Continued Fractions in Quadratic Fields

Alf van der Poorten

ceNTRe for Number Theory Research, Sydney

May, 2007 Algorithmic Number Theory, Turku

BC - before calculators, π was $22 / 7$ and AD - after decimals, π became

BC - before calculators, π was $22 / 7$ and AD - after decimals, π became $3.14159265 \ldots$. . Apparently, π is quite well approximated by the vulgar fraction 22/7 and some of us know that $355 / 113$ does a yet better job; it yields as many as seven correct decimal digits.

BC - before calculators, π was $22 / 7$ and AD - after decimals, π became $3.14159265 \ldots$. Apparently, π is quite well approximated by the vulgar fraction 22/7

BC - before calculators, π was $22 / 7$ and AD - after decimals, π became $3.14159265 \ldots$. Apparently, π is quite well approximated by the vulgar fraction $22 / 7$; and some of us know that $355 / 113$ does a yet better job; it yields as many as seven correct decimal digits.

The 'why this is so' of the matter is this. It happens that

and in particular that

Obviously, the notation takes too much space (I had to reduce the font size to fit all this on
one slide)

BC - before calculators, π was $22 / 7$ and AD - after decimals, π became $3.14159265 \ldots$. Apparently, π is quite well approximated by the vulgar fraction $22 / 7$; and some of us know that $355 / 113$ does a yet better job; it yields as many as seven correct decimal digits.
The 'why this is so' of the matter is this. It happens that

$$
\pi=3+\frac{1}{7+\frac{1}{15+\frac{1}{1+\frac{1}{292+\frac{1}{1+.}}}}}
$$

and in particular that

Obviously, the notation takes too much space (I had to reduce the font size to fit all this on one slide). We also note that truncations of continued fraction expansions seem to
provide very good rational approximations.

BC - before calculators, π was $22 / 7$ and AD - after decimals, π became $3.14159265 \ldots$. Apparently, π is quite well approximated by the vulgar fraction $22 / 7$; and some of us know that $355 / 113$ does a yet better job; it yields as many as seven correct decimal digits.
The 'why this is so' of the matter is this. It happens that

and in particular that

$$
22 / 7=3+\frac{1}{7} \text { while } 355 / 113=3+\frac{1}{7+\frac{1}{15+\frac{1}{1}}}
$$

Obviously, the notation takes too much space (I had to reduce the font size to fit all this on one slide).

BC - before calculators, π was $22 / 7$ and AD - after decimals, π became $3.14159265 \ldots$. Apparently, π is quite well approximated by the vulgar fraction $22 / 7$; and some of us know that $355 / 113$ does a yet better job; it yields as many as seven correct decimal digits.
The 'why this is so' of the matter is this. It happens that

and in particular that

$$
22 / 7=3+\frac{1}{7} \text { while } 355 / 113=3+\frac{1}{7+\frac{1}{15+\frac{1}{1}}}
$$

Obviously, the notation takes too much space (I had to reduce the font size to fit all this on one slide). We also note that truncations of continued fraction expansions seem to provide very good rational approximations.

Simple Continued Fractions

In the example continued fraction for π it is only the partial quotients 3 , $7,15, \ldots$ that matter so we may conveniently write $\pi=\lceil 3,7,15,1,292,1, \ldots]$.
In general, given an irrational number α, define its sequence $\left(\alpha_{h}\right)_{h \geq 0}$ of complete quotients by setting $\alpha_{0}=\alpha$, and $\alpha_{h+1}=1 /\left(\alpha_{h}-a_{h}\right)$.

Simple Continued Fractions

In the example continued fraction for π it is only the partial quotients 3, $7,15, \ldots$ that matter so we may conveniently write $\pi=[3,7,15,1,292,1, \ldots]$.

Simple Continued Fractions

In the example continued fraction for π it is only the partial quotients 3 , $7,15, \ldots$ that matter so we may conveniently write
$\pi=[3,7,15,1,292,1, \ldots]$.
In general, given an irrational number α, define its sequence $\left(\alpha_{h}\right)_{h \geq 0}$
of complete quotients by setting $\alpha_{0}=\alpha$, and $\alpha_{h+1}=1 /\left(\alpha_{h}-a_{h}\right)$.

Simple Continued Fractions

In the example continued fraction for π it is only the partial quotients 3 , $7,15, \ldots$ that matter so we may conveniently write
$\pi=[3,7,15,1,292,1, \ldots]$.
In general, given an irrational number α, define its sequence $\left(\alpha_{h}\right)_{h \geq 0}$
of complete quotients by setting $\alpha_{0}=\alpha$, and $\alpha_{h+1}=1 /\left(\alpha_{h}-a_{h}\right)$. Here, the sequence $\left(a_{h}\right)_{h>0}$ of partial quotients of α is given by $a_{h}=\left\lfloor\alpha_{h}\right\rfloor$ where \rfloor denotes the integer part of its argument.

Simple Continued Fractions

In the example continued fraction for π it is only the partial quotients 3, $7,15, \ldots$ that matter so we may conveniently write
$\pi=[3,7,15,1,292,1, \ldots]$.
In general, given an irrational number α, define its sequence $\left(\alpha_{h}\right)_{h \geq 0}$ of complete quotients by setting $\alpha_{0}=\alpha$, and $\alpha_{h+1}=1 /\left(\alpha_{h}-a_{h}\right)$. Here, the sequence $\left(a_{h}\right)_{h>0}$ of partial quotients of α is given by $a_{h}=\left\lfloor\alpha_{h}\right\rfloor$ where \rfloor denotes the integer part of its argument. The truncations $\left[a_{0}, a_{1}, \ldots, a_{h}\right.$] plainly are rational numbers p_{h} / q_{h}.

Simple Continued Fractions

In the example continued fraction for π it is only the partial quotients 3 , $7,15, \ldots$ that matter so we may conveniently write
$\pi=[3,7,15,1,292,1, \ldots]$.
In general, given an irrational number α, define its sequence $\left(\alpha_{h}\right)_{n \geq 0}$ of complete quotients by setting $\alpha_{0}=\alpha$, and $\alpha_{h+1}=1 /\left(\alpha_{h}-a_{h}\right)$. Here, the sequence $\left(a_{h}\right)_{h>0}$ of partial quotients of α is given by $a_{h}=\left\lfloor\alpha_{h}\right\rfloor$ where \rfloor denotes the integer part of its argument. The truncations $\left[a_{0}, a_{1}, \ldots, a_{h}\right]$ plainly are rational numbers p_{h} / q_{h}. Indeed, the continuants p_{h} and q_{h} are given by the matrix identities $h=0,1,2, \ldots$

$$
\left(\begin{array}{cc}
a_{0} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
a_{1} & 1 \\
1 & 0
\end{array}\right) \cdots\left(\begin{array}{cc}
a_{h-1} & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
p_{h-1} & p_{h-2} \\
q_{h-1} & q_{h-2}
\end{array}\right) .
$$

This follows readily by induction on h and the definition
$\left.a_{0}, a_{1}, \ldots, a_{n}\right]=a_{0}+1 /\left[a_{1}\right.$

Simple Continued Fractions

In the example continued fraction for π it is only the partial quotients 3 , $7,15, \ldots$ that matter so we may conveniently write
$\pi=[3,7,15,1,292,1, \ldots]$.
In general, given an irrational number α, define its sequence $\left(\alpha_{h}\right)_{n \geq 0}$ of complete quotients by setting $\alpha_{0}=\alpha$, and $\alpha_{h+1}=1 /\left(\alpha_{h}-a_{h}\right)$. Here, the sequence $\left(a_{h}\right)_{h>0}$ of partial quotients of α is given by $a_{h}=\left\lfloor\alpha_{h}\right\rfloor$ where \rfloor denotes the integer part of its argument. The truncations $\left[a_{0}, a_{1}, \ldots, a_{h}\right.$] plainly are rational numbers p_{h} / q_{h}. Indeed, the continuants p_{h} and q_{h} are given by the matrix identities $h=0,1,2, \ldots$

$$
\left(\begin{array}{cc}
a_{0} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
a_{1} & 1 \\
1 & 0
\end{array}\right) \cdots\left(\begin{array}{cc}
a_{h-1} & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
p_{h-1} & p_{h-2} \\
q_{h-1} & q_{h-2}
\end{array}\right) .
$$

This follows readily by induction on h and the definition

$$
\left[a_{0}, a_{1}, \ldots, a_{h}\right]=a_{0}+1 /\left[a_{1}, \ldots, a_{n}\right], \quad\left[a_{0}\right]=a_{0} .
$$

Taking determinants in the matrix correspondence immediately implies that the convergents p_{h} / q_{h} satisfy

$$
p_{h} / q_{h}-p_{h-1} / q_{h-1}=(-1)^{h-1} / q_{h-1} q_{h}
$$

Taking determinants in the matrix correspondence immediately implies that the convergents p_{h} / q_{h} satisfy

$$
\begin{gathered}
p_{h} / q_{h}-p_{h-1} / q_{h-1}=(-1)^{h-1} / q_{h-1} q_{h} \\
p_{h} / q_{h}=a_{0}+\sum_{n=1}^{h-1}(-1)^{n-1} / q_{n-1} q_{n}
\end{gathered}
$$

and so
showing that the convergents do converge to a limit, namely

Taking determinants in the matrix correspondence immediately implies that the convergents p_{h} / q_{h} satisfy

$$
\begin{gathered}
p_{h} / q_{h}-p_{h-1} / q_{h-1}=(-1)^{h-1} / q_{h-1} q_{h} \\
p_{h} / q_{h}=a_{0}+\sum_{n=1}^{h-1}(-1)^{n-1} / q_{n-1} q_{n}
\end{gathered}
$$

and so
showing that the convergents do converge to a limit, namely

$$
\alpha=a_{0}+\sum_{h=1}^{\infty}(-1)^{h-1} / q_{h-1} q_{h} ;
$$

and also that 0
in particular

Taking determinants in the matrix correspondence immediately implies that the convergents p_{h} / q_{h} satisfy

$$
p_{h} / q_{h}-p_{h-1} / q_{h-1}=(-1)^{h-1} / q_{h-1} q_{h},
$$

and so

$$
p_{h} / q_{n}=a_{0}+\sum_{n=1}^{n-1}(-1)^{n-1} / q_{n-1} q_{n},
$$

showing that the convergents do converge to a limit, namely

$$
\alpha=a_{0}+\sum_{h=1}^{\infty}(-1)^{h-1} / q_{h-1} q_{h} ;
$$

and also that $0<(-1)^{h-1}\left(\alpha-p_{h} / q_{h}\right)<1 / q_{h} q_{h+1}<1 / a_{h+1} q_{h}^{2}$.
in particular

Taking determinants in the matrix correspondence immediately implies that the convergents p_{h} / q_{h} satisfy

$$
p_{h} / q_{h}-p_{h-1} / q_{h-1}=(-1)^{h-1} / q_{h-1} q_{h},
$$

and so

$$
p_{h} / q_{n}=a_{0}+\sum_{n=1}^{n-1}(-1)^{n-1} / q_{n-1} q_{n},
$$

showing that the convergents do converge to a limit, namely

$$
\alpha=a_{0}+\sum_{h=1}^{\infty}(-1)^{h-1} / q_{h-1} q_{h} ;
$$

and also that $0<(-1)^{h-1}\left(\alpha-p_{h} / q_{h}\right)<1 / q_{h} q_{h+1}<1 / a_{h+1} q_{h}^{2}$. Thus, in particular

$$
|\pi-22 / 7|<1 / 15 \cdot 7^{2} \text { and }|\pi-355 / 113|<1 / 292 \cdot 113^{2} .
$$

Taking determinants in the matrix correspondence immediately implies that the convergents p_{h} / q_{h} satisfy

$$
p_{h} / q_{h}-p_{h-1} / q_{h-1}=(-1)^{h-1} / q_{h-1} q_{h},
$$

and so

$$
p_{h} / q_{n}=a_{0}+\sum_{n=1}^{n-1}(-1)^{n-1} / q_{n-1} q_{n},
$$

showing that the convergents do converge to a limit, namely

$$
\alpha=a_{0}+\sum_{h=1}^{\infty}(-1)^{h-1} / q_{h-1} q_{h} ;
$$

and also that $0<(-1)^{h-1}\left(\alpha-p_{h} / q_{h}\right)<1 / q_{h} q_{h+1}<1 / a_{h+1} q_{n}^{2}$. Thus, in particular

$$
|\pi-22 / 7|<1 / 15 \cdot 7^{2} \text { and }|\pi-355 / 113|<1 / 292 \cdot 113^{2} .
$$

Conversely, suppose $q_{h-1}<q<q_{h}$.
\square

Taking determinants in the matrix correspondence immediately implies that the convergents p_{h} / q_{h} satisfy

$$
p_{h} / q_{h}-p_{h-1} / q_{h-1}=(-1)^{h-1} / q_{h-1} q_{h},
$$

and so

$$
p_{h} / q_{h}=a_{0}+\sum_{n=1}^{n-1}(-1)^{n-1} / q_{n-1} q_{n},
$$

showing that the convergents do converge to a limit, namely

$$
\alpha=a_{0}+\sum_{h=1}^{\infty}(-1)^{h-1} / q_{h-1} q_{h} ;
$$

and also that $0<(-1)^{h-1}\left(\alpha-p_{h} / q_{h}\right)<1 / q_{h} q_{h+1}<1 / a_{h+1} q_{n}^{2}$. Thus, in particular

$$
|\pi-22 / 7|<1 / 15 \cdot 7^{2} \quad \text { and } \quad|\pi-355 / 113|<1 / 292 \cdot 113^{2} .
$$

Conversely, suppose $q_{h-1}<q<q_{h}$. Because $\operatorname{gcd}\left(q_{h-1}, q_{h}\right)=1$ there are integers a and b, with $a b<0$, so that $q=a q_{h-1}+b q_{h}$. Set $p=a p_{h-1}+b p_{h}$. Then $q \alpha-p$ is $a\left(q_{h-1} \alpha-p_{h-1}\right)+b\left(q_{h} \alpha-p_{h}\right)$ and, since the two terms have the same sign, each must be smaller than $|q \alpha-p|$ in absolute value.

Taking determinants in the matrix correspondence immediately implies that the convergents p_{h} / q_{h} satisfy

$$
p_{h} / q_{h}-p_{h-1} / q_{h-1}=(-1)^{h-1} / q_{h-1} q_{h},
$$

and so

$$
p_{h} / q_{n}=a_{0}+\sum_{n=1}^{n-1}(-1)^{n-1} / q_{n-1} q_{n},
$$

showing that the convergents do converge to a limit, namely

$$
\alpha=a_{0}+\sum_{h=1}^{\infty}(-1)^{h-1} / q_{h-1} q_{h} ;
$$

and also that $0<(-1)^{h-1}\left(\alpha-p_{h} / q_{h}\right)<1 / q_{h} q_{h+1}<1 / a_{h+1} q_{n}^{2}$. Thus, in particular

$$
|\pi-22 / 7|<1 / 15 \cdot 7^{2} \text { and }|\pi-355 / 113|<1 / 292 \cdot 113^{2} .
$$

Conversely, suppose $q_{h-1}<q<q_{h}$. Because $\operatorname{gcd}\left(q_{h-1}, q_{h}\right)=1$ there are integers a and b, with $a b<0$, so that $q=a q_{h-1}+b q_{h}$. Set $p=a p_{h-1}+b p_{h}$. Then $q \alpha-p$ is $a\left(q_{h-1} \alpha-p_{h-1}\right)+b\left(q_{h} \alpha-p_{h}\right)$ and, since the two terms have the same sign, each must be smaller than $|q \alpha-p|$ in absolute value. Thus convergents yield locally best approximations and it follows that certainly $|q \alpha-p|>1 / 2 q$.

The Matrix Correspondence

The principle underlying the matrix correspondence is the simple fact that a unimodular integer matrix (here, of determinant ± 1) has a decomposition as a finite product of integer matrices $\left(\begin{array}{ll}a & 1 \\ 1 & 0\end{array}\right)$;
product certainly is unique if all the integers are positive.
Example. By transposing the correspondence it follows that

The Matrix Correspondence

The principle underlying the matrix correspondence is the simple fact that a unimodular integer matrix (here, of determinant ± 1) has a decomposition as a finite product of integer matrices $\left(\begin{array}{ll}a & 1 \\ 1 & 0\end{array}\right)$; this product certainly is unique if all the integers are positive.
Example. By transposing the correspondence it follows that

By the way, most of my remarks are formal

The Matrix Correspondence

The principle underlying the matrix correspondence is the simple fact that a unimodular integer matrix (here, of determinant ± 1) has a decomposition as a finite product of integer matrices $\left(\begin{array}{cc}a & 1 \\ 1 & 0\end{array}\right)$; this product certainly is unique if all the integers are positive.
Example. By transposing the correspondence it follows that

$$
\begin{aligned}
& {\left[a_{h}, a_{h-1}, \ldots, a_{1}\right]=q_{h} / q_{h-1}} \\
& \quad \text { and }\left[a_{h}, a_{h-1}, \ldots, a_{1}, a_{0}\right]=p_{h} / q_{h-1}
\end{aligned}
$$

By the way, most of my remarks are formal: Thus,
replaced by polynomial

The Matrix Correspondence

The principle underlying the matrix correspondence is the simple fact that a unimodular integer matrix (here, of determinant ± 1) has a decomposition as a finite product of integer matrices $\left(\begin{array}{cc}a & 1 \\ 1 & 0\end{array}\right)$; this product certainly is unique if all the integers are positive.
Example. By transposing the correspondence it follows that

$$
\begin{aligned}
& {\left[a_{h}, a_{h-1}, \ldots, a_{1}\right]=q_{h} / q_{h-1}} \\
& \quad \text { and }\left[a_{h}, a_{h-1}, \ldots, a_{1}, a_{0}\right]=p_{h} / q_{h-1} .
\end{aligned}
$$

By the way, most of my remarks are formal:

The Matrix Correspondence

The principle underlying the matrix correspondence is the simple fact that a unimodular integer matrix (here, of determinant ± 1) has a decomposition as a finite product of integer matrices $\left(\begin{array}{cc}a & 1 \\ 1 & 0\end{array}\right)$; this product certainly is unique if all the integers are positive.
Example. By transposing the correspondence it follows that

$$
\begin{aligned}
& {\left[a_{h}, a_{h-1}, \ldots, a_{1}\right]=q_{h} / q_{h-1}} \\
& \quad \quad \text { and }\left[a_{h}, a_{h-1}, \ldots, a_{1}, a_{0}\right]=p_{h} / q_{h-1}
\end{aligned}
$$

By the way, most of my remarks are formal: Thus, integer may be replaced by polynomial;

The Matrix Correspondence

The principle underlying the matrix correspondence is the simple fact that a unimodular integer matrix (here, of determinant ± 1) has a decomposition as a finite product of integer matrices $\left(\begin{array}{cc}a & 1 \\ 1 & 0\end{array}\right)$; this product certainly is unique if all the integers are positive.
Example. By transposing the correspondence it follows that

$$
\begin{aligned}
& {\left[a_{h}, a_{h-1}, \ldots, a_{1}\right]=q_{h} / q_{h-1}} \\
& \quad \text { and }\left[a_{h}, a_{h-1}, \ldots, a_{1}, a_{0}\right]=p_{h} / q_{h-1} .
\end{aligned}
$$

By the way, most of my remarks are formal: Thus, integer may be replaced by polynomial; and positive becomes of positive degree.

The Matrix Correspondence

The principle underlying the matrix correspondence is the simple fact that a unimodular integer matrix (here, of determinant ± 1) has a decomposition as a finite product of integer matrices $\left(\begin{array}{ll}a & 1 \\ 1 & 0\end{array}\right)$; this product certainly is unique if all the integers are positive.
Example. By transposing the correspondence it follows that

$$
\begin{aligned}
& {\left[a_{h}, a_{h-1}, \ldots, a_{1}\right]=q_{h} / q_{h-1}} \\
& \quad \quad \text { and }\left[a_{h}, a_{h-1}, \ldots, a_{1}, a_{0}\right]=p_{h} / q_{h-1} .
\end{aligned}
$$

By the way, most of my remarks are formal: Thus, integer may be replaced by polynomial; and positive becomes of positive degree.
Question. Is it a surprise that a continued fraction expansion with partial quotients in $K[X]$ converges to a Laurent series in $K\left(\left(X^{-1}\right)\right)$?

