) and (b) above so as to obtain partial
quotients with alternating sign.
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