Distance

With the standard notation $p_{h} / q_{h}=\left[a_{0}, a_{1}, \ldots, a_{h}\right]$, and because $\alpha=\left[a_{0}, a_{1}, \ldots, a_{h}, \alpha_{h+1}\right]$, we have

$$
\left(\begin{array}{ll}
p_{h} & p_{h-1} \\
q_{h} & q_{h-1}
\end{array}\right)\left(\begin{array}{cc}
\alpha_{h+1} & 1 \\
1 & 0
\end{array}\right) \longleftrightarrow \frac{\alpha_{h+1} p_{h}+p_{h-1}}{\alpha_{h+1} q_{h}+q_{h-1}}=\alpha
$$

So, inverting the first matrix,

Distance

With the standard notation $p_{h} / q_{h}=\left[a_{0}, a_{1}, \ldots, a_{h}\right]$, and because $\alpha=\left[a_{0}, a_{1}, \ldots, a_{h}, \alpha_{h+1}\right]$, we have

$$
\left(\begin{array}{ll}
p_{h} & p_{h-1} \\
q_{h} & q_{h-1}
\end{array}\right)\left(\begin{array}{cc}
\alpha_{h+1} & 1 \\
1 & 0
\end{array}\right) \longleftrightarrow \frac{\alpha_{h+1} p_{h}+p_{h-1}}{\alpha_{h+1} q_{h}+q_{h-1}}=\alpha
$$

So, inverting the first matrix,

$$
\alpha_{h+1}=-\frac{q_{h-1} \alpha-p_{h-1}}{q_{h} \alpha-p_{h}} .
$$

The Distance Formula. It follows immediately that

Here, I recall $p_{-1}=1, q_{-1}=0$. It turns out that one may usefully think of $|\log | p_{h}-\alpha q_{h}| |$ as measuring a weighted distance that the continued fraction has traversed in moving from α to α_{h+}

Distance

With the standard notation $p_{h} / q_{h}=\left[a_{0}, a_{1}, \ldots, a_{h}\right]$, and because $\alpha=\left[a_{0}, a_{1}, \ldots, a_{h}, \alpha_{h+1}\right]$, we have

$$
\left(\begin{array}{ll}
p_{h} & p_{h-1} \\
q_{h} & q_{h-1}
\end{array}\right)\left(\begin{array}{cc}
\alpha_{h+1} & 1 \\
1 & 0
\end{array}\right) \longleftrightarrow \frac{\alpha_{h+1} p_{h}+p_{h-1}}{\alpha_{h+1} q_{h}+q_{h-1}}=\alpha
$$

So, inverting the first matrix,

$$
\alpha_{h+1}=-\frac{q_{h-1} \alpha-p_{h-1}}{q_{h} \alpha-p_{h}} .
$$

The Distance Formula. It follows immediately that

$$
\alpha_{1} \alpha_{2} \cdots \alpha_{h+1}=(-1)^{h+1}\left(p_{h}-\alpha q_{h}\right)^{-1}
$$

Here, I recall $p_{-1}=1, q_{-1}=0$.
continued fraction has traversed in moving from α to α_{h+1}.

Distance

With the standard notation $p_{h} / q_{h}=\left[a_{0}, a_{1}, \ldots, a_{h}\right]$, and because $\alpha=\left[a_{0}, a_{1}, \ldots, a_{h}, \alpha_{h+1}\right]$, we have

$$
\left(\begin{array}{ll}
p_{h} & p_{h-1} \\
q_{h} & q_{h-1}
\end{array}\right)\left(\begin{array}{cc}
\alpha_{h+1} & 1 \\
1 & 0
\end{array}\right) \longleftrightarrow \frac{\alpha_{h+1} p_{h}+p_{h-1}}{\alpha_{h+1} q_{h}+q_{h-1}}=\alpha
$$

So, inverting the first matrix,

$$
\alpha_{h+1}=-\frac{q_{h-1} \alpha-p_{h-1}}{q_{h} \alpha-p_{h}} .
$$

The Distance Formula. It follows immediately that

$$
\alpha_{1} \alpha_{2} \cdots \alpha_{h+1}=(-1)^{h+1}\left(p_{h}-\alpha q_{h}\right)^{-1} .
$$

Here, I recall $p_{-1}=1, q_{-1}=0$. It turns out that one may usefully think of $|\log | p_{h}-\alpha q_{h}| |$ as measuring a weighted distance that the continued fraction has traversed in moving from α to α_{h+1}.

Linear Fractional Transformations

The matrix correspondence in effect identifies 2×2 matrices $\left(\begin{array}{c}r \\ t \\ t \\ u\end{array}\right)$ with linear fractional transformations $\alpha \mapsto(r \alpha+s) /(t \alpha+u)$.

Linear Fractional Transformations

The matrix correspondence in effect identifies 2×2 matrices $\left(\begin{array}{c}r \\ t \\ t \\ u\end{array}\right)$ with linear fractional transformations $\alpha \mapsto(r \alpha+s) /(t \alpha+u)$. Thus, for arbitrary $k \neq 0$, one should identify matrices $k M$ and M.

Linear Fractional Transformations

The matrix correspondence in effect identifies 2×2 matrices $\left(\begin{array}{cc}r & s \\ t \\ u\end{array}\right)$ with linear fractional transformations $\alpha \mapsto(r \alpha+s) /(t \alpha+u)$. Thus, for arbitrary $k \neq 0$, one should identify matrices $k M$ and M. Then any sequence $\binom{A_{h} B_{h}}{C_{h} D_{h}}$ of nonsingular 2×2 matrices so that A_{h} / C_{h} and B_{h} / D_{h} have a common limit yields an expansion.

Linear Fractional Transformations

The matrix correspondence in effect identifies 2×2 matrices $\left(\begin{array}{c}r \\ r \\ t \\ u\end{array}\right)$ with linear fractional transformations $\alpha \mapsto(r \alpha+s) /(t \alpha+u)$. Thus, for arbitrary $k \neq 0$, one should identify matrices $k M$ and M. Then any sequence $\binom{A_{h} B_{h}}{C_{h} D_{h}}$ of nonsingular 2×2 matrices so that A_{h} / C_{h} and B_{h} / D_{h} have a common limit yields an expansion. For example, if

$$
\left(\begin{array}{ll}
A_{h} & B_{h} \\
C_{h} & D_{h}
\end{array}\right)=\prod_{m=0}^{h}\left(\begin{array}{cc}
2 m+1+z & 2 m+1 \\
2 m+1 & 2 m+1-z
\end{array}\right),
$$

then $A_{h} D_{h}-B_{h} C_{h}=(-1)^{h+1} z^{2(h+1)}$ shows that the formal power series A_{h} / C_{h} and B_{h} / D_{h} coincide in the limit.

The matrix correspondence in effect identifies 2×2 matrices $\left(\begin{array}{c}r \\ t \\ t \\ u\end{array}\right)$ with linear fractional transformations $\alpha \mapsto(r \alpha+s) /(t \alpha+u)$. Thus, for arbitrary $k \neq 0$, one should identify matrices $k M$ and M. Then any sequence $\binom{A_{h} B_{h}}{C_{h} D_{h}}$ of nonsingular 2×2 matrices so that A_{h} / C_{h} and B_{h} / D_{h} have a common limit yields an expansion. For example, if

$$
\left(\begin{array}{ll}
A_{h} & B_{h} \\
C_{h} & D_{h}
\end{array}\right)=\prod_{m=0}^{h}\left(\begin{array}{cc}
2 m+1+z & 2 m+1 \\
2 m+1 & 2 m+1-z
\end{array}\right),
$$

then $A_{h} D_{h}-B_{h} C_{h}=(-1)^{h+1} z^{2(h+1)}$ shows that the formal power series A_{h} / C_{h} and B_{h} / D_{h} coincide in the limit. Here $A_{h}(z)=D_{h}(-z)$ and $B_{h}(z)=C_{h}(-z)$ and we need confirm only that as $h \rightarrow \infty$ both $A_{h}(z)$ or $B_{h}(z)$ times $e^{-\frac{1}{2} z} h!/(2 h+1)$! converges to 1

The matrix correspondence in effect identifies 2×2 matrices $\left(\begin{array}{c}r \\ t \\ t \\ u\end{array}\right)$ with linear fractional transformations $\alpha \mapsto(r \alpha+s) /(t \alpha+u)$. Thus, for arbitrary $k \neq 0$, one should identify matrices $k M$ and M. Then any sequence $\binom{A_{h} B_{h}}{C_{h} D_{h}}$ of nonsingular 2×2 matrices so that A_{h} / C_{h} and B_{h} / D_{h} have a common limit yields an expansion. For example, if

$$
\left(\begin{array}{ll}
A_{h} & B_{h} \\
C_{h} & D_{h}
\end{array}\right)=\prod_{m=0}^{h}\left(\begin{array}{cc}
2 m+1+z & 2 m+1 \\
2 m+1 & 2 m+1-z
\end{array}\right),
$$

then $A_{h} D_{h}-B_{h} C_{h}=(-1)^{h+1} z^{2(h+1)}$ shows that the formal power series A_{h} / C_{h} and B_{h} / D_{h} coincide in the limit. Here $A_{h}(z)=D_{h}(-z)$ and $B_{h}(z)=C_{h}(-z)$ and we need confirm only that as $h \rightarrow \infty$ both $A_{h}(z)$ or $B_{h}(z)$ times $e^{-\frac{1}{2} z} h!/(2 h+1)$! converges to 1 ; so here the common limit is e^{z}.

The matrix correspondence in effect identifies 2×2 matrices $\left(\begin{array}{cc}r & s \\ t \\ u\end{array}\right)$ with linear fractional transformations $\alpha \mapsto(r \alpha+s) /(t \alpha+u)$. Thus, for arbitrary $k \neq 0$, one should identify matrices $k M$ and M. Then any sequence $\binom{A_{h} B_{h}}{C_{h} D_{h}}$ of nonsingular 2×2 matrices so that A_{h} / C_{h} and B_{h} / D_{h} have a common limit yields an expansion. For example, if

$$
\left(\begin{array}{ll}
A_{h} & B_{h} \\
C_{h} & D_{h}
\end{array}\right)=\prod_{m=0}^{h}\left(\begin{array}{cc}
2 m+1+z & 2 m+1 \\
2 m+1 & 2 m+1-z
\end{array}\right),
$$

then $A_{h} D_{h}-B_{h} C_{h}=(-1)^{h+1} z^{2(h+1)}$ shows that the formal power series A_{h} / C_{h} and B_{h} / D_{h} coincide in the limit. Here $A_{h}(z)=D_{h}(-z)$ and $B_{h}(z)=C_{h}(-z)$ and we need confirm only that as $h \rightarrow \infty$ both $A_{h}(z)$ or $B_{h}(z)$ times $e^{-\frac{1}{2} z} h!/(2 h+1)$! converges to 1 ; so here the common limit is e^{z}. By $\left(\begin{array}{cc}2 m+2 & 2 m+1 \\ 2 m+1 & 2 m\end{array}\right)=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{cc}2 m & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$

The matrix correspondence in effect identifies 2×2 matrices $\left(\begin{array}{cc}r & s \\ t \\ u\end{array}\right)$ with linear fractional transformations $\alpha \mapsto(r \alpha+s) /(t \alpha+u)$. Thus, for arbitrary $k \neq 0$, one should identify matrices $k M$ and M. Then any sequence $\binom{A_{h} B_{h}}{C_{h} D_{h}}$ of nonsingular 2×2 matrices so that A_{h} / C_{h} and B_{h} / D_{h} have a common limit yields an expansion. For example, if

$$
\left(\begin{array}{ll}
A_{h} & B_{h} \\
C_{h} & D_{h}
\end{array}\right)=\prod_{m=0}^{h}\left(\begin{array}{cc}
2 m+1+z & 2 m+1 \\
2 m+1 & 2 m+1-z
\end{array}\right),
$$

then $A_{h} D_{h}-B_{h} C_{h}=(-1)^{h+1} z^{2(h+1)}$ shows that the formal power series A_{h} / C_{h} and B_{h} / D_{h} coincide in the limit. Here $A_{h}(z)=D_{h}(-z)$ and $B_{h}(z)=C_{h}(-z)$ and we need confirm only that as $h \rightarrow \infty$ both $A_{h}(z)$ or $B_{h}(z)$ times $e^{-\frac{1}{2} z} h!/(2 h+1)$! converges to 1 ; so here the common limit is e^{z}. By $\left(\begin{array}{cc}2 m+2 & 2 m+1 \\ 2 m+1 & 2 m\end{array}\right)=\left(\begin{array}{lll}1 & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{cc}2 m & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$ we obtain

$$
e-1=[1,1,2,1,1,4,1,1,6, \ldots]=[\overline{1,2 h, 1}]_{h=1}^{\infty} .
$$

Summary of Basics

- The matric correspondence identifies unimodular matrices with continued fraction expansions; basic properties of continued fractions are immediate corollaries.

Summary of Basics

- The matric correspondence identifies unimodular matrices with continued fraction expansions; basic properties of continued fractions are immediate corollaries.
- The fundamental property is that p / q is a continued fraction convergent of α if and only if p / q is a locally good approximation to α, roughly speaking: in the sense that $|q \alpha-p|$ is somewhat smaller than $1 / q$. If so, it is locally best in that there is no rational with smaller denominator which is closer to α.
a corollary of the matrix correspondence.
\qquad

Summary of Basics

- The matric correspondence identifies unimodular matrices with continued fraction expansions; basic properties of continued fractions are immediate corollaries.
- The fundamental property is that p / q is a continued fraction convergent of α if and only if p / q is a
 smaller than $1 / q$. If so, it is locally best in that there is no rational with smaller denominator which is closer to
- Even the unexpected pattern in the expansion of e is, at a stretch, a corollary of the matrix correspondence.

```
I add that, two numbers are equivalent if the
of their continued
fraction expansions are the same.
```


Summary of Basics

- The fundamental property is that p / q is a continued fraction convernent of α if and onlv if n / a is a to α, roughly speaking: in the sense that $|q \alpha-p|$ is somewhat
smaller than $1 / q$. If SO , it is locally best in that there is no rational with smaller denominator which is closer to
- Even the unevnected nattern in the expansion of e is, at a stretch, a corollary of the matrix correspondence.
- I add that, two numbers are equivalent if the tails of their continued fraction expansions are the same.
- We have met the distance formula

Summary of Basics

Even the unexpected patern in the expans ion of of, at ata strecth.
a corollary of the matrix correspondence.

- I add that, two numbers are equivalent if the tails of their continued fraction expansions are the same.
- We have met the distance formula

$$
\alpha_{1} \alpha_{2} \cdots \alpha_{h+1}=(-1)^{h+1}\left(p_{h}-\alpha q_{h}\right)^{-1} .
$$

Continued Fractions of Quadratic Irrationals

In these remarks, ω is a quadratic irrational integer of norm n and trace t; that is, $\omega^{2}-t \omega+n=0$. Because ω is a

Continued Fractions of Quadratic Irrationals

In these remarks, ω is a quadratic irrational integer of norm n and trace t; that is, $\omega^{2}-t \omega+n=0$. Because ω is a

Continued Fractions of Quadratic Irrationals

In these remarks, ω is a quadratic irrational integer of norm n and trace t; that is, $\omega^{2}-t \omega+n=0$. Because ω is a integer, both its trace $t=\omega+\bar{\omega}$ and norm $n=\omega \bar{\omega}$ must be rational integers.

Continued Fractions of Quadratic Irrationals

In these remarks, ω is a quadratic irrational integer of norm n and trace t; that is, $\omega^{2}-t \omega+n=0$. Because ω is a integer, both its trace $t=\omega+\bar{\omega}$ and norm $n=\omega \bar{\omega}$ must be rational integers. Because ω is irrational its discriminant $(\omega-\bar{\omega})^{2}$, that is $t^{2}-4 n$, is not a rational square.

Continued Fractions of Quadratic Irrationals

In these remarks, ω is a quadratic irrational integer of norm n and trace t; that is, $\omega^{2}-t \omega+n=0$. Because ω is a integer, both its trace $t=\omega+\bar{\omega}$ and norm $n=\omega \bar{\omega}$ must be rational integers. Because ω is irrational its discriminant $(\omega-\bar{\omega})^{2}$, that is $t^{2}-4 n$, is not a rational square.
Further, set $\alpha:=(\omega+P) / Q$ where the positive integer Q divides the norm $(\omega+P)(\bar{\omega}+P)$.

Continued Fractions of Quadratic Irrationals

In these remarks, ω is a quadratic irrational integer of norm n and trace t; that is, $\omega^{2}-t \omega+n=0$. Because ω is a integer, both its trace $t=\omega+\bar{\omega}$ and norm $n=\omega \bar{\omega}$ must be rational integers. Because ω is irrational its discriminant $(\omega-\bar{\omega})^{2}$, that is $t^{2}-4 n$, is not a rational square.
Further, set $\alpha:=(\omega+P) / Q$ where the positive integer Q divides the norm $(\omega+P)(\bar{\omega}+P)$. This last condition is a critical convention: indeed Q dividing the norm is equivalent to the \mathbb{Z}-module $\langle Q, \omega+P\rangle_{\mathbb{Z}}$ being more, in fact it then is an ideal of the integral domain $\mathbb{Z}[\omega]$.

Continued Fractions of Quadratic Irrationals

In these remarks, ω is a quadratic irrational integer of norm n and trace t; that is, $\omega^{2}-t \omega+n=0$. Because ω is a integer, both its trace $t=\omega+\bar{\omega}$ and norm $n=\omega \bar{\omega}$ must be rational integers. Because ω is irrational its discriminant $(\omega-\bar{\omega})^{2}$, that is $t^{2}-4 n$, is not a rational square.
Further, set $\alpha:=(\omega+P) / Q$ where the positive integer Q divides the norm $(\omega+P)(\bar{\omega}+P)$. This last condition is a critical convention: indeed Q dividing the norm is equivalent to the \mathbb{Z}-module $\langle Q, \omega+P\rangle_{\mathbb{Z}}$ being more, in fact it then is an ideal of the integral domain $\mathbb{Z}[\omega]$. To see this, it suffices to notice that

$$
\omega(\omega+P)=-\left(n+t P+P^{2}\right)+(t+P)(\omega+P)
$$

is in $\langle Q, \omega+P\rangle_{\mathbb{Z}}$ if and only if Q divides the norm $n+t P+P^{2}$.

Continued Fractions of Quadratic Irrationals

In these remarks, ω is a quadratic irrational integer of norm n and trace t; that is, $\omega^{2}-t \omega+n=0$. Because ω is a integer, both its trace $t=\omega+\bar{\omega}$ and norm $n=\omega \bar{\omega}$ must be rational integers. Because ω is irrational its discriminant $(\omega-\bar{\omega})^{2}$, that is $t^{2}-4 n$, is not a rational square.
Further, set $\alpha:=(\omega+P) / Q$ where the positive integer Q divides the norm $(\omega+P)(\bar{\omega}+P)$. This last condition is a critical convention: indeed Q dividing the norm is equivalent to the \mathbb{Z}-module $\langle Q, \omega+P\rangle_{\mathbb{Z}}$ being more, in fact it then is an ideal of the integral domain $\mathbb{Z}[\omega]$. To see this, it suffices to notice that

$$
\omega(\omega+P)=-\left(n+t P+P^{2}\right)+(t+P)(\omega+P)
$$

is in $\langle Q, \omega+P\rangle_{\mathbb{Z}}$ if and only if Q divides the norm $n+t P+P^{2}$.
Writing $\beta=(\sqrt{-163}+17) / 21$ is less than ideal; it is not admissible.

Continued Fractions of Quadratic Irrationals

In these remarks, ω is a quadratic irrational integer of norm n and trace t; that is, $\omega^{2}-t \omega+n=0$. Because ω is a integer, both its trace $t=\omega+\bar{\omega}$ and norm $n=\omega \bar{\omega}$ must be rational integers. Because ω is irrational its discriminant $(\omega-\bar{\omega})^{2}$, that is $t^{2}-4 n$, is not a rational square.
Further, set $\alpha:=(\omega+P) / Q$ where the positive integer Q divides the norm $(\omega+P)(\bar{\omega}+P)$. This last condition is a critical convention: indeed Q dividing the norm is equivalent to the \mathbb{Z}-module $\langle Q, \omega+P\rangle_{\mathbb{Z}}$ being more, in fact it then is an ideal of the integral domain $\mathbb{Z}[\omega]$. To see this, it suffices to notice that

$$
\omega(\omega+P)=-\left(n+t P+P^{2}\right)+(t+P)(\omega+P)
$$

is in $\langle Q, \omega+P\rangle_{\mathbb{Z}}$ if and only if Q divides the norm $n+t P+P^{2}$.
Writing $\beta=(\sqrt{-163}+17) / 21$ is less than ideal; it is not admissible. In fact, $\beta=(\sqrt{-7987}+119) / 147$.

Continued Fractions of Algebraic Numbers

It is quite straightforward to find the expansion of a real root of a polynomial equation. I instance this by detailing the case

Continued Fractions of Algebraic Numbers

It is quite straightforward to find the expansion of a real root of a polynomial equation. I instance this by detailing the case

Continued Fractions of Algebraic Numbers

It is quite straightforward to find the expansion of a real root of a polynomial equation. I instance this by detailing the case $f(X)=X^{3}-X^{2}-X-1$.

Continued Fractions of Algebraic Numbers

It is quite straightforward to find the expansion of a real root of a polynomial equation. I instance this by detailing the case $f(X)=X^{3}-X^{2}-X-1$. Then f has one real zero, say γ, where plainly $1<\gamma<2$ so $c_{0}=1$ and clearly $\gamma_{1}=1 /\left(\gamma-c_{0}\right)$ is a zero of the polynomial $f_{1}(X)=-X^{3} f\left(X^{-1}+c_{0}\right)=2 X^{3}-2 X-1$.

Continued Fractions of Algebraic Numbers

It is quite straightforward to find the expansion of a real root of a polynomial equation. I instance this by detailing the case $f(X)=X^{3}-X^{2}-X-1$. Then f has one real zero, say γ, where plainly $1<\gamma<2$ so $c_{0}=1$ and clearly $\gamma_{1}=1 /\left(\gamma-c_{0}\right)$ is a zero of the polynomial $f_{1}(X)=-X^{3} f\left(X^{-1}+c_{0}\right)=2 X^{3}-2 X-1$. One sees that $\left\lfloor\gamma_{1}\right\rfloor=1$, so $c_{1}=1$ and $f_{2}(X)=-X^{3} f_{1}\left(X^{-1}+c_{1}\right)$ is given by $X^{3}-4 X^{2}-6 X-2$.

Continued Fractions of Algebraic Numbers

It is quite straightforward to find the expansion of a real root of a polynomial equation. I instance this by detailing the case $f(X)=X^{3}-X^{2}-X-1$. Then f has one real zero, say γ, where plainly $1<\gamma<2$ so $c_{0}=1$ and clearly $\gamma_{1}=1 /\left(\gamma-c_{0}\right)$ is a zero of the polynomial $f_{1}(X)=-X^{3} f\left(X^{-1}+c_{0}\right)=2 X^{3}-2 X-1$. One sees that $\left\lfloor\gamma_{1}\right\rfloor=1$, so $c_{1}=1$ and $f_{2}(X)=-X^{3} f_{1}\left(X^{-1}+c_{1}\right)$ is given by $X^{3}-4 X^{2}-6 X-2$. A little more subtly, it happens that $\left\lfloor\gamma_{2}\right\rfloor=5$ and so $f_{3}(X)=7 X^{3}-29 X^{2}-11 X-1$ and the integer part of its real zero γ_{3} is $c_{3}=4$.

Continued Fractions of Algebraic Numbers

It is quite straightforward to find the expansion of a real root of a polynomial equation. I instance this by detailing the case $f(X)=X^{3}-X^{2}-X-1$. Then f has one real zero, say γ, where plainly $1<\gamma<2$ so $c_{0}=1$ and clearly $\gamma_{1}=1 /\left(\gamma-c_{0}\right)$ is a zero of the polynomial $f_{1}(X)=-X^{3} f\left(X^{-1}+c_{0}\right)=2 X^{3}-2 X-1$. One sees that $\left\lfloor\gamma_{1}\right\rfloor=1$, so $c_{1}=1$ and $f_{2}(X)=-X^{3} f_{1}\left(X^{-1}+c_{1}\right)$ is given by $X^{3}-4 X^{2}-6 X-2$. A little more subtly, it happens that $\left\lfloor\gamma_{2}\right\rfloor=5$ and so $f_{3}(X)=7 X^{3}-29 X^{2}-11 X-1$ and the integer part of its real zero γ_{3} is $C_{3}=4$. That yields \ldots
The algorithm is now perfectly clear and it barely seems worth
continuing, particularly as a glance at the tabulation shows it will soon hecome very unmieldy.

Continued Fractions of Algebraic Numbers

It is quite straightforward to find the expansion of a real root of a polynomial equation. I instance this by detailing the case $f(X)=X^{3}-X^{2}-X-1$. Then f has one real zero, say γ, where plainly $1<\gamma<2$ so $c_{0}=1$ and clearly $\gamma_{1}=1 /\left(\gamma-c_{0}\right)$ is a zero of the polynomial $f_{1}(X)=-X^{3} f\left(X^{-1}+c_{0}\right)=2 X^{3}-2 X-1$. One sees that $\left\lfloor\gamma_{1}\right\rfloor=1$, so $c_{1}=1$ and $f_{2}(X)=-X^{3} f_{1}\left(X^{-1}+c_{1}\right)$ is given by $X^{3}-4 X^{2}-6 X-2$. A little more subtly, it happens that $\left\lfloor\gamma_{2}\right\rfloor=5$ and so $f_{3}(X)=7 X^{3}-29 X^{2}-11 X-1$ and the integer part of its real zero γ_{3} is $c_{3}=4$. That yields \ldots
The algorithm is now perfectly clear and it barely seems worth continuing, particularly as a glance at the tabulation shows it will soon become very unwieldy.

h	c_{h}	$a_{0}^{(h)}$	$a_{1}^{(h)}$	$a_{2}^{(h)}$	$a_{3}^{(h)}$
		1	-1	-1	-1
0	1	2	0	-2	-1
1	1	1	-4	-6	-2
2	5	7	-29	-11	-1
3	4	61	-93	-55	-7
4	2	1	-305	-273	-61
5	305	1	83326	-92752	-610
6	10037	-63864	-157226	-1	
7	8	289486	-748054	-177024	-83326
8	2	1040413	-304592	-988862	-28037
9	1	542527	-1523193	-2816647	-1040413
10	4	1956361	-11039105	-4987131	-542527
11	6	5299117	-73830597	-24175393	-1956361
12	14	270431827	-1024448687	-148732317	-5299117
13	3	1	2369874922	-1006234890	-1409437756
14	316229551	-3687717230	-6103389876	-270431827	
15	13		-2369874922		

Continued Fractions of Algebraic Numbers

It is quite straightforward to find the expansion of a real root of a polynomial equation. I instance this by detailing the case $f(X)=X^{3}-X^{2}-X-1$. Then f has one real zero, say γ, where plainly $1<\gamma<2$ so $c_{0}=1$ and clearly $\gamma_{1}=1 /\left(\gamma-c_{0}\right)$ is a zero of the polynomial $f_{1}(X)=-X^{3} f\left(X^{-1}+c_{0}\right)=2 X^{3}-2 X-1$. One sees that $\left\lfloor\gamma_{1}\right\rfloor=1$, so $c_{1}=1$ and $f_{2}(X)=-X^{3} f_{1}\left(X^{-1}+c_{1}\right)$ is given by $X^{3}-4 X^{2}-6 X-2$. A little more subtly, it happens that $\left\lfloor\gamma_{2}\right\rfloor=5$ and so $f_{3}(X)=7 X^{3}-29 X^{2}-11 X-1$ and the integer part of its real zero γ_{3} is $c_{3}=4$. That yields \ldots
The algorithm is now perfectly clear and it barely seems worth continuing, particularly as a glance at the tabulation shows it will soon become very unwieldy.

Continued Fractions of Algebraic Numbers

It is quite straightforward to find the expansion of a real root of a polynomial equation. I instance this by detailing the case $f(X)=X^{3}-X^{2}-X-1$. Then f has one real zero, say γ, where plainly $1<\gamma<2$ so $c_{0}=1$ and clearly $\gamma_{1}=1 /\left(\gamma-c_{0}\right)$ is a zero of the polynomial $f_{1}(X)=-X^{3} f\left(X^{-1}+c_{0}\right)=2 X^{3}-2 X-1$. One sees that $\left\lfloor\gamma_{1}\right\rfloor=1$, so $c_{1}=1$ and $f_{2}(X)=-X^{3} f_{1}\left(X^{-1}+c_{1}\right)$ is given by $X^{3}-4 X^{2}-6 X-2$. A little more subtly, it happens that $\left\lfloor\gamma_{2}\right\rfloor=5$ and so $f_{3}(X)=7 X^{3}-29 X^{2}-11 X-1$ and the integer part of its real zero γ_{3} is $C_{3}=4$. That yields \ldots
The algorithm is now perfectly clear and it barely seems worth continuing, particularly as a glance at the tabulation shows it will soon become very unwieldy. By the way, in real life, a fine idea applying Vincent's theorem makes it easy to produce many partial quotients at once and to avoid detailing the intermediate polynomials f_{h}.

Continued Fractions of Algebraic Numbers

It is quite straightforward to find the expansion of a real root of a polynomial equation. I instance this by detailing the case $f(X)=X^{3}-X^{2}-X-1$. Then f has one real zero, say γ, where plainly $1<\gamma<2$ so $c_{0}=1$ and clearly $\gamma_{1}=1 /\left(\gamma-c_{0}\right)$ is a zero of the polynomial $f_{1}(X)=-X^{3} f\left(X^{-1}+c_{0}\right)=2 X^{3}-2 X-1$. One sees that $\left\lfloor\gamma_{1}\right\rfloor=1$, so $c_{1}=1$ and $f_{2}(X)=-X^{3} f_{1}\left(X^{-1}+c_{1}\right)$ is given by $X^{3}-4 X^{2}-6 X-2$. A little more subtly, it happens that $\left\lfloor\gamma_{2}\right\rfloor=5$ and so $f_{3}(X)=7 X^{3}-29 X^{2}-11 X-1$ and the integer part of its real zero γ_{3} is $c_{3}=4$. That yields \ldots
The algorithm is now perfectly clear and it barely seems worth continuing, particularly as a glance at the tabulation shows it will soon become very unwieldy. By the way, in real life, a fine idea applying Vincent's theorem makes it easy to produce many partial quotients at once and to avoid detailing the intermediate polynomials f_{h}.
The quadratic case is different in the critical fact that the coefficients of the f_{h} are bounded.

h	c_{h}	$a_{0}^{(h)}$	$a_{1}^{(h)}$	$a_{2}^{(h)}$	$a_{3}^{(h)}$
0	1	1	-1	-1	-1
1	1	2	0	-2	-1
2	5	1	-4	-6	-2
3	4	7	-29	-11	-1
4	2	61	-93	-55	-7
5	305	1	-305	-273	-61
6	1	83326	-92752	-610	-1
7	8	10037	-63864	-157226	-83326
8	2	289486	-748054	-177024	-10037
9	1	1040413	-304592	-988862	-289486
10	4	542527	-1523193	-2816647	-1040413
11	6	1956361	-11039105	-4987131	-542527
12	14	5299117	-73830597	-24175393	-1956361
13	3	270431827	-1024448687	-148732317	-5299117
14	1	2369874922	-1006234890	-1409437756	-270431827
15	13	316229551	-3687717230	-6103389876	-2369874922

But wait, there's more! Quite exceptionally, $\gamma^{-17}=56-103 \gamma^{-1}$. That's the reason I chose the polynomial f.

h	c_{h}	$a_{0}^{(h)}$	$a_{1}^{(h)}$	$a_{2}^{(h)}$	$a_{3}^{(h)}$
0	1	1	-1	-1	-1
1	1	2	0	-2	-1
2	5	1	-4	-6	-2
3	4	7	-29	-11	-1
4	2	61	-93	-55	-7
5	305	1	-305	-273	-61
6	1	83326	-92752	-610	-1
7	8	10037	-63864	-157226	-83326
8	2	289486	-748054	-177024	-10037
9	1	1040413	-304592	-988862	-289486
10	4	542527	-1523193	-2816647	-1040413
11	6	1956361	-11039105	-4987131	-542527
12	14	5299117	-73830597	-24175393	-1956361
13	3	270431827	-1024448687	-148732317	-5299117
14	1	2369874922	-1006234890	-1409437756	-270431827
15	13	316229551	-3687717230	-6103389876	-2369874922

But wait, there's more! Quite exceptionally, $\gamma^{-17}=56-103 \gamma^{-1}$. That's the reason I chose the polynomial f.
Note that, indeed, $y_{4}^{3} f\left(x_{4} / y_{4}\right)=-1$.

h	c_{h}	x_{h}	y_{h}	$x_{h}^{3}-x_{h}^{2} y_{h}-x_{h} y_{h}^{2}-y_{h}^{3}$
		0	1	
		1	0	1
0	1	1	1	-2
1	1	2	1	1
2	5	11	6	-7
3	4	46	25	61
4	2	103	56	-1
5	305	31461	17105	83326
6	1	31564	17161	-10037
7	8	283973	154393	289486
8	2	599510	325947	-10 40413
9	1	883483	480340	542527
10	4	4133442	2247307	-19 56361
11	6	25684135	13964182	5299117
12	14	363711332	197745855	-2704 31827
13	3	1116818131	607201747	2369874922
14	1	1408529463	804947602	-3162 29551
15	13			

Reduced Elements

Recall that $\alpha:=(\omega+P) / Q$ where the positive integer Q divides the norm of its numerator. If ω is real, so if its discriminant $t^{2}-4 n$ is positive, then I distinguish ω from its conjugate $\bar{\omega}$ by insisting that $\omega>\bar{\omega}$.

Reduced Elements

Recall that $\alpha:=(\omega+P) / Q$ where the positive integer Q divides the norm of its numerator. If ω is real, so if its discriminant $t^{2}-4 n$ is positive, then I distinguish ω from its conjugate $\bar{\omega}$ by insisting that $\omega>\bar{\omega}$. One now says that α is reduced if and only if

$$
\alpha>1 \text { but }-1<\bar{\alpha}<0 .
$$

If ω is imaginary then its discriminant $t^{2}-4 n$ is negative. In this case one says that α is reduced if and only if both

Reduced Elements

Recall that $\alpha:=(\omega+P) / Q$ where the positive integer Q divides the norm of its numerator. If ω is real, so if its discriminant $t^{2}-4 n$ is positive, then I distinguish ω from its conjugate $\bar{\omega}$ by insisting that $\omega>\bar{\omega}$. One now says that α is reduced if and only if

$$
\alpha>1 \text { but }-1<\bar{\alpha}<0 \text {. }
$$

If ω is imaginary then its discriminant $t^{2}-4 n$ is negative. In this case one says that α is reduced if and only if both

$$
|\alpha+\bar{\alpha}| \leq 1 \quad \text { and } \quad \alpha \bar{\alpha} \geq 1 .
$$

Exercise. Confirm that if a real α is reduced then necessarily both
$2 P+t$ and Q are positive and less than $\omega-\bar{\omega}$.

Reduced Elements

Recall that $\alpha:=(\omega+P) / Q$ where the positive integer Q divides the norm of its numerator. If ω is real, so if its discriminant $t^{2}-4 n$ is positive, then I distinguish ω from its conjugate $\bar{\omega}$ by insisting that $\omega>\bar{\omega}$. One now says that α is reduced if and only if

$$
\alpha>1 \text { but }-1<\bar{\alpha}<0 \text {. }
$$

If ω is imaginary then its discriminant $t^{2}-4 n$ is negative. In this case one says that α is reduced if and only if both

$$
|\alpha+\bar{\alpha}| \leq 1 \quad \text { and } \quad \alpha \bar{\alpha} \geq 1 .
$$

Exercise. Confirm that if a real α is reduced then necessarily both $2 P+t$ and Q are positive and less than $\omega-\bar{\omega}$.
All real quadratic irrationals have periodic continued fraction

Reduced Elements

Recall that $\alpha:=(\omega+P) / Q$ where the positive integer Q divides the norm of its numerator. If ω is real, so if its discriminant $t^{2}-4 n$ is positive, then I distinguish ω from its conjugate $\bar{\omega}$ by insisting that $\omega>\bar{\omega}$. One now says that α is reduced if and only if

$$
\alpha>1 \text { but }-1<\bar{\alpha}<0 .
$$

If ω is imaginary then its discriminant $t^{2}-4 n$ is negative. In this case one says that α is reduced if and only if both

$$
|\alpha+\bar{\alpha}| \leq 1 \quad \text { and } \quad \alpha \bar{\alpha} \geq 1 .
$$

Exercise. Confirm that if a real α is reduced then necessarily both $2 P+t$ and Q are positive and less than $\omega-\bar{\omega}$.
All real quadratic irrationals have periodic continued fraction
expansions. I will show that a real α has a purely periodic expansion if and only if it is reduced.

The Continued Fraction Expansion

Write a_{h} for the integer part $\left\lfloor\alpha_{h}\right\rfloor$ of $\alpha_{h}=\left(\omega+P_{h}\right) / Q_{h}$; so a_{h} is a partial quotient in the continued fraction expansionof α_{h}, and the first step in that expansion is

$$
\alpha_{h}=\left(\omega+P_{h}\right) / Q_{h}=a_{h}-\left(\bar{\omega}+P_{h+1}\right) / Q=: a_{h}-\bar{\rho}_{-h} ;
$$

here $P_{h+1}:=a_{h} Q_{h}-P_{h}-t$. Then obviously $-1<\rho_{-h}<0$ because

The Continued Fraction Expansion

Write a_{h} for the integer part $\left\lfloor\alpha_{h}\right\rfloor$ of $\alpha_{h}=\left(\omega+P_{h}\right) / Q_{h}$; so a_{h} is a partial quotient in the continued fraction expansionof α_{h}, and the first step in that expansion is

$$
\alpha_{h}=\left(\omega+P_{h}\right) / Q_{h}=a_{h}-\left(\bar{\omega}+P_{h+1}\right) / Q=: a_{h}-\bar{\rho}_{-h} ;
$$

here $P_{h+1}:=a_{h} Q_{h}-P_{h}-t$. Then obviously $-1<\bar{\rho}_{-h}<0$ because $-\bar{\rho}_{-h}$ is the fractional part of α_{h}.

The Continued Fraction Expansion

Write a_{h} for the integer part $\left\lfloor\alpha_{h}\right\rfloor$ of $\alpha_{h}=\left(\omega+P_{h}\right) / Q_{h}$; so a_{h} is a partial quotient in the continued fraction expansionof α_{h}, and the first step in that expansion is

$$
\alpha_{h}=\left(\omega+P_{h}\right) / Q_{h}=a_{h}-\left(\bar{\omega}+P_{h+1}\right) / Q=: a_{h}-\bar{\rho}_{-h} ;
$$

here $P_{h+1}:=a_{h} Q_{h}-P_{h}-t$. Then obviously $-1<\bar{\rho}_{-h}<0$ because $-\bar{\rho}_{-h}$ is the fractional part of α_{h}. Now consider the conjugate step

$$
\rho_{-h}=\left(\omega+P_{h+1}\right) / Q_{h}=a_{h}-\left(\bar{\omega}+P_{h}\right) / Q_{h}=a_{h}-\bar{\alpha}_{h} .
$$

One sees that a_{h}, which began life as the integer part of α_{h}, also is the integer part of ρ_{-h} and that
$\alpha_{h+1}:=-1 / \bar{\rho}_{-h}=\left(\alpha+P_{h}\right.$
expansion, also is reduced.

The Continued Fraction Expansion

Write a_{h} for the integer part $\left\lfloor\alpha_{h}\right\rfloor$ of $\alpha_{h}=\left(\omega+P_{h}\right) / Q_{h}$; so a_{h} is a partial quotient in the continued fraction expansionof α_{h}, and the first step in that expansion is

$$
\alpha_{h}=\left(\omega+P_{h}\right) / Q_{h}=a_{h}-\left(\bar{\omega}+P_{h+1}\right) / Q=: a_{h}-\bar{\rho}_{-h} ;
$$

here $P_{h+1}:=a_{h} Q_{h}-P_{h}-t$. Then obviously $-1<\bar{\rho}_{-h}<0$ because $-\bar{\rho}_{-h}$ is the fractional part of α_{h}. Now consider the conjugate step

$$
\rho_{-h}=\left(\omega+P_{h+1}\right) / Q_{h}=a_{h}-\left(\bar{\omega}+P_{h}\right) / Q_{h}=a_{h}-\bar{\alpha}_{h} .
$$

One sees that a_{h}, which began life as the integer part of α_{h}, also is the integer part of ρ_{-h} and that also ρ_{-h} is reduced.
expansion, also is reduced.

The Continued Fraction Expansion

Write a_{h} for the integer part $\left\lfloor\alpha_{h}\right\rfloor$ of $\alpha_{h}=\left(\omega+P_{h}\right) / Q_{h}$; so a_{h} is a partial quotient in the continued fraction expansionof α_{h}, and the first step in that expansion is

$$
\alpha_{h}=\left(\omega+P_{h}\right) / Q_{h}=a_{h}-\left(\bar{\omega}+P_{h+1}\right) / Q=: a_{h}-\bar{\rho}_{-h} ;
$$

here $P_{h+1}:=a_{h} Q_{h}-P_{h}-t$. Then obviously $-1<\bar{\rho}_{-h}<0$ because $-\bar{\rho}_{-h}$ is the fractional part of α_{h}. Now consider the conjugate step

$$
\rho_{-h}=\left(\omega+P_{h+1}\right) / Q_{h}=a_{h}-\left(\bar{\omega}+P_{h}\right) / Q_{h}=a_{h}-\bar{\alpha}_{h} .
$$

One sees that a_{h}, which began life as the integer part of α_{h}, also is the integer part of ρ_{-h} and that also ρ_{-h} is reduced. It now follows that $\alpha_{h+1}:=-1 / \bar{\rho}_{-h}=\left(\alpha+P_{h+1}\right) / Q_{h+1}$, the next complete quotient in the expansion, also is reduced.

Thus the continued fraction expansion of a reduced quadratic irrational $\alpha_{0}=\left(\omega+P_{0}\right) / Q_{0}$ is a sequence of steps $h=0,1,2, \ldots$

$$
\alpha_{h}=\left(\omega+P_{h}\right) / Q_{h}=a_{h}-\left(\bar{\omega}+P_{h+1}\right) / Q_{h}=a_{h}-\bar{\rho}_{-h} ;
$$

where $P_{h}+P_{h+1}+t=a_{h} Q_{h}$,

$$
-Q_{h} Q_{h+1}=\left(\omega+P_{h+1}\right)\left(\bar{\omega}+P_{h+1}\right),
$$

and $\alpha_{h+1}=\left(\omega+P_{h+1}\right) / Q_{h+1}$. Here all the complete quotients α_{h} and
all the 'remainders' ρ_{-h} are reduced quadratic irrationals.

Thus the continued fraction expansion of a reduced quadratic irrational $\alpha_{0}=\left(\omega+P_{0}\right) / Q_{0}$ is a sequence of steps $h=0,1,2, \ldots$

$$
\alpha_{h}=\left(\omega+P_{h}\right) / Q_{h}=a_{h}-\left(\bar{\omega}+P_{h+1}\right) / Q_{h}=a_{h}-\bar{\rho}_{-h} ;
$$

where $P_{h}+P_{h+1}+t=a_{h} Q_{h}$,

$$
-Q_{h} Q_{h+1}=\left(\omega+P_{h+1}\right)\left(\bar{\omega}+P_{h+1}\right),
$$

and $\alpha_{h+1}=\left(\omega+P_{h+1}\right) / Q_{h+1}$. Here all the complete quotients α_{h} and all the 'remainders' ρ_{-h} are reduced quadratic irrationals.
\square many possibilities for a step in the expansion.

Thus the continued fraction expansion of a reduced quadratic irrational $\alpha_{0}=\left(\omega+P_{0}\right) / Q_{0}$ is a sequence of steps $h=0,1,2, \ldots$

$$
\alpha_{h}=\left(\omega+P_{h}\right) / Q_{h}=a_{h}-\left(\bar{\omega}+P_{h+1}\right) / Q_{h}=a_{h}-\bar{\rho}_{-h} ;
$$

where $P_{h}+P_{h+1}+t=a_{h} Q_{h}$,

$$
-Q_{h} Q_{h+1}=\left(\omega+P_{h+1}\right)\left(\bar{\omega}+P_{h+1}\right),
$$

and $\alpha_{h+1}=\left(\omega+P_{h+1}\right) / Q_{h+1}$. Here all the complete quotients α_{h} and all the 'remainders' ρ_{-h} are reduced quadratic irrationals.
Periodicity of the expansion. Because the α_{h} are reduced it follows that $\omega-\bar{\omega}$ bounds both $2 P_{h}+t$ and Q_{h}. Hence there are only finitely many possibilities for a step in the expansion.
infinity". But here we have much more explicit information. Explain how one might obtain a good upper bound on the length of an ideal cycle in the domain $\mathbb{Z}[\omega]$, say as a function of $D=t^{2}-4 n$ as D

Thus the continued fraction expansion of a reduced quadratic irrational $\alpha_{0}=\left(\omega+P_{0}\right) / Q_{0}$ is a sequence of steps $h=0,1,2, \ldots$

$$
\alpha_{h}=\left(\omega+P_{h}\right) / Q_{h}=a_{h}-\left(\bar{\omega}+P_{h+1}\right) / Q_{h}=a_{h}-\bar{\rho}_{-h} ;
$$

where $P_{h}+P_{h+1}+t=a_{h} Q_{h}$,

$$
-Q_{h} Q_{h+1}=\left(\omega+P_{h+1}\right)\left(\bar{\omega}+P_{h+1}\right),
$$

and $\alpha_{h+1}=\left(\omega+P_{h+1}\right) / Q_{h+1}$. Here all the complete quotients α_{h} and all the 'remainders' ρ_{-h} are reduced quadratic irrationals.
Periodicity of the expansion. Because the α_{h} are reduced it follows that $\omega-\bar{\omega}$ bounds both $2 P_{h}+t$ and Q_{h}. Hence there are only finitely many possibilities for a step in the expansion.
Exercise. For discussion: "Finitely many" only means "fewer than infinity". But here we have much more explicit information. Explain how one might obtain a good upper bound on the length of an ideal cycle in the domain $\mathbb{Z}[\omega]$, say as a function of $D=t^{2}-4 n$ as $D \rightarrow \infty$.

$$
h
$$

$$
(\sqrt{46}+0) / 1=6-(-\sqrt{46}+6) / 1
$$

$$
(\sqrt{46}+6) / 10=1-(-\sqrt{46}+4) / 10
$$

$$
(\sqrt{46}+4) / 3=3-(-\sqrt{46}+5) / 3
$$

$$
(\sqrt{46}+5) / 7=1-(-\sqrt{46}+2) / 7
$$

$$
(\sqrt{46}+2) / 6=1-(-\sqrt{46}+4) / 6
$$

$$
(\sqrt{46}+4) / 5=2-(-\sqrt{46}+6) / 5
$$

$$
(\sqrt{46}+6) / 2=6-(-\sqrt{46}+6) / 2
$$

$$
(\sqrt{46}+6) / 5=2-(-\sqrt{46}+4) / 5
$$

$$
(\sqrt{46}+4) / 6=1-(-\sqrt{46}+2) / 6
$$

$$
(\sqrt{46}+2) / 7=1-(-\sqrt{46}+5) / 7
$$

$$
(\sqrt{46}+5) / 3=3-(-\sqrt{46}+4) / 3 \quad 10 \quad 19038 \quad 2807
$$

$$
(\sqrt{46}+4) / 10=1-(-\sqrt{46}+6) / 10 \quad 11 \quad 24335 \quad 3588
$$

$$
(\sqrt{46}+6) / 1=12-(-\sqrt{46}+6) / 1 \quad 12
$$

| | h | p_{h} | q_{h} |
| :--- | :--- | ---: | ---: | ---: |
| $(\sqrt{46}+0) / 1=6-(-\sqrt{46}+6) / 1$ | 0 | 6 | 1 |
| $(\sqrt{46}+6) / 10=1-(-\sqrt{46}+4) / 10$ | 1 | 7 | 1 |
| $(\sqrt{46}+4) / 3=3-(-\sqrt{46}+5) / 3$ | 2 | 27 | 4 |
| $(\sqrt{46}+5) / 7=1-(-\sqrt{46}+2) / 7$ | 3 | 34 | 5 |
| $(\sqrt{46}+2) / 6=1-(-\sqrt{46}+4) / 6$ | 4 | 61 | 9 |
| $(\sqrt{46}+4) / 5=2-(-\sqrt{46}+6) / 5$ | 5 | 156 | 23 |
| $(\sqrt{46}+6) / 2=6-(-\sqrt{46}+6) / 2$ | 6 | 997 | 147 |
| $(\sqrt{46}+6) / 5=2-(-\sqrt{46}+4) / 5$ | 7 | 2150 | 317 |
| $(\sqrt{46}+4) / 6=1-(-\sqrt{46}+2) / 6$ | 8 | 3147 | 464 |
| $(\sqrt{46}+2) / 7=1-(-\sqrt{46}+5) / 7$ | 9 | 5297 | 781 |
| $(\sqrt{46}+5) / 3=3-(-\sqrt{46}+4) / 3$ | 10 | 19038 | 2807 |
| $(\sqrt{46}+4) / 10=1-(-\sqrt{46}+6) / 10$ | 11 | 24335 | 3588 |
| $(\sqrt{46}+6) / 1=12-(-\sqrt{46}+6) / 1$ | 12 | | |

Here we see $\omega=\sqrt{46}$ displaying its period of length $r=12$.

	h	p_{h}	q_{h}	
$(\sqrt{46}+0) / 1$	$=6-(-\sqrt{46}+6) / 1$	0	6	1
$(\sqrt{46}+6) / 10=1-(-\sqrt{46}+4) / 10$	1	7	1	
$(\sqrt{46}+4) / 3=3-(-\sqrt{46}+5) / 3$	2	27	4	
$(\sqrt{46}+5) / 7=1-(-\sqrt{46}+2) / 7$	3	34	5	
$(\sqrt{46}+2) / 6=1-(-\sqrt{46}+4) / 6$	4	61	9	
$(\sqrt{46}+4) / 5=2-(-\sqrt{46}+6) / 5$	5	156	23	
$(\sqrt{46}+6) / 2=6-(-\sqrt{46}+6) / 2$	6	997	147	
$(\sqrt{46}+6) / 5=2-(-\sqrt{46}+4) / 5$	7	2150	317	
$(\sqrt{46}+4) / 6=1-(-\sqrt{46}+2) / 6$	8	3147	464	
$(\sqrt{46}+2) / 7=1-(-\sqrt{46}+5) / 7$	9	5297	781	
$(\sqrt{46}+5) / 3=3-(-\sqrt{46}+4) / 3$	10	19038	2807	
$(\sqrt{46}+4) / 10=1-(-\sqrt{46}+6) / 10$	11	24335	3588	
$(\sqrt{46}+6) / 1=12-(-\sqrt{46}+6) / 1$	12			

Here we see $\omega=\sqrt{46}$ displaying its period of length $r=12$. The convergents p_{h} / q_{h} also computed here provide interesting identities $p_{h}^{2}-46 q_{h}^{2}=(-1)^{h+1} Q_{h+1}$.

| | h | p_{h} | q_{h} |
| :--- | :--- | ---: | ---: | ---: |
| $(\sqrt{46}+0) / 1=6-(-\sqrt{46}+6) / 1$ | 0 | 6 | 1 |
| $(\sqrt{46}+6) / 10=1-(-\sqrt{46}+4) / 10$ | 1 | 7 | 1 |
| $(\sqrt{46}+4) / 3=3-(-\sqrt{46}+5) / 3$ | 2 | 27 | 4 |
| $(\sqrt{46}+5) / 7=1-(-\sqrt{46}+2) / 7$ | 3 | 34 | 5 |
| $(\sqrt{46}+2) / 6=1-(-\sqrt{46}+4) / 6$ | 4 | 61 | 9 |
| $(\sqrt{46}+4) / 5=2-(-\sqrt{46}+6) / 5$ | 5 | 156 | 23 |
| $(\sqrt{46}+6) / 2=6-(-\sqrt{46}+6) / 2$ | 6 | 997 | 147 |
| $(\sqrt{46}+6) / 5=2-(-\sqrt{46}+4) / 5$ | 7 | 2150 | 317 |
| $(\sqrt{46}+4) / 6=1-(-\sqrt{46}+2) / 6$ | 8 | 3147 | 464 |
| $(\sqrt{46}+2) / 7=1-(-\sqrt{46}+5) / 7$ | 9 | 5297 | 781 |
| $(\sqrt{46}+5) / 3=3-(-\sqrt{46}+4) / 3$ | 10 | 19038 | 2807 |
| $(\sqrt{46}+4) / 10=1-(-\sqrt{46}+6) / 10$ | 11 | 24335 | 3588 |
| $(\sqrt{46}+6) / 1=12-(-\sqrt{46}+6) / 1$ | 12 | | |

Here we see $\omega=\sqrt{46}$ displaying its period of length $r=12$.
In particular, $24335^{2}-46 \cdot 3588^{2}=1$.

Summary of Continued Fractions of Algebraic Numbers

- There is a fine algorithm for computing the continued fraction expansion of any algebraic number. However, the quadratic case is particularly good because only finitely many different complete quotients can occur; so the expansion is eventually periodic.

Summary of Continued Fractions of Algebraic Numbers

- There is a fine algorithm for computing the continued fraction expansion of any algebraic number. However, the quadratic case is particularly good because only finitely many different complete quotients can occur; so the expansion is eventually periodic.
- I deal with an arbitrary real irrational quadratic integer ω but, in truth, I intend primarily the two cases $\omega=\sqrt{D}$ with $n=-D$ and $t=0$, so $\Delta=t^{2}-4 n=4 D$; and, provided that D is $1 \bmod 4$, $\omega=\frac{1}{2}(1+\sqrt{D})$, with $n=\frac{1}{4}(1-D)$ and $t=1$, so $\Delta=D$.

Summary of Continued Fractions of Algebraic Numbers

- There is a fine algorithm for computing the continued fraction expansion of any algebraic number. However, the quadratic case is particularly good because only finitely many different complete quotients can occur; so the expansion is eventually periodic.
- I deal with an arbitrary real irrational quadratic integer ω but, in truth, I intend primarily the two cases $\omega=\sqrt{D}$ with $n=-D$ and $t=0$, so $\Delta=t^{2}-4 n=4 D$; and, provided that D is $1 \bmod 4$, $\omega=\frac{1}{2}(1+\sqrt{D})$, with $n=\frac{1}{4}(1-D)$ and $t=1$, so $\Delta=D$.
- Here D is a positive integer, not a square. Actually, it's psychologically good always to take D to be a discriminant, so 0 or $1 \bmod 4$; then the basic choices for ω are $\frac{1}{2} \sqrt{D}$ or $\frac{1}{2}(1+\sqrt{D})$ according to the parity of D. Now the discriminant always is D.

Summary of Continued Fractions of Algebraic Numbers

- There is a fine algorithm for computing the continued fraction expansion of any algebraic number. However, the quadratic case is particularly good because only finitely many different complete quotients can occur; so the expansion is eventually periodic.
- I deal with an arbitrary real irrational quadratic integer ω but, in truth, I intend primarily the two cases $\omega=\sqrt{D}$ with $n=-D$ and $t=0$, so $\Delta=t^{2}-4 n=4 D$; and, provided that D is $1 \bmod 4$, $\omega=\frac{1}{2}(1+\sqrt{D})$, with $n=\frac{1}{4}(1-D)$ and $t=1$, so $\Delta=D$.
- Here D is a positive integer, not a square. Actually, it's psychologically good always to take D to be a discriminant, so 0 or $1 \bmod 4$; then the basic choices for ω are $\frac{1}{2} \sqrt{D}$ or $\frac{1}{2}(1+\sqrt{D})$ according to the parity of D. Now the discriminant always is D.
- The useful observation is that a complete quotient is part of the period if and only if it is reduced.

A Useful Conjugation

Suppose then that step $r-1$ is the first step in the tableau to coincide with an earlier step. Then the period length of the expansion of α is at most r and, unless step $r-1$ happens to coincide with step 0 , the expansion will have a pre-period.

However, consider the continued fraction expansion of ρ_{-r+1}, recalling that it commences with the step

A Useful Conjugation

Suppose then that step $r-1$ is the first step in the tableau to coincide with an earlier step. Then the period length of the expansion of α is at most r and, unless step $r-1$ happens to coincide with step 0 , the expansion will have a pre-period.
However, consider the continued fraction expansion of ρ_{-r+1}, recalling that it commences with the step

$$
\left(\omega+P_{r}\right) / Q_{r-1}=a_{r-1}-\left(\bar{\omega}+P_{r-1}\right) / Q_{r-1}=a_{r-1}-\bar{\alpha}_{r-1} .
$$

Because this expansion is the conjugate of the continued fraction
expansion of α it too must have a period of length at most r. Because

A Useful Conjugation

Suppose then that step $r-1$ is the first step in the tableau to coincide with an earlier step. Then the period length of the expansion of α is at most r and, unless step $r-1$ happens to coincide with step 0 , the expansion will have a pre-period.
However, consider the continued fraction expansion of ρ_{-r+1}, recalling that it commences with the step

$$
\left(\omega+P_{r}\right) / Q_{r-1}=a_{r-1}-\left(\bar{\omega}+P_{r-1}\right) / Q_{r-1}=a_{r-1}-\bar{\alpha}_{r-1} .
$$

Because this expansion is the conjugate of the continued fraction expansion of α it too must have a period of length at most r. Because

A Useful Conjugation

Suppose then that step $r-1$ is the first step in the tableau to coincide with an earlier step. Then the period length of the expansion of α is at most r and, unless step $r-1$ happens to coincide with step 0 , the expansion will have a pre-period.
However, consider the continued fraction expansion of ρ_{-r+1}, recalling that it commences with the step

$$
\left(\omega+P_{r}\right) / Q_{r-1}=a_{r-1}-\left(\bar{\omega}+P_{r-1}\right) / Q_{r-1}=a_{r-1}-\bar{\alpha}_{r-1} .
$$

Because this expansion is the conjugate of the continued fraction expansion of α it too must have a period of length at most r. Because it commences with the conjugate of the first repeated line and runs in the direction opposite to that of the expansion of α, it must be purely periodic.

A Useful Conjugation

Suppose then that step $r-1$ is the first step in the tableau to coincide with an earlier step. Then the period length of the expansion of α is at most r and, unless step $r-1$ happens to coincide with step 0 , the expansion will have a pre-period.
However, consider the continued fraction expansion of ρ_{-r+1}, recalling that it commences with the step

$$
\left(\omega+P_{r}\right) / Q_{r-1}=a_{r-1}-\left(\bar{\omega}+P_{r-1}\right) / Q_{r-1}=a_{r-1}-\bar{\alpha}_{r-1} .
$$

Because this expansion is the conjugate of the continued fraction expansion of α it too must have a period of length at most r. Because it commences with the conjugate of the first repeated line and runs in the direction opposite to that of the expansion of α, it must be purely periodic. But any putative pre-period of α would provide a post-period for ρ_{-r+1}; which is absurd.

[^0]
A Useful Conjugation

Suppose then that step $r-1$ is the first step in the tableau to coincide with an earlier step. Then the period length of the expansion of α is at most r and, unless step $r-1$ happens to coincide with step 0 , the expansion will have a pre-period.
However, consider the continued fraction expansion of ρ_{-r+1}, recalling that it commences with the step

$$
\left(\omega+P_{r}\right) / Q_{r-1}=a_{r-1}-\left(\bar{\omega}+P_{r-1}\right) / Q_{r-1}=a_{r-1}-\bar{\alpha}_{r-1} .
$$

Because this expansion is the conjugate of the continued fraction expansion of α it too must have a period of length at most r. Because it commences with the conjugate of the first repeated line and runs in the direction opposite to that of the expansion of α, it must be purely periodic. But any putative pre-period of α would provide a post-period for ρ_{-r+1}; which is absurd. So also the expansion of α is purely periodic.

Denote the integer part of ω by A. In the particular case $\alpha_{0}=\omega+A-t$, step 0 is

$$
\alpha_{0}=\omega+A-t=2 A-t-(\bar{\omega}+A-t)=2 A-t-\bar{\rho}_{0},
$$

and is symmetric, that is unchanged under conjugation.
more natural to expand ω rather than $\omega+A-t$, I choose the latter

because, unlike ω, it certainly is reduced.

Denote the integer part of ω by A. In the particular case $\alpha_{0}=\omega+A-t$, step 0 is

$$
\alpha_{0}=\omega+A-t=2 A-t-(\bar{\omega}+A-t)=2 A-t-\bar{\rho}_{0},
$$

and is symmetric, that is unchanged under conjugation. Though it is more natural to expand ω rather than $\omega+A-t$, I choose the latter because, unlike ω, it certainly is reduced.

Denote the integer part of ω by A. In the particular case $\alpha_{0}=\omega+A-t$, step 0 is

$$
\alpha_{0}=\omega+A-t=2 A-t-(\bar{\omega}+A-t)=2 A-t-\bar{\rho}_{0},
$$

and is symmetric, that is unchanged under conjugation. Though it is more natural to expand ω rather than $\omega+A-t$, I choose the latter because, unlike ω, it certainly is reduced.
Exercise. (a) Observe in the case $\omega+A-t$ that the period must have a second symmetry (at any rate, if $r>1$).

Denote the integer part of ω by A. In the particular case $\alpha_{0}=\omega+A-t$, step 0 is

$$
\alpha_{0}=\omega+A-t=2 A-t-(\bar{\omega}+A-t)=2 A-t-\bar{\rho}_{0},
$$

and is symmetric, that is unchanged under conjugation. Though it is more natural to expand ω rather than $\omega+A-t$, I choose the latter because, unlike ω, it certainly is reduced.
Exercise. (a) Observe in the case $\omega+A-t$ that the period must have a second symmetry (at any rate, if $r>1$). Moreover, if $r=2 k$ is even then this symmetry is given by $\alpha_{k}=\rho_{-k}$, and if $r=2 k+1$ is odd then $\rho_{-k+1}=\alpha_{k}$.

Denote the integer part of ω by A. In the particular case $\alpha_{0}=\omega+A-t$, step 0 is

$$
\alpha_{0}=\omega+A-t=2 A-t-(\bar{\omega}+A-t)=2 A-t-\bar{\rho}_{0},
$$

and is symmetric, that is unchanged under conjugation. Though it is more natural to expand ω rather than $\omega+A-t$, I choose the latter because, unlike ω, it certainly is reduced.
Exercise. (a) Observe in the case $\omega+A-t$ that the period must have a second symmetry (at any rate, if $r>1$). Moreover, if $r=2 k$ is even then this symmetry is given by $\alpha_{k}=\rho_{-k}$, and if $r=2 k+1$ is odd then $\rho_{-k+1}=\alpha_{k}$. (b) It has been compellingly put to me that "Mathematics is the study of degeneracy". The degenerate case here is $r=1$. Does claim (a) remain true in essence (as it certainly should) for $r=1$?
is not true that every
that the period of α has symmetries if and only if either (i) there is an
\qquad

Denote the integer part of ω by A. In the particular case $\alpha_{0}=\omega+A-t$, step 0 is

$$
\alpha_{0}=\omega+A-t=2 A-t-(\bar{\omega}+A-t)=2 A-t-\bar{\rho}_{0},
$$

and is symmetric, that is unchanged under conjugation. Though it is more natural to expand ω rather than $\omega+A-t$, I choose the latter because, unlike ω, it certainly is reduced.
Exercise. (a) Observe in the case $\omega+A-t$ that the period must have a second symmetry (at any rate, if $r>1$). Moreover, if $r=2 k$ is even then this symmetry is given by $\alpha_{k}=\rho_{-k}$, and if $r=2 k+1$ is odd then $\rho_{-k+1}=\alpha_{k}$. (b) It has been compellingly put to me that "Mathematics is the study of degeneracy". The degenerate case here is $r=1$. Does claim (a) remain true in essence (as it certainly should) for $r=1$? (c) It is not true that every α has a symmetric period. Comment on the claim that the period of α has symmetries if and only if either (i) there is an h so that α_{h} has integral trace or

Denote the integer part of ω by A. In the particular case $\alpha_{0}=\omega+A-t$, step 0 is

$$
\alpha_{0}=\omega+A-t=2 A-t-(\bar{\omega}+A-t)=2 A-t-\bar{\rho}_{0},
$$

and is symmetric, that is unchanged under conjugation. Though it is more natural to expand ω rather than $\omega+A-t$, I choose the latter because, unlike ω, it certainly is reduced.
Exercise. (a) Observe in the case $\omega+A-t$ that the period must have a second symmetry (at any rate, if $r>1$). Moreover, if $r=2 k$ is even then this symmetry is given by $\alpha_{k}=\rho_{-k}$, and if $r=2 k+1$ is odd then $\rho_{-k+1}=\alpha_{k}$. (b) It has been compellingly put to me that "Mathematics is the study of degeneracy". The degenerate case here is $r=1$. Does claim (a) remain true in essence (as it certainly should) for $r=1$? (c) It is not true that every α has a symmetric period. Comment on the claim that the period of α has symmetries if and only if either (i) there is an h so that α_{h} has integral trace or (ii) so that $\alpha_{h} \bar{\alpha}_{h}=-1$.

Denote the integer part of ω by A. In the particular case $\alpha_{0}=\omega+A-t$, step 0 is

$$
\alpha_{0}=\omega+A-t=2 A-t-(\bar{\omega}+A-t)=2 A-t-\bar{\rho}_{0},
$$

and is symmetric, that is unchanged under conjugation. Though it is more natural to expand ω rather than $\omega+A-t$, I choose the latter because, unlike ω, it certainly is reduced.
Exercise. (a) Observe in the case $\omega+A-t$ that the period must have a second symmetry (at any rate, if $r>1$). Moreover, if $r=2 k$ is even then this symmetry is given by $\alpha_{k}=\rho_{-k}$, and if $r=2 k+1$ is odd then $\rho_{-k+1}=\alpha_{k}$. (b) It has been compellingly put to me that "Mathematics is the study of degeneracy". The degenerate case here is $r=1$. Does claim (a) remain true in essence (as it certainly should) for $r=1$? (c) It is not true that every α has a symmetric period. Comment on the claim that the period of α has symmetries if and only if either (i) there is an h so that α_{h} has integral trace or (ii) so that $\alpha_{h} \bar{\alpha}_{h}=-1$. (d) Give examples illustrating the various claims just now made.

As before, set $\alpha=\left[a_{0}, a_{1}, a_{2}, \ldots\right]$ with its convergents denoted by $\left[a_{0}, a_{1}, \ldots, a_{h}\right]=p_{h} / q_{h}$. Suppose I am a great supporter of the number $\alpha=\left[a_{0}, a_{1}, a_{2}, \ldots\right]$, so much so that, no matter what number, γ say, I am expanding, I always compute $\left.a_{0}, a_{1}, a_{2}, \ldots, a_{h}, \gamma_{h}\right]$ using the wrong partial quotients.

Vincent's Theorem

As before, set $\alpha=\left[a_{0}, a_{1}, a_{2}, \ldots\right]$ with its convergents denoted by $\left[a_{0}, a_{1}, \ldots, a_{h}\right]=p_{h} / q_{h}$. Suppose I am a great supporter of the number $\alpha=\left[a_{0}, a_{1}, a_{2}, \ldots\right]$, so much so that, no matter what number, γ say, I am expanding, I always compute $\gamma=\left[a_{0}, a_{1}, a_{2}, \ldots, a_{h}, \gamma_{h}\right]$ using the wrong partial quotients. We α-complete quotients. What more can one say about them?

Vincent's Theorem or, "Alph and only Alph"

As before, set $\alpha=\left[a_{0}, a_{1}, a_{2}, \ldots\right]$ with its convergents denoted by $\left[a_{0}, a_{1}, \ldots, a_{h}\right]=p_{h} / q_{h}$. Suppose I am a great supporter of the number $\alpha=\left[a_{0}, a_{1}, a_{2}, \ldots\right]$, so much so that, no matter what number, γ say, I am expanding, I always compute $\gamma=\left[a_{0}, a_{1}, a_{2}, \ldots, a_{h}, \gamma_{h}\right]$ using the wrong partial quotients.

Vincent's Theorem or, "Alph and only Alph"

As before, set $\alpha=\left[a_{0}, a_{1}, a_{2}, \ldots\right]$ with its convergents denoted by $\left[a_{0}, a_{1}, \ldots, a_{h}\right]=p_{h} / q_{h}$. Suppose I am a great supporter of the number $\alpha=\left[a_{0}, a_{1}, a_{2}, \ldots\right]$, so much so that, no matter what number, γ say, I am expanding, I always compute $\gamma=\left[a_{0}, a_{1}, a_{2}, \ldots, a_{h}, \gamma_{h}\right]$ using the wrong partial quotients. We have $\gamma_{h+1}=-\left(q_{h-1} \gamma-p_{h-1} /\left(q_{h} \gamma-\overline{p_{h}}\right)\right.$ so we readily compute the α-complete quotients. What more can one say about them?
the unit circle once h is sufficiently large, or $\gamma=\alpha$ and they all are greater than

Vincent's Theorem

As before, set $\alpha=\left[a_{0}, a_{1}, a_{2}, \ldots\right]$ with its convergents denoted by $\left[a_{0}, a_{1}, \ldots, a_{h}\right]=p_{h} / q_{h}$. Suppose I am a great supporter of the number $\alpha=\left[a_{0}, a_{1}, a_{2}, \ldots\right]$, so much so that, no matter what number, γ say, I am expanding, I always compute
$\gamma=\left[a_{0}, a_{1}, a_{2}, \ldots, a_{h}, \gamma_{h}\right]$ using the wrong partial quotients. We have $\gamma_{h+1}=-\left(q_{h-1} \gamma-p_{h-1} /\left(q_{h} \gamma-\overline{p_{h}}\right)\right.$ so we readily compute the α-complete quotients. What more can one say about them?
Vincent (1836) reports that either the γ_{h} all lie in the left hand half of the unit circle once h is sufficiently large, or $\gamma=\alpha$ and they all are greater than 1 .

Vincent's Theorem

As before, set $\alpha=\left[a_{0}, a_{1}, a_{2}, \ldots\right]$ with its convergents denoted by $\left[a_{0}, a_{1}, \ldots, a_{h}\right]=p_{h} / q_{h}$. Suppose I am a great supporter of the number $\alpha=\left[a_{0}, a_{1}, a_{2}, \ldots\right]$, so much so that, no matter what number, γ say, I am expanding, I always compute
$\gamma=\left[a_{0}, a_{1}, a_{2}, \ldots, a_{h}, \gamma_{h}\right]$ using the wrong partial quotients. We have $\gamma_{h+1}=-\left(q_{h-1} \gamma-p_{h-1} /\left(q_{h} \gamma-\overline{p_{h}}\right)\right.$ so we readily compute the α-complete quotients. What more can one say about them?
Vincent (1836) reports that either the γ_{h} all lie in the left hand half of the unit circle once h is sufficiently large, or $\gamma=\alpha$ and they all are greater than 1 . So what?

Vincent's Theorem

As before, set $\alpha=\left[a_{0}, a_{1}, a_{2}, \ldots\right]$ with its convergents denoted by $\left[a_{0}, a_{1}, \ldots, a_{h}\right]=p_{h} / q_{h}$. Suppose I am a great supporter of the number $\alpha=\left[a_{0}, a_{1}, a_{2}, \ldots\right]$, so much so that, no matter what number, γ say, I am expanding, I always compute
$\gamma=\left[a_{0}, a_{1}, a_{2}, \ldots, a_{h}, \gamma_{h}\right]$ using the wrong partial quotients. We have $\gamma_{h+1}=-\left(q_{h-1} \gamma-p_{h-1} /\left(q_{h} \gamma-\overline{p_{h}}\right)\right.$ so we readily compute the α-complete quotients. What more can one say about them?
Vincent (1836) reports that either the γ_{h} all lie in the left hand half of the unit circle once h is sufficiently large, or $\gamma=\alpha$ and they all are greater than 1 . So what?
Suppose α is a real quadratic irrational and consider the α_{h}, recalling complete quotients all are greater than 1 .

Vincent's Theorem

As before, set $\alpha=\left[a_{0}, a_{1}, a_{2}, \ldots\right]$ with its convergents denoted by $\left[a_{0}, a_{1}, \ldots, a_{h}\right]=p_{h} / q_{h}$. Suppose I am a great supporter of the number $\alpha=\left[a_{0}, a_{1}, a_{2}, \ldots\right]$, so much so that, no matter what number, γ say, I am expanding, I always compute
$\gamma=\left[a_{0}, a_{1}, a_{2}, \ldots, a_{h}, \gamma_{h}\right]$ using the wrong partial quotients. We have $\gamma_{h+1}=-\left(q_{h-1} \gamma-p_{h-1} /\left(q_{h} \gamma-\overline{p_{h}}\right)\right.$ so we readily compute the α-complete quotients. What more can one say about them?
Vincent (1836) reports that either the γ_{h} all lie in the left hand half of the unit circle once h is sufficiently large, or $\gamma=\alpha$ and they all are greater than 1 . So what?
Suppose α is a real quadratic irrational and consider the α_{h}, recalling complete quotients all are greater than 1 . But their conjugates $\bar{\alpha}_{h}$ are the result of $\bar{\alpha}$ having suffered the ignominy of being α-expanded.

Vincent's Theorem

As before, set $\alpha=\left[a_{0}, a_{1}, a_{2}, \ldots\right]$ with its convergents denoted by $\left[a_{0}, a_{1}, \ldots, a_{h}\right]=p_{h} / q_{h}$. Suppose I am a great supporter of the number $\alpha=\left[a_{0}, a_{1}, a_{2}, \ldots\right]$, so much so that, no matter what number, γ say, I am expanding, I always compute
$\gamma=\left[a_{0}, a_{1}, a_{2}, \ldots, a_{h}, \gamma_{h}\right]$ using the wrong partial quotients. We have $\gamma_{h+1}=-\left(q_{h-1} \gamma-p_{h-1} /\left(q_{h} \gamma-\overline{p_{h}}\right)\right.$ so we readily compute the α-complete quotients. What more can one say about them?
Vincent (1836) reports that either the γ_{h} all lie in the left hand half of the unit circle once h is sufficiently large, or $\gamma=\alpha$ and they all are greater than 1 . So what?
Suppose α is a real quadratic irrational and consider the α_{h}, recalling complete quotients all are greater than 1. But their conjugates $\bar{\alpha}_{h}$ are the result of $\bar{\alpha}$ having suffered the ignominy of being α-expanded. Hence, once h is large enough, they all satisfy $-1<\bar{\alpha}_{h}<0$.
quadratic irrational

Vincent's Theorem

As before, set $\alpha=\left[a_{0}, a_{1}, a_{2}, \ldots\right]$ with its convergents denoted by $\left[a_{0}, a_{1}, \ldots, a_{h}\right]=p_{h} / q_{h}$. Suppose I am a great supporter of the number $\alpha=\left[a_{0}, a_{1}, a_{2}, \ldots\right]$, so much so that, no matter what number, γ say, I am expanding, I always compute
$\gamma=\left[a_{0}, a_{1}, a_{2}, \ldots, a_{h}, \gamma_{h}\right]$ using the wrong partial quotients. We have $\gamma_{h+1}=-\left(q_{h-1} \gamma-p_{h-1} /\left(q_{h} \gamma-\overline{p_{h}}\right)\right.$ so we readily compute the α-complete quotients. What more can one say about them?
Vincent (1836) reports that either the γ_{h} all lie in the left hand half of the unit circle once h is sufficiently large, or $\gamma=\alpha$ and they all are greater than 1 . So what?
Suppose α is a real quadratic irrational and consider the α_{h}, recalling complete quotients all are greater than 1 . But their conjugates $\bar{\alpha}_{h}$ are the result of $\bar{\alpha}$ having suffered the ignominy of being α-expanded. Hence, once h is large enough, they all satisfy $-1<\bar{\alpha}_{h}<0$. In other words, the continued fraction process eventually reduces any real quadratic irrational.

The Dirichlet Box Principle

Let a and b be be positive integers. Then $a>b$ means that if each of a objects is placed in one of b boxes then there will be at least one box containing more than one object.

The Dirichlet Box Principle

Let a and b be be positive integers. Then $a>b$ means that if each of a objects is placed in one of b boxes then there will be at least one box containing more than one object. Accordingly, take the $Q+1$ numbers $\{0, \alpha, 2 \alpha, \ldots, Q \alpha\}$

The Dirichlet Box Principle

Let a and b be be positive integers. Then $a>b$ means that if each of a objects is placed in one of b boxes then there will be at least one box containing more than one object. Accordingly, take the $Q+1$ numbers $\{0, \alpha, 2 \alpha, \ldots, Q \alpha\}$, divide the unit interval into Q half-open intervals $[(i-1) / Q, i / Q[$

The Dirichlet Box Principle

Let a and b be be positive integers. Then $a>b$ means that if each of a objects is placed in one of b boxes then there will be at least one box containing more than one object. Accordingly, take the $Q+1$ numbers $\{0, \alpha, 2 \alpha, \ldots, Q \alpha\}$, divide the unit interval into Q half-open intervals $[(i-1) / Q, i / Q[$, and place $j Q$ into the i-th interval if its fractional part falls into that interval.

The Dirichlet Box Principle

Let a and b be be positive integers. Then $a>b$ means that if each of a objects is placed in one of b boxes then there will be at least one box containing more than one object. Accordingly, take the $Q+1$ numbers $\{0, \alpha, 2 \alpha, \ldots, Q \alpha\}$, divide the unit interval into Q half-open intervals $[(i-1) / Q, i / Q[$, and place $j Q$ into the i-th interval if its fractional part falls into that interval. Then there will be at least one interval containing two of the numbers

The Dirichlet Box Principle

Let a and b be be positive integers. Then $a>b$ means that if each of a objects is placed in one of b boxes then there will be at least one box containing more than one object. Accordingly, take the $Q+1$ numbers $\{0, \alpha, 2 \alpha, \ldots, Q \alpha\}$, divide the unit interval into Q half-open intervals $[(i-1) / Q, i / Q[$, and place $j Q$ into the i-th interval if its fractional part falls into that interval. Then there will be at least one interval containing two of the numbers, proving that there is a positive integer $q \leq Q$ so that the distance $\|q \alpha\|$ of $q \alpha$ to its nearest integer satisfies

$$
\|q \alpha\|<1 / Q ; \text { say }|q \alpha-p|<1 / q \text {, some integer } 0<q \leq Q \text {. }
$$

I next apply the box principle and its useful corollary to showing that real quadratic domains $\mathbb{Z}[\omega]$ contain non-trivial

The Dirichlet Box Principle

Let a and b be be positive integers. Then $a>b$ means that if each of a objects is placed in one of b boxes then there will be at least one box containing more than one object. Accordingly, take the $Q+1$ numbers $\{0, \alpha, 2 \alpha, \ldots, Q \alpha\}$, divide the unit interval into Q half-open intervals [$(i-1) / Q, i / Q[$, and place $j Q$ into the i-th interval if its fractional part falls into that interval. Then there will be at least one interval containing two of the numbers, proving that there is a positive integer $q \leq Q$ so that the distance $\|q \alpha\|$ of $q \alpha$ to its nearest integer satisfies

$$
\|q \alpha\|<1 / Q ; \text { say }|q \alpha-p|<1 / q \text {, some integer } 0<q \leq Q \text {. }
$$

I next apply the box principle and its useful corollary to showing that real quadratic domains $\mathbb{Z}[\omega]$ contain non-trivial units, to wit elements different from ± 1, yet dividing 1 .
fraction expansion of a real quadratic irrational is a corollary. The
argument is independent of our earlier one.

The Dirichlet Box Principle

Let a and b be be positive integers. Then $a>b$ means that if each of a objects is placed in one of b boxes then there will be at least one box containing more than one object. Accordingly, take the $Q+1$ numbers $\{0, \alpha, 2 \alpha, \ldots, Q \alpha\}$, divide the unit interval into Q half-open intervals $[(i-1) / Q, i / Q[$, and place $j Q$ into the i-th interval if its fractional part falls into that interval. Then there will be at least one interval containing two of the numbers, proving that there is a positive integer $q \leq Q$ so that the distance $\|q \alpha\|$ of $q \alpha$ to its nearest integer satisfies

$$
\|q \alpha\|<1 / Q ; \text { say }|q \alpha-p|<1 / q \text {, some integer } 0<q \leq Q \text {. }
$$

I next apply the box principle and its useful corollary to showing that real quadratic domains $\mathbb{Z}[\omega]$ contain non-trivial units, to wit elements different from ± 1, yet dividing 1 . The periodicity of the continued fraction expansion of a real quadratic irrational is a corollary. The argument is independent of our earlier one.

Units in Quadratic Orders

Given ω, it follows from Dirichlet's argument that there are infinitely many integers q so that $\|q \omega\|=|q \omega-p|<1 / q$; whence, after
multiplying and because $|\omega-p / q|<1$, indeed so that

Again by the box principle, it follows that there is some integer k (with

Units in Quadratic Orders

Given ω, it follows from Dirichlet's argument that there are infinitely many integers q so that $\|q \omega\|=|q \omega-p|<1 / q$; whence, after multiplying and because $|\omega-p / q|<1$, indeed so that $|(q \omega-p)(q \bar{\omega}-p)|<(\omega-\bar{\omega})+1$.
Again by the box principle, it follows that there is some integer k (with
integers (p, q) so that

Units in Quadratic Orders

Given ω, it follows from Dirichlet's argument that there are infinitely many integers q so that $\|q \omega\|=|q \omega-p|<1 / q$; whence, after multiplying and because $|\omega-p / q|<1$, indeed so that $|(q \omega-p)(q \bar{\omega}-p)|<(\omega-\bar{\omega})+1$.
Again by the box principle, it follows that there is some integer k (with $|k|<(\omega-\bar{\omega})+1)$ for which there are are infinitely many pairs of integers (p, q) so that $|(q \omega-p)(q \bar{\omega}-p)|=k$.
Yet again, it follows by the box principle that there is a pair of those pairs so that

Units in Quadratic Orders

Given ω, it follows from Dirichlet's argument that there are infinitely many integers q so that $\|q \omega\|=|q \omega-p|<1 / q$; whence, after multiplying and because $|\omega-p / q|<1$, indeed so that $|(q \omega-p)(q \bar{\omega}-p)|<(\omega-\bar{\omega})+1$.
Again by the box principle, it follows that there is some integer k (with $|k|<(\omega-\bar{\omega})+1)$ for which there are are infinitely many pairs of integers (p, q) so that $|(q \omega-p)(q \bar{\omega}-p)|=k$.
Yet again, it follows by the box principle that there is a pair of those pairs so that $p \equiv p^{\prime}$ and $q \equiv q^{\prime}(\bmod k)$.

Units in Quadratic Orders

Given ω, it follows from Dirichlet's argument that there are infinitely many integers q so that $\|q \omega\|=|q \omega-p|<1 / q$; whence, after multiplying and because $|\omega-p / q|<1$, indeed so that $|(q \omega-p)(q \bar{\omega}-p)|<(\omega-\bar{\omega})+1$.
Again by the box principle, it follows that there is some integer k (with $|k|<(\omega-\bar{\omega})+1)$ for which there are are infinitely many pairs of integers (p, q) so that $|(q \omega-p)(q \bar{\omega}-p)|=k$.
Yet again, it follows by the box principle that there is a pair of those pairs so that $p \equiv p^{\prime}$ and $q \equiv q^{\prime}(\bmod k)$.
Then

$$
\frac{(q \omega-p)(q \bar{\omega}-p)}{\left(q^{\prime} \omega-p^{\prime}\right)\left(q^{\prime} \bar{\omega}-p^{\prime}\right)}=(x-\omega y)(x-\bar{\omega} y)= \pm 1
$$

displays a unit $x-\omega y$; here x and y are rational integers given by $x=\left(p p^{\prime}-t p q^{\prime}+n q q^{\prime}\right) / k$ and $y=\left(p q^{\prime}-p^{\prime} q\right) / k$.

[^1]
Units in Quadratic Orders

Given ω, it follows from Dirichlet's argument that there are infinitely many integers q so that $\|q \omega\|=|q \omega-p|<1 / q$; whence, after multiplying and because $|\omega-p / q|<1$, indeed so that
$|(q \omega-p)(q \bar{\omega}-p)|<(\omega-\bar{\omega})+1$.
Again by the box principle, it follows that there is some integer k (with $|k|<(\omega-\bar{\omega})+1)$ for which there are are infinitely many pairs of integers (p, q) so that $|(q \omega-p)(q \bar{\omega}-p)|=k$.
Yet again, it follows by the box principle that there is a pair of those pairs so that $p \equiv p^{\prime}$ and $q \equiv q^{\prime}(\bmod k)$.
Then

$$
\frac{(q \omega-p)(q \bar{\omega}-p)}{\left(q^{\prime} \omega-p^{\prime}\right)\left(q^{\prime} \bar{\omega}-p^{\prime}\right)}=(x-\omega y)(x-\bar{\omega} y)= \pm 1
$$

displays a unit $x-\omega y$; here x and y are rational integers given by $x=\left(p p^{\prime}-t p q^{\prime}+n q q^{\prime}\right) / k$ and $y=\left(p q^{\prime}-p^{\prime} q\right) / k$.
Exercise. Verify (or correct) all these many remarks.

The Matrix Correspondence: RL-Sequences

It is often convenient to set $L=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right), J=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), R=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$, whence

$$
\left(\begin{array}{ll}
a & 1 \\
1 & 0
\end{array}\right)=R^{a} J=J L^{a} .
$$

Thus a continued fraction expansion [$a_{0}, a_{1}, a_{2}, \ldots$] corresponds to an $R L$-sequence $R^{a_{0}} L^{a_{1}} R^{a_{2}} L^{a_{3}} R^{a_{4}} \ldots$. It follows, for example, that a
zero partial quotient is readily dealt with by the rule

The Matrix Correspondence: RL-Sequences

It is often convenient to set $L=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right), J=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), R=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$, whence

$$
\left(\begin{array}{ll}
a & 1 \\
1 & 0
\end{array}\right)=R^{a} J=J L^{a} .
$$

Thus a continued fraction expansion [$a_{0}, a_{1}, a_{2}, \ldots$] corresponds to an $R L$-sequence $R^{a_{0}} L^{a_{1}} R^{a_{2}} L^{a_{3}} R^{a_{4}} \ldots$. It follows, for example, that a zero partial quotient is readily dealt with by the rule

The Matrix Correspondence: RL-Sequences

It is often convenient to set $L=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right), J=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), R=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$, whence

$$
\left(\begin{array}{ll}
a & 1 \\
1 & 0
\end{array}\right)=R^{a} J=J L^{a} .
$$

Thus a continued fraction expansion [$a_{0}, a_{1}, a_{2}, \ldots$] corresponds to an $R L$-sequence $R^{a_{0}} L^{a_{1}} R^{a_{2}} L^{a_{3}} R^{a_{4}} \ldots$. It follows, for example, that a zero partial quotient is readily dealt with by the rule

$$
[\ldots, a, 0, b, \ldots]=[\ldots, a+b, \ldots]
$$

Now let $A=$

The Matrix Correspondence: RL-Sequences

It is often convenient to set $L=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right), J=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), R=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$, whence

$$
\left(\begin{array}{ll}
a & 1 \\
1 & 0
\end{array}\right)=R^{a} J=J L^{a} .
$$

Thus a continued fraction expansion [$a_{0}, a_{1}, a_{2}, \ldots$] corresponds to an $R L$-sequence $R^{a_{0}} L^{a_{1}} R^{a_{2}} L^{a_{3}} R^{a_{4}} \ldots$. It follows, for example, that a zero partial quotient is readily dealt with by the rule

$$
[\ldots, a, 0, b, \ldots]=[\ldots, a+b, \ldots]
$$

Now let $A=\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)$, and $A^{\prime}=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$.

The Matrix Correspondence: RL-Sequences

It is often convenient to set $L=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right), J=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), R=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$, whence

$$
\left(\begin{array}{ll}
a & 1 \\
1 & 0
\end{array}\right)=R^{a} J=J L^{a} .
$$

Thus a continued fraction expansion [$a_{0}, a_{1}, a_{2}, \ldots$] corresponds to an $R L$-sequence $R^{a_{0}} L^{a_{1}} R^{a_{2}} L^{a_{3}} R^{a_{4}} \ldots$. It follows, for example, that a zero partial quotient is readily dealt with by the rule

$$
[\ldots, a, 0, b, \ldots]=[\ldots, a+b, \ldots]
$$

Now let $A=\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)$, and $A^{\prime}=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$. Multiplying a continued fraction by 2 is the same as multiplying its $R L$-sequence on the left by A.

The Matrix Correspondence: RL-Sequences

It is often convenient to set $L=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right), J=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), R=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$, whence

$$
\left(\begin{array}{ll}
a & 1 \\
1 & 0
\end{array}\right)=R^{a} J=J L^{a} .
$$

Thus a continued fraction expansion [$a_{0}, a_{1}, a_{2}, \ldots$] corresponds to an $R L$-sequence $R^{a_{0}} L^{a_{1}} R^{a_{2}} L^{a_{3}} R^{a_{4}} \ldots$. It follows, for example, that a zero partial quotient is readily dealt with by the rule

$$
[\ldots, a, 0, b, \ldots]=[\ldots, a+b, \ldots]
$$

Now let $A=\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)$, and $A^{\prime}=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$. Multiplying a continued fraction by 2 is the same as multiplying its $R L$-sequence on the left by A. But to turn that product back into an $R L$-sequence we now need rules for commuting the A through the sequence
obtain the corresponding transition rules for A

The Matrix Correspondence: RL-Sequences

It is often convenient to set $L=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right), J=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), R=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$, whence

$$
\left(\begin{array}{ll}
a & 1 \\
1 & 0
\end{array}\right)=R^{a} J=J L^{a} .
$$

Thus a continued fraction expansion [$a_{0}, a_{1}, a_{2}, \ldots$] corresponds to an $R L$-sequence $R^{a_{0}} L^{a_{1}} R^{a_{2}} L^{a_{3}} R^{a_{4}} \ldots$. It follows, for example, that a zero partial quotient is readily dealt with by the rule

$$
[\ldots, a, 0, b, \ldots]=[\ldots, a+b, \ldots] .
$$

Now let $A=\left(\begin{array}{lll}2 & 0 \\ 0 & 1\end{array}\right)$, and $A^{\prime}=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$. Multiplying a continued fraction by 2 is the same as multiplying its $R L$-sequence on the left by A. But to turn that product back into an RL-sequence we now need rules for commuting the A through the sequence
Exercise. (a) Verify that $A R=R^{2} A, A L R=R L A^{\prime}$, and $A L^{2}=L A$; and obtain the corresponding transition rules for A^{\prime}.

The Matrix Correspondence: RL-Sequences

It is often convenient to set $L=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right), J=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), R=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$, whence

$$
\left(\begin{array}{ll}
a & 1 \\
1 & 0
\end{array}\right)=R^{a} J=J L^{a} .
$$

Thus a continued fraction expansion [$a_{0}, a_{1}, a_{2}, \ldots$] corresponds to an $R L$-sequence $R^{a_{0}} L^{a_{1}} R^{a_{2}} L^{a_{3}} R^{a_{4}} \ldots$. It follows, for example, that a zero partial quotient is readily dealt with by the rule

$$
[\ldots, a, 0, b, \ldots]=[\ldots, a+b, \ldots] .
$$

Now let $A=\left(\begin{array}{lll}2 & 0 \\ 0 & 1\end{array}\right)$, and $A^{\prime}=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$. Multiplying a continued fraction by 2 is the same as multiplying its $R L$-sequence on the left by A. But to turn that product back into an RL-sequence we now need rules for commuting the A through the sequence
Exercise. (a) Verify that $A R=R^{2} A, A L R=R L A^{\prime}$, and $A L^{2}=L A$; and obtain the corresponding transition rules for A^{\prime}. (b) Define ω by $\omega^{2}-\omega-15=0$. Compute its cfe, and thence that of $\sqrt{61}$.

Units and Periodicity

Given that $x-\omega y$ is a unit, the matrix $N=\left(\begin{array}{ll}x & -n y \\ y & x-t y\end{array}\right)$ has determinant ± 1 and hence decomposes as a product

$$
N=\left(\begin{array}{cc}
w_{0} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
w_{1} & 1 \\
1 & 0
\end{array}\right) \cdots\left(\begin{array}{cc}
w_{r} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) ;
$$

there is a concluding zero because
Theorem. The continued fraction expansion of ω is given by

Units and Periodicity

Given that $x-\omega y$ is a unit, the matrix $N=\left(\begin{array}{ll}x & -n y \\ y & x-t y\end{array}\right)$ has determinant ± 1 and hence decomposes as a product

$$
N=\left(\begin{array}{cc}
w_{0} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
w_{1} & 1 \\
1 & 0
\end{array}\right) \cdots\left(\begin{array}{cc}
w_{r} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) ;
$$

there is a concluding zero because $-n y>x$.
Theorem. The continued fraction expansion of ω is given by
\square

Units and Periodicity

Given that $x-\omega y$ is a unit, the matrix $N=\left(\begin{array}{ll}x & -n y \\ y & x-t y\end{array}\right)$ has determinant ± 1 and hence decomposes as a product

$$
N=\left(\begin{array}{cc}
w_{0} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
w_{1} & 1 \\
1 & 0
\end{array}\right) \cdots\left(\begin{array}{cc}
w_{r} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) ;
$$

there is a concluding zero because $-n y>x$.
Theorem. The continued fraction expansion of ω is given by

$$
\omega=\left[\overline{w_{0}, w_{1}, \ldots, w_{r}, 0}\right]=\left[w_{0}, \overline{w_{1}, \ldots, w_{r}+w_{0}}\right] .
$$

Indeed, suppose [W_{0}, w_{1}

Units and Periodicity

Given that $x-\omega y$ is a unit, the matrix $N=\left(\begin{array}{ll}x & -n y \\ y & x-t y\end{array}\right)$ has determinant ± 1 and hence decomposes as a product

$$
N=\left(\begin{array}{cc}
w_{0} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
w_{1} & 1 \\
1 & 0
\end{array}\right) \cdots\left(\begin{array}{cc}
w_{r} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) ;
$$

there is a concluding zero because $-n y>x$.
Theorem. The continued fraction expansion of ω is given by

$$
\omega=\left[\overline{w_{0}, w_{1}, \ldots, w_{r}, 0}\right]=\left[w_{0}, \overline{w_{1}, \ldots, w_{r}+w_{0}}\right] .
$$

Indeed, suppose $\left[\overline{w_{0}, w_{1}, \ldots, w_{r}, 0}\right]=\gamma$, in other words $\gamma=\left[w_{0}, w_{1}, \ldots, w_{r}, 0, \gamma\right]$.

Units and Periodicity

Given that $x-\omega y$ is a unit, the matrix $N=\left(\begin{array}{ll}x & -n y \\ y & x-t y\end{array}\right)$ has determinant ± 1 and hence decomposes as a product

$$
N=\left(\begin{array}{cc}
w_{0} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
w_{1} & 1 \\
1 & 0
\end{array}\right) \cdots\left(\begin{array}{cc}
w_{r} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) ;
$$

there is a concluding zero because $-n y>x$.
Theorem. The continued fraction expansion of ω is given by

$$
\omega=\left[\overline{w_{0}, w_{1}, \ldots, w_{r}, 0}\right]=\left[w_{0}, \overline{w_{1}, \ldots, w_{r}+w_{0}}\right] .
$$

Indeed, suppose $\left[\overline{w_{0}, w_{1}, \ldots, w_{r}, 0}\right]=\gamma$, in other words $\gamma=\left[w_{0}, w_{1}, \ldots, w_{r}, 0, \gamma\right]$. Then, by the correspondence,

$$
\gamma \longleftrightarrow N\left(\begin{array}{ll}
\gamma & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
\gamma x-n y & x \\
\gamma y+x-t y & y
\end{array}\right) \longleftrightarrow \frac{\gamma x-n y}{\gamma y+x-t y} .
$$

Units and Periodicity

Given that $x-\omega y$ is a unit, the matrix $N=\binom{x-n y}{y x-t y}$ has determinant ± 1 and hence decomposes as a product

$$
N=\left(\begin{array}{cc}
w_{0} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
w_{1} & 1 \\
1 & 0
\end{array}\right) \cdots\left(\begin{array}{cc}
w_{r} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) ;
$$

there is a concluding zero because $-n y>x$.
Theorem. The continued fraction expansion of ω is given by

$$
\omega=\left[\overline{w_{0}, w_{1}, \ldots, w_{r}, 0}\right]=\left[w_{0}, \overline{w_{1}, \ldots, w_{r}+w_{0}}\right] .
$$

Indeed, suppose $\left[\overline{w_{0}, w_{1}, \ldots, w_{r}, 0}\right]=\gamma$, in other words $\gamma=\left[w_{0}, w_{1}, \ldots, w_{r}, 0, \gamma\right]$. Then, by the correspondence,

$$
\gamma \longleftrightarrow N\left(\begin{array}{ll}
\gamma & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
\gamma x-n y & x \\
\gamma y+x-t y & y
\end{array}\right) \longleftrightarrow \frac{\gamma x-n y}{\gamma y+x-t y}
$$

Thus $\left(\gamma^{2}-t \gamma+n\right) y=0$.

Units and Periodicity

Given that $x-\omega y$ is a unit, the matrix $N=\binom{x-n y}{y x-t y}$ has determinant ± 1 and hence decomposes as a product

$$
N=\left(\begin{array}{cc}
w_{0} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
w_{1} & 1 \\
1 & 0
\end{array}\right) \cdots\left(\begin{array}{cc}
w_{r} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) ;
$$

there is a concluding zero because $-n y>x$.
Theorem. The continued fraction expansion of ω is given by

$$
\omega=\left[\overline{w_{0}, w_{1}, \ldots, w_{r}, 0}\right]=\left[w_{0}, \overline{w_{1}, \ldots, w_{r}+w_{0}}\right] .
$$

Indeed, suppose $\left[\overline{w_{0}, w_{1}, \ldots, w_{r}, 0}\right]=\gamma$, in other words $\gamma=\left[w_{0}, w_{1}, \ldots, w_{r}, 0, \gamma\right]$. Then, by the correspondence,

$$
\gamma \longleftrightarrow N\left(\begin{array}{ll}
\gamma & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
\gamma x-n y & x \\
\gamma y+x-t y & y
\end{array}\right) \longleftrightarrow \frac{\gamma x-n y}{\gamma y+x-t y} .
$$

Thus $\left(\gamma^{2}-t \gamma+n\right) y=0$. Because the given unit is nontrivial we have $y \neq 0$, so $\gamma^{2}-t \gamma+n=0$, as I said we'd prove.

We can also see that the period has a symmetry. a symmetric matrix, so it follows that the word

must be symmetric. In particular, w_{0} is

We can also see that the period has a symmetry. If is plain that $N J L^{t}$ is a symmetric matrix, so it follows that the word

$$
w_{0}, w_{1}, \ldots, w_{r-1}, w_{r}+t
$$

must be symmetric.

We can also see that the period has a symmetry. If is plain that $N J L^{t}$ is a symmetric matrix, so it follows that the word

$$
w_{0}, w_{1}, \ldots, w_{r-1}, w_{r}+t
$$

must be symmetric. In particular, w_{0} is $\lfloor\omega\rfloor=A$ so $w_{r}=A-t$. Note
that all this would not make sense if t were not a rational integer.
All this should explain why starting with $\omega+A-t$ does painlessly yield
a purely periodic expansion.

We can also see that the period has a symmetry. If is plain that $N J L^{t}$ is a symmetric matrix, so it follows that the word

$$
w_{0}, w_{1}, \ldots, w_{r-1}, w_{r}+t
$$

must be symmetric. In particular, w_{0} is $\lfloor\omega\rfloor=A$ so $w_{r}=A-t$. Note that all this would not make sense if t were not a rational integer.
All this should explain why starting with
a purely periodic expansion.

We can also see that the period has a symmetry. If is plain that $N J L^{t}$ is a symmetric matrix, so it follows that the word

$$
w_{0}, w_{1}, \ldots, w_{r-1}, w_{r}+t
$$

must be symmetric. In particular, w_{0} is $\lfloor\omega\rfloor=A$ so $w_{r}=A-t$. Note that all this would not make sense if t were not a rational integer.
All this should explain why starting with $\omega+A-t$ does painlessly yield a purely periodic expansion.

We can also see that the period has a symmetry. If is plain that $N J L^{t}$ is a symmetric matrix, so it follows that the word

$$
w_{0}, w_{1}, \ldots, w_{r-1}, w_{r}+t
$$

must be symmetric. In particular, w_{0} is $\lfloor\omega\rfloor=A$ so $w_{r}=A-t$. Note that all this would not make sense if t were not a rational integer.
All this should explain why starting with $\omega+A-t$ does painlessly yield a purely periodic expansion.
Exercise. Set $\alpha=(\omega+P) / Q$. (a) Given that $x-\omega y$ is a unit, find integers a and b so that $a-b \alpha$ is a unit.
product of matrices

We can also see that the period has a symmetry. If is plain that $N J L^{t}$ is a symmetric matrix, so it follows that the word

$$
w_{0}, w_{1}, \ldots, w_{r-1}, w_{r}+t
$$

must be symmetric. In particular, w_{0} is $\lfloor\omega\rfloor=A$ so $w_{r}=A-t$. Note that all this would not make sense if t were not a rational integer.
All this should explain why starting with $\omega+A-t$ does painlessly yield a purely periodic expansion.
Exercise. Set $\alpha=(\omega+P) / Q$. (a) Given that $x-\omega y$ is a unit, find integers a and b so that $a-b \alpha$ is a unit. (b) Next, construct the matrix $N_{\alpha}=\left(\begin{array}{cc}a & -n_{\alpha} b \\ b & a-t_{\alpha} b\end{array}\right)$, with $n_{\alpha}=\alpha \bar{\alpha}$ and $t_{\alpha}=\alpha+\bar{\alpha}$ and decompose it as a product of matrices $\left(\begin{array}{cc}c_{i} & 1 \\ 0 & 1\end{array}\right)$.

We can also see that the period has a symmetry. If is plain that $N J L^{t}$ is a symmetric matrix, so it follows that the word

$$
w_{0}, w_{1}, \ldots, w_{r-1}, w_{r}+t
$$

must be symmetric. In particular, w_{0} is $\lfloor\omega\rfloor=A$ so $w_{r}=A-t$. Note that all this would not make sense if t were not a rational integer.
All this should explain why starting with $\omega+A-t$ does painlessly yield a purely periodic expansion.
Exercise. Set $\alpha=(\omega+P) / Q$. (a) Given that $x-\omega y$ is a unit, find integers a and b so that $a-b \alpha$ is a unit. (b) Next, construct the matrix $N_{\alpha}=\left(\begin{array}{ll}a & -n_{\alpha} b \\ b & a-t_{\alpha} b\end{array}\right)$, with $n_{\alpha}=\alpha \bar{\alpha}$ and $t_{\alpha}=\alpha+\bar{\alpha}$ and decompose it as a product of matrices $\left(\begin{array}{cc}c_{i} & 1 \\ 0 & 1\end{array}\right)$. (c) Show that such decompositions do yield a period for α, in complete analogy with the special case ω.
needed to correct the argument?

We can also see that the period has a symmetry. If is plain that $N J L^{t}$ is a symmetric matrix, so it follows that the word

$$
w_{0}, w_{1}, \ldots, w_{r-1}, w_{r}+t
$$

must be symmetric. In particular, w_{0} is $\lfloor\omega\rfloor=A$ so $w_{r}=A-t$. Note that all this would not make sense if t were not a rational integer.
All this should explain why starting with $\omega+A-t$ does painlessly yield a purely periodic expansion.
Exercise. Set $\alpha=(\omega+P) / Q$. (a) Given that $x-\omega y$ is a unit, find integers a and b so that $a-b \alpha$ is a unit. (b) Next, construct the matrix $N_{\alpha}=\left(\begin{array}{ll}a & -n_{\alpha} b \\ b & a-t_{\alpha} b\end{array}\right)$, with $n_{\alpha}=\alpha \bar{\alpha}$ and $t_{\alpha}=\alpha+\bar{\alpha}$ and decompose it as a product of matrices $\left(\begin{array}{cc}c_{i} & 1 \\ 0 & 1\end{array}\right)$. (c) Show that such decompositions do yield a period for α, in complete analogy with the special case ω. (d) For discussion. But this cannot be quite right. Distinguish the cases α reduced and α not reduced in your discussion. What remarks are needed to correct the argument?

Periodicity and Units

Recall the recursion formula $\left(\omega+P_{h+1}\right)\left(\omega+\bar{P}_{h+1}\right)=-Q_{h} Q_{h+1}$ and, after my deciding to denote convergents by x_{h} / y_{h} rather than p_{h} / q_{h}, the distance formula

$$
\alpha_{1} \alpha_{2} \cdots \alpha_{h+1}=(-1)^{h+1}\left(x_{h}-\alpha y_{h}\right)^{-1} .
$$

Because $\alpha_{h} \bar{\alpha}_{h}=-Q_{h-1} / Q_{h}$ and $Q_{0}=Q$, taking norms yields

Periodicity and Units

Recall the recursion formula $\left(\omega+P_{h+1}\right)\left(\omega+\bar{P}_{h+1}\right)=-Q_{h} Q_{h+1}$ and, after my deciding to denote convergents by x_{h} / y_{h} rather than p_{h} / q_{h}, the distance formula

$$
\alpha_{1} \alpha_{2} \cdots \alpha_{h+1}=(-1)^{h+1}\left(x_{h}-\alpha y_{h}\right)^{-1} .
$$

Because $\alpha_{h} \bar{\alpha}_{h}=-Q_{h-1} / Q_{h}$ and $Q_{0}=Q$, taking norms yields

$$
Q x_{h}^{2}-(2 P+t) x_{h} y_{h}+\left(\left(n+t P+P^{2}\right) / Q\right) y_{h}^{2}=(-1)^{h+1} Q_{h+1}
$$

In particular, if $\alpha=\omega$, then $P=0$ and $Q=1$ so

Periodicity and Units

Recall the recursion formula $\left(\omega+P_{h+1}\right)\left(\omega+\bar{P}_{h+1}\right)=-Q_{h} Q_{h+1}$ and, after my deciding to denote convergents by x_{h} / y_{h} rather than p_{h} / q_{h}, the distance formula

$$
\alpha_{1} \alpha_{2} \cdots \alpha_{h+1}=(-1)^{h+1}\left(x_{h}-\alpha y_{h}\right)^{-1} .
$$

Because $\alpha_{h} \bar{\alpha}_{h}=-Q_{h-1} / Q_{h}$ and $Q_{0}=Q$, taking norms yields

$$
Q x_{h}^{2}-(2 P+t) x_{h} y_{h}+\left(\left(n+t P+P^{2}\right) / Q\right) y_{h}^{2}=(-1)^{h+1} Q_{h+1}
$$

In particular, if $\alpha=\omega$, then $P=0$ and $Q=1$ so

$$
\left(x_{h}-\omega y_{h}\right)\left(x_{h}-\bar{\omega} y_{h}\right)=x_{h}^{2}-t x_{h} y_{h}+n y_{h}^{2}=(-1)^{h+1} Q_{h+1}
$$

But
only if $Q_{r}=1$, in which case
\qquad

Periodicity and Units

Recall the recursion formula $\left(\omega+P_{h+1}\right)\left(\omega+\bar{P}_{h+1}\right)=-Q_{h} Q_{h+1}$ and, after my deciding to denote convergents by x_{h} / y_{h} rather than p_{h} / q_{h}, the distance formula

$$
\alpha_{1} \alpha_{2} \cdots \alpha_{h+1}=(-1)^{h+1}\left(x_{h}-\alpha y_{h}\right)^{-1} .
$$

Because $\alpha_{h} \bar{\alpha}_{h}=-Q_{h-1} / Q_{h}$ and $Q_{0}=Q$, taking norms yields

$$
Q x_{h}^{2}-(2 P+t) x_{h} y_{h}+\left(\left(n+t P+P^{2}\right) / Q\right) y_{h}^{2}=(-1)^{h+1} Q_{h+1}
$$

In particular, if $\alpha=\omega$, then $P=0$ and $Q=1$ so

$$
\left(x_{h}-\omega y_{h}\right)\left(x_{h}-\bar{\omega} y_{h}\right)=x_{h}^{2}-t x_{h} y_{h}+n y_{h}^{2}=(-1)^{h+1} Q_{h+1} .
$$

But $\omega+A-t$, and so of course also ω, is periodic with period r if and only if $Q_{r}=1$, in which case $x_{r-1}^{2}-t x_{r-1} y_{r-1}+n y_{r-1}^{2}=(-1)^{h+1}$ and $x_{r-1}-\omega y_{r-1}$ is a unit.
fraction expansion of elements of $\mathbb{Z}[\omega]$ are equivalent.

Periodicity and Units

Recall the recursion formula $\left(\omega+P_{h+1}\right)\left(\omega+\bar{P}_{h+1}\right)=-Q_{h} Q_{h+1}$ and, after my deciding to denote convergents by x_{h} / y_{h} rather than p_{h} / q_{h}, the distance formula

$$
\alpha_{1} \alpha_{2} \cdots \alpha_{h+1}=(-1)^{h+1}\left(x_{h}-\alpha y_{h}\right)^{-1} .
$$

Because $\alpha_{h} \bar{\alpha}_{h}=-Q_{h-1} / Q_{h}$ and $Q_{0}=Q$, taking norms yields

$$
Q x_{h}^{2}-(2 P+t) x_{h} y_{h}+\left(\left(n+t P+P^{2}\right) / Q\right) y_{h}^{2}=(-1)^{h+1} Q_{h+1}
$$

In particular, if $\alpha=\omega$, then $P=0$ and $Q=1$ so

$$
\left(x_{h}-\omega y_{h}\right)\left(x_{h}-\bar{\omega} y_{h}\right)=x_{h}^{2}-t x_{h} y_{h}+n y_{h}^{2}=(-1)^{h+1} Q_{h+1}
$$

But $\omega+A-t$, and so of course also ω, is periodic with period r if and only if $Q_{r}=1$, in which case $x_{r-1}^{2}-t x_{r-1} y_{r-1}+n y_{r-1}^{2}=(-1)^{h+1}$ and $x_{r-1}-\omega y_{r-1}$ is a unit.
Thus the existence of a unit in $\mathbb{Z}[\omega]$ and the periodicity of the continued fraction expansion of elements of $\mathbb{Z}[\omega]$ are equivalent.

Periodicity and Units

Recall the recursion formula $\left(\omega+P_{h+1}\right)\left(\omega+\bar{P}_{h+1}\right)=-Q_{h} Q_{h+1}$ and, after my deciding to denote convergents by x_{h} / y_{h} rather than p_{h} / q_{h}, the distance formula

$$
\alpha_{1} \alpha_{2} \cdots \alpha_{h+1}=(-1)^{h+1}\left(x_{h}-\alpha y_{h}\right)^{-1} .
$$

Because $\alpha_{h} \bar{\alpha}_{h}=-Q_{h-1} / Q_{h}$ and $Q_{0}=Q$, taking norms yields

$$
Q x_{h}^{2}-(2 P+t) x_{h} y_{h}+\left(\left(n+t P+P^{2}\right) / Q\right) y_{h}^{2}=(-1)^{h+1} Q_{h+1}
$$

In particular, if $\alpha=\omega$, then $P=0$ and $Q=1$ so

$$
\left(x_{h}-\omega y_{h}\right)\left(x_{h}-\bar{\omega} y_{h}\right)=x_{h}^{2}-t x_{h} y_{h}+n y_{h}^{2}=(-1)^{h+1} Q_{h+1} .
$$

But $\omega+A-t$, and so of course also ω, is periodic with period r if and only if $Q_{r}=1$, in which case $x_{r-1}^{2}-t x_{r-1} y_{r-1}+n y_{r-1}^{2}=(-1)^{h+1}$ and $x_{r-1}-\omega y_{r-1}$ is a unit.
Thus the existence of a unit in $\mathbb{Z}[\omega]$ and the periodicity of the continued fraction expansion of elements of $\mathbb{Z}[\omega]$ are equivalent.
The equation $(x-\omega y)(x-\bar{\omega} y)=1$ is known as Pell's equation.

P_{h}	Q_{h}	h	a_{h}	x_{h}	y_{h}	$x_{h}^{2}-62 y_{h}^{2}$
				0	1	
				1	0	
0	1	0	7	7	1	-13
7	13	1	1	8	1	2
6	2	2	6	55	7	-13
6	13	3	1	63	8	1
7	1	4	14	937	119	-13
7	13	5	1	1000	127	2
6	2	6	6	6937	881	-13
6	13	7	1	7937	1008	1
7	1	8	14	118055	14993	-13
7	13	9	1	125992	16001	2
6	2	10	6	874007	110999	-13
6	13	11	1	999999	127000	1
7	1	12	14	14873993	1888999	-13
7	13	13	1	15873992	2015999	2

Here $\omega=\sqrt{62}$ and I display only the necessary data. We see that $\omega=[7, \overline{1,6,1,14}]$ and observe the fundamental unit $\eta=63-8 \omega$, and its powers $\eta^{2}=7937-1008 \omega, \eta^{3}=999999-127000 \omega$.

				0	1	
				1	0	1
0	1	0	7	7	1	-13
7	13	1	1	8	1	2
6	2	2	6	55	7	-13
6	13	3	1	63	8	1
7	1	4	14	937	119	-13
7	13	5	1	1000	127	2
6	2	6	6	6937	881	-13
6	13	7	1	7937	1008	1
7	1	8	14	118055	14993	-13
7	13	9	1	125992	16001	2
6	2	10	6	874007	110999	-13
6	13	11	1	999999	127000	1
7	1	12	14	14873993	1888999	-13
7	13	13	1	15873992	2015999	2

Here $\omega=\sqrt{62}$ and I display only the necessary data. We see that $\omega=[7, \overline{1,6,1,14}]$ and observe the fundamental unit $\eta=63-8 \omega$, and its powers $\eta^{2}=7937-1008 \omega, \eta^{3}=999999-127000 \omega$.

				0	1	
				1	0	1
0	1	0	7	7	1	-13
7	13	1	1	8	1	2
6	2	2	6	55	7	-13
6	13	3	1	63	8	1
7	1	4	14	937	119	-13
7	13	5	1	1000	127	2
6	2	6	6	6937	881	-13
6	13	7	1	7937	1008	1
7	1	8	14	118055	14993	-13
7	13	9	1	125992	16001	2
6	2	10	6	874007	110999	-13
6	13	11	1	999999	127000	1
7	1	12	14	14873993	1888999	-13
7	13	13	1	15873992	2015999	2

Here $\omega=\sqrt{62}$ and I display only the necessary data. We see that $\omega=[7, \overline{1,6,1,14}]$ and observe the fundamental unit $\eta=63-8 \omega$, and its powers $\eta^{2}=7937-1008 \omega, \eta^{3}=999999-127000 \omega$.
Exercise. For discussion. Notice that $\alpha=8-\omega$ has norm 2 and plainly $\alpha^{2}=2 \eta$. But $7-\omega$ has norm -13 , yet \ldots.

	h	x_{h}	y_{h}	
$(\sqrt{1891}+0) / 1=43-(-\sqrt{1891}+43) / 1$	0	43	1	
$(\sqrt{1891}+43) / 42=2-(-\sqrt{1891}+41) / 42$	1	87	2	
$(\sqrt{1891}+41) / 5=16-(-\sqrt{1891}+39) / 5$	2	1435	33	
$(\sqrt{1891}+39) / 74=1-(-\sqrt{1891}+35) / 74$	3	1522	35	
$(\sqrt{1891}+35) / 9=8-(-\sqrt{1891}+37) / 9$	4	13611	313	
$(\sqrt{1891}+37) / 58=1-(-\sqrt{1891}+21) / 58$	5	15133	348	
$(\sqrt{1891}+21) / 25=2-(-\sqrt{1891}+29) / 25$	6	43877	1009	
$(\sqrt{1891}+29) / 42=1-(-\sqrt{1891}+13) / 42$	7	59010	1357	
$(\sqrt{1891}+13) / 41=1-(-\sqrt{1891}+28) / 41$	8	102887	2366	
$(\sqrt{1891}+28) / 27=2-(-\sqrt{1891}+26) / 27$	9	264784	6089	
$(\sqrt{1891}+26) / 45=1-(-\sqrt{1891}+19) / 45$	10	367671	8455	
$(\sqrt{1891}+19) / 34=1-(-\sqrt{1891}+15) / 34$	11	632455	14544	
$(\sqrt{1891}+15) / 49=1-(-\sqrt{1891}+34) / 49$	12	1000126	22999	
$(\sqrt{1891}+34) / 15=5-(-\sqrt{1891}+41) / 15$	13	5633085	129539	
$(\sqrt{1891}+41) / 14=6-(-\sqrt{1891}+43) / 14$	14	34798636	800233	
$(\sqrt{1891}+43) / 3=28-(-\sqrt{1891}+41) / 3$	15	979994893	22536063	
$(\sqrt{1891}+41) / 70=1-(-\sqrt{1891}+29) / 70$	16	1014793529	23336296	
$(\sqrt{1891}+29) / 15=4-(-\sqrt{1891}+31) / 15$	17	5039169009	115881247	
$(\sqrt{1891}+31) / 62=1-(-\sqrt{1891}+31) / 62$	18	6053962538	139217543	
$(\sqrt{1891}+31) / 15=4-(-\sqrt{1891}+29) / 15$	19	29255019161	672751419	
$(\sqrt{1891}+29) / 70=1-(-\sqrt{1891}+41) / 70$	20	35308981699	811968962	
$(\sqrt{1891}+41) / 3=$	\cdots			

Ideal Matrices

Consider integer matrices of the shape $N=\left(\begin{array}{ll}x & -n y \\ y & x-t y\end{array}\right)$. Suppose that x and y are relatively prime, that is $\operatorname{gcd}(x, y)=1$, and $\operatorname{det} N= \pm Q$, with $Q>0$.
with integers x^{\prime}, y^{\prime} so that $x y^{\prime}-x^{\prime} y= \pm 1$ and some integer
$P \in[0, Q[$. In brief, the decomposition provides a correspondence
correspondence preserves multiplication variously of the matrices and
かfthe idanis

Ideal Matrices

Consider integer matrices of the shape $N=\left(\begin{array}{ll}x & -n y \\ y & x-t y\end{array}\right)$. Suppose that x and y are relatively prime, that is $\operatorname{gcd}(x, y)=1$, and $\operatorname{det} N= \pm Q$, with $Q>0$. Then N has a decomposition

$$
N=\left(\begin{array}{cc}
x & -n y \\
y & x-t y
\end{array}\right)=\left(\begin{array}{ll}
x & x^{\prime} \\
y & y^{\prime}
\end{array}\right)\left(\begin{array}{ll}
1 & P \\
0 & Q
\end{array}\right)
$$

with integers x^{\prime}, y^{\prime} so that $x y^{\prime}-x^{\prime} y= \pm 1$ and some integer $P \in[0, Q[$.

Ideal Matrices

Consider integer matrices of the shape $N=\left(\begin{array}{ll}x & -n y \\ y & x-t y\end{array}\right)$. Suppose that x and y are relatively prime, that is $\operatorname{gcd}(x, y)=1$, and $\operatorname{det} N= \pm Q$, with $Q>0$. Then N has a decomposition

$$
N=\left(\begin{array}{cc}
x & -n y \\
y & x-t y
\end{array}\right)=\left(\begin{array}{ll}
x & x^{\prime} \\
y & y^{\prime}
\end{array}\right)\left(\begin{array}{ll}
1 & P \\
0 & Q
\end{array}\right)
$$

with integers x^{\prime}, y^{\prime} so that $x y^{\prime}-x^{\prime} y= \pm 1$ and some integer $P \in[0, Q[$. In brief, the decomposition provides a correspondence between N and an ideal $\langle Q, \omega+P\rangle_{\mathbb{Z}}$ of $\mathbb{Z}[\omega]$ and, this is the point, this correspondence preserves multiplication variously of the matrices and of the ideals.
\square

Ideal Matrices

Consider integer matrices of the shape $N=\left(\begin{array}{ll}x & -n y \\ y & x-t y\end{array}\right)$. Suppose that x and y are relatively prime, that is $\operatorname{gcd}(x, y)=1$, and $\operatorname{det} N= \pm Q$, with $Q>0$. Then N has a decomposition

$$
N=\left(\begin{array}{cc}
x & -n y \\
y & x-t y
\end{array}\right)=\left(\begin{array}{ll}
x & x^{\prime} \\
y & y^{\prime}
\end{array}\right)\left(\begin{array}{ll}
1 & P \\
0 & Q
\end{array}\right)
$$

with integers x^{\prime}, y^{\prime} so that $x y^{\prime}-x^{\prime} y= \pm 1$ and some integer $P \in[0, Q[$. In brief, the decomposition provides a correspondence between N and an ideal $\langle Q, \omega+P\rangle_{\mathbb{Z}}$ of $\mathbb{Z}[\omega]$ and, this is the point, this correspondence preserves multiplication variously of the matrices and of the ideals.
Remark. We identify matrices $k M$ and M for nonzero constants k; therefore, when multiplying matrices (or ideals) the relevant product is the one after removal of any common factor of all the elements.

Ideal Matrices

Consider integer matrices of the shape $N=\left(\begin{array}{ll}x & -n y \\ y & x-t y\end{array}\right)$. Suppose that x and y are relatively prime, that is $\operatorname{gcd}(x, y)=1$, and $\operatorname{det} N= \pm Q$, with $Q>0$. Then N has a decomposition

$$
N=\left(\begin{array}{cc}
x & -n y \\
y & x-t y
\end{array}\right)=\left(\begin{array}{ll}
x & x^{\prime} \\
y & y^{\prime}
\end{array}\right)\left(\begin{array}{ll}
1 & P \\
0 & Q
\end{array}\right)
$$

with integers x^{\prime}, y^{\prime} so that $x y^{\prime}-x^{\prime} y= \pm 1$ and some integer $P \in[0, Q[$. In brief, the decomposition provides a correspondence between N and an ideal $\langle Q, \omega+P\rangle_{\mathbb{Z}}$ of $\mathbb{Z}[\omega]$ and, this is the point, this correspondence preserves multiplication variously of the matrices and of the ideals.
Remark. We identify matrices $k M$ and M for nonzero constants k; therefore, when multiplying matrices (or ideals) the relevant product is the one after removal of any common factor of all the elements.
Exercise. (a) Show that if Q is squarefree then it divides the matrix N^{2} if and only if Q divides the discriminant $D=t^{2}-4 n$.

Ideal Matrices

Consider integer matrices of the shape $N=\left(\begin{array}{ll}x & -n y \\ y & x-t y\end{array}\right)$. Suppose that x and y are relatively prime, that is $\operatorname{gcd}(x, y)=1$, and $\operatorname{det} N= \pm Q$, with $Q>0$. Then N has a decomposition

$$
N=\left(\begin{array}{cc}
x & -n y \\
y & x-t y
\end{array}\right)=\left(\begin{array}{ll}
x & x^{\prime} \\
y & y^{\prime}
\end{array}\right)\left(\begin{array}{ll}
1 & P \\
0 & Q
\end{array}\right)
$$

with integers x^{\prime}, y^{\prime} so that $x y^{\prime}-x^{\prime} y= \pm 1$ and some integer $P \in[0, Q[$. In brief, the decomposition provides a correspondence between N and an ideal $\langle Q, \omega+P\rangle_{\mathbb{Z}}$ of $\mathbb{Z}[\omega]$ and, this is the point, this correspondence preserves multiplication variously of the matrices and of the ideals.
Remark. We identify matrices $k M$ and M for nonzero constants k; therefore, when multiplying matrices (or ideals) the relevant product is the one after removal of any common factor of all the elements.
Exercise. (a) Show that if Q is squarefree then it divides the matrix N^{2} if and only if Q divides the discriminant $D=t^{2}-4 n$. (b) Show that if $Q=4$ then 8 divides the matrix N^{3}.

What's going on here? The secret of the ideal matrices lies in this: if Q is small relative to x and y, then one of the two factors of $x^{2}-t x y+n y^{2}$ is small, say $|x-\omega y|$ is small. But then the beginning of the continued fraction expansion of x / y must coincide with the initial terms of the expansion of ω. Suppose h is maximal so that the

What's going on here? The secret of the ideal matrices lies in this: if Q is small relative to x and y, then one of the two factors of $x^{2}-t x y+n y^{2}$ is small, say $|x-\omega y|$ is small. But then the beginning
of the continued fraction expansion of x / y must coincide with the initial terms of the expansion of ω. Suppose h is maximal so that the

What's going on here? The secret of the ideal matrices lies in this: if Q is small relative to x and y, then one of the two factors of $x^{2}-t x y+n y^{2}$ is small, say $|x-\omega y|$ is small. But then the beginning of the continued fraction expansion of x / y must coincide with the initial terms of the expansion of ω. Suppose h is maximal so that the

What's going on here? The secret of the ideal matrices lies in this: if Q is small relative to x and y, then one of the two factors of $x^{2}-t x y+n y^{2}$ is small, say $|x-\omega y|$ is small. But then the beginning of the continued fraction expansion of x / y must coincide with the initial terms of the expansion of ω. Suppose h is maximal so that the convergent x_{h} / y_{h} of ω also is a convergent of x / y.

What's going on here? The secret of the ideal matrices lies in this: if Q is small relative to x and y, then one of the two factors of $x^{2}-t x y+n y^{2}$ is small, say $|x-\omega y|$ is small. But then the beginning of the continued fraction expansion of x / y must coincide with the initial terms of the expansion of ω. Suppose h is maximal so that the convergent x_{h} / y_{h} of ω also is a convergent of x / y. Then one may think of the ideal $\left\langle Q_{h+1}, \omega+P_{h+1}\right\rangle$ as the reduced ideal nearest to the unreduced ideal $\langle Q, \omega+P\rangle$.

What's going on here? The secret of the ideal matrices lies in this: if Q is small relative to x and y, then one of the two factors of $x^{2}-t x y+n y^{2}$ is small, say $|x-\omega y|$ is small. But then the beginning of the continued fraction expansion of x / y must coincide with the initial terms of the expansion of ω. Suppose h is maximal so that the convergent x_{h} / y_{h} of ω also is a convergent of x / y. Then one may think of the ideal $\left\langle Q_{h+1}, \omega+P_{h+1}\right\rangle$ as the reduced ideal nearest to the unreduced ideal $\langle Q, \omega+P\rangle$. In fact if small is small enough, $2 Q<\omega-\bar{\omega}$ will certainly do, then necessarily $x / y=x_{h} / y_{h}$ is a convergent of ω.
the remark that the matrix correspondence yields

What's going on here? The secret of the ideal matrices lies in this: if Q is small relative to x and y, then one of the two factors of $x^{2}-t x y+n y^{2}$ is small, say $|x-\omega y|$ is small. But then the beginning of the continued fraction expansion of x / y must coincide with the initial terms of the expansion of ω. Suppose h is maximal so that the convergent x_{h} / y_{h} of ω also is a convergent of x / y. Then one may think of the ideal $\left\langle Q_{h+1}, \omega+P_{h+1}\right\rangle$ as the reduced ideal nearest to the unreduced ideal $\langle Q, \omega+P\rangle$. In fact if small is small enough, $2 Q<\omega-\bar{\omega}$ will certainly do, then necessarily $x / y=x_{h} / y_{h}$ is a convergent of ω. In that case the decomposition of $N=N_{h}$ is precisely the remark that the matrix correspondence yields

$$
\omega=\left[a_{0}, a_{1}, \ldots, a_{h},\left(\omega+P_{h+1}\right) / Q_{h+1}\right]
$$

What's going on here? The secret of the ideal matrices lies in this: if Q is small relative to x and y, then one of the two factors of $x^{2}-t x y+n y^{2}$ is small, say $|x-\omega y|$ is small. But then the beginning of the continued fraction expansion of x / y must coincide with the initial terms of the expansion of ω. Suppose h is maximal so that the convergent x_{h} / y_{h} of ω also is a convergent of x / y. Then one may think of the ideal $\left\langle Q_{h+1}, \omega+P_{h+1}\right\rangle$ as the reduced ideal nearest to the unreduced ideal $\langle Q, \omega+P\rangle$. In fact if small is small enough, $2 Q<\omega-\bar{\omega}$ will certainly do, then necessarily $x / y=x_{h} / y_{h}$ is a convergent of ω. In that case the decomposition of $N=N_{h}$ is precisely the remark that the matrix correspondence yields

$$
\begin{aligned}
\omega & =\left[a_{0}, a_{1}, \ldots, a_{h},\left(\omega+P_{h+1}\right) / Q_{h+1}\right] \\
& \left(\begin{array}{cc}
x_{h} & -n y_{h} \\
y_{h} & x_{h}-t y_{h}
\end{array}\right)=\left(\begin{array}{cc}
a_{0} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
a_{1} & 0 \\
0 & 1
\end{array}\right) \cdots\left(\begin{array}{cc}
a_{h} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & P_{h+1} \\
0 & Q_{h+1}
\end{array}\right) .
\end{aligned}
$$

Exercise. (a) Show that the product of any two ideal matrices is indeed again a matrix of that snonial shane

What's going on here? The secret of the ideal matrices lies in this: if Q is small relative to x and y, then one of the two factors of $x^{2}-t x y+n y^{2}$ is small, say $|x-\omega y|$ is small. But then the beginning of the continued fraction expansion of x / y must coincide with the initial terms of the expansion of ω. Suppose h is maximal so that the convergent x_{h} / y_{n} of ω also is a convergent of x / y. Then one may think of the ideal $\left\langle Q_{h+1}, \omega+P_{h+1}\right\rangle$ as the reduced ideal nearest to the unreduced ideal $\langle Q, \omega+P\rangle$. In fact if small is small enough, $2 Q<\omega-\bar{\omega}$ will certainly do, then necessarily $x / y=x_{h} / y_{h}$ is a convergent of ω. In that case the decomposition of $N=N_{h}$ is precisely the remark that the matrix correspondence yields

$$
\begin{aligned}
& \omega=\left[a_{0}, a_{1}, \ldots, a_{h},\left(\omega+P_{h+1}\right) / Q_{h+1}\right] \longleftrightarrow \\
& \quad\left(\begin{array}{cc}
x_{h} & -n y_{h} \\
y_{h} & x_{h}-t y_{h}
\end{array}\right)=\left(\begin{array}{cc}
a_{0} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
a_{1} & 0 \\
0 & 1
\end{array}\right) \cdots\left(\begin{array}{cc}
a_{h} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & P_{h+1} \\
0 & Q_{h+1}
\end{array}\right) .
\end{aligned}
$$

Exercise. (a) Show that the product of any two ideal matrices is indeed again a matrix of that special shape.

What's going on here? The secret of the ideal matrices lies in this: if Q is small relative to x and y, then one of the two factors of $x^{2}-t x y+n y^{2}$ is small, say $|x-\omega y|$ is small. But then the beginning of the continued fraction expansion of x / y must coincide with the initial terms of the expansion of ω. Suppose h is maximal so that the convergent x_{h} / y_{n} of ω also is a convergent of x / y. Then one may think of the ideal $\left\langle Q_{h+1}, \omega+P_{h+1}\right\rangle$ as the reduced ideal nearest to the unreduced ideal $\langle Q, \omega+P\rangle$. In fact if small is small enough, $2 Q<\omega-\bar{\omega}$ will certainly do, then necessarily $x / y=x_{h} / y_{h}$ is a convergent of ω. In that case the decomposition of $N=N_{h}$ is precisely the remark that the matrix correspondence yields

$$
\begin{aligned}
& \omega=\left[a_{0}, a_{1}, \ldots, a_{h},\left(\omega+P_{h+1}\right) / Q_{h+1}\right] \longleftrightarrow \\
& \quad\left(\begin{array}{cc}
x_{h} & -n y_{h} \\
y_{h} & x_{h}-t y_{h}
\end{array}\right)=\left(\begin{array}{cc}
a_{0} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
a_{1} & 0 \\
0 & 1
\end{array}\right) \cdots\left(\begin{array}{cc}
a_{h} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & P_{h+1} \\
0 & Q_{h+1}
\end{array}\right) .
\end{aligned}
$$

Exercise. (a) Show that the product of any two ideal matrices is indeed again a matrix of that special shape. (b) Explain why that is obvious from the word 'go' without a laboured multiplication.

Summary of Period Cycles

- We have seen several proofs that a reduced element is part of a period, or cycle, of equivalent reduced elements. Because elements $\overline{(\omega+P) / Q}$ correspond to $\mathbb{Z}[\omega]$-ideals $\langle Q, \omega+P\rangle$ we may equally speak of ideal cycles.

Summary of Period Cycles

- We have seen several proofs that a reduced element is part of a period, or cycle, of equivalent reduced elements. Because elements $(\omega+P) / Q$ correspond to $\mathbb{Z}[\omega]$-ideals $\langle Q, \omega+P\rangle$ we may equally speak of ideal cycles.
- Moreover, a cycle provides a (nontrivial) unit in $\mathbb{Z}[\omega]$; conversely a unit induces a cycle.

Summary of Period Cycles

elements $\overline{(\omega+P) / Q}$ correspond to $\mathbb{Z}[\omega]$-ideals $\langle Q, \omega+P\rangle$ we

may equally speak of ideal cycles.

- Moreover, a cycle provides a (nontrivial) unit in $\mathbb{Z}[\omega]$; conversely a unit induces a cycle.
- The distance formula entails that the fundamental unit, say $x-\omega y$, provides the length $-\log |x-\omega y|$ of the cycle. This quantity is also known as the regulator of $\mathbb{Z}[\omega]$.

> Roughly, this length is log r; where r is the number of steps of the period. However, r is usually quite large, $\sqrt{D} \log \log D$ or so. Hence, for serious D, units are mostly enormous, typically so big that it is totally infeasible to display them in any naïve way.

Summary of Period Cycles

- The distance formula entails that the fundamental unit, say $x-\omega y$, provides the length $-\log |x-\omega y|$ of the cycle. This quantity is also known as the regulator of $\mathbb{Z}[\omega]$.
- Roughly, this length is log r; where r is the number of steps of the period. However, r is usually quite large, $\sqrt{D} \log \log D$ or so. Hence, for serious D, units are mostly enormous, typically so big that it is totally infeasible to display them in any naïve way.

Summary of Period Cycles

- In brief, in practice one cannot detail the continuants x_{h} and y_{h}. The ideal matrices truly are "ideal", but only in the sense "unreal" or "theoretical".

Continued Fractions in Function Fields

We suppose integer \leftarrow polynomial, and positive \leftarrow of positive degree.
To fix matters we suppose the polynomials to be defined over some base field K and remark that K may be infinite or finite.

Continued Fractions in Function Fields

We suppose integer \leftarrow polynomial, and positive \leftarrow of positive degree. To fix matters we suppose the polynomials to be defined over some base field K

Continued Fractions in Function Fields

We suppose integer \leftarrow polynomial, and positive \leftarrow of positive degree. To fix matters we suppose the polynomials to be defined over some base field K and remark that K may be infinite or finite.
$K\left(\left(X^{-1}\right)\right)$, instanced by

The example series F has degree m and its integer part is the
polynomial $\lfloor F\rfloor=f_{m} X^{m}+f_{m-1} X^{m-1}+\cdots+f_{1} X+f_{0}$.

Continued Fractions in Function Fields

We suppose integer \leftarrow polynomial, and positive \leftarrow of positive degree. To fix matters we suppose the polynomials to be defined over some base field K and remark that K may be infinite or finite. A useful analogue for the real numbers is provided by the field of Laurent series $K\left(\left(X^{-1}\right)\right)$, instanced by

$$
F(X)=\sum_{h=-m}^{\infty} f_{-n} X^{-h} .
$$

The example series F has degree m and its integer part is the polynomial $\lfloor F\rfloor=f_{m} X^{m}+f_{m-1} X^{m-1}+\cdots+f_{1} X+f_{0}$.
Matters are exactly as or more simple than in the numerical case.
Convergents are quotients of relatively prime polynomials, continued
fractions converge to Laurent series; but x / y is a convergent of F

Continued Fractions in Function Fields

We suppose integer \leftarrow polynomial, and positive \leftarrow of positive degree. To fix matters we suppose the polynomials to be defined over some base field K and remark that K may be infinite or finite. A useful analogue for the real numbers is provided by the field of Laurent series $K\left(\left(X^{-1}\right)\right)$, instanced by

$$
F(X)=\sum_{h=-m}^{\infty} f_{-n} X^{-h} .
$$

The example series F has degree m and its integer part is the polynomial $\lfloor F\rfloor=f_{m} X^{m}+f_{m-1} X^{m-1}+\cdots+f_{1} X+f_{0}$.
Matters are exactly as or more simple than in the numerical case. Convergents are quotients of relatively prime polynomials, continued fractions converge to Laurent series; but x / y is a convergent of F if and only if $\operatorname{deg}(x-F y)<-\operatorname{deg} y$.

Continued Fractions in Function Fields

We suppose integer \leftarrow polynomial, and positive \leftarrow of positive degree. To fix matters we suppose the polynomials to be defined over some base field K and remark that K may be infinite or finite. A useful analogue for the real numbers is provided by the field of Laurent series $K\left(\left(X^{-1}\right)\right)$, instanced by

$$
F(X)=\sum_{h=-m}^{\infty} f_{-n} X^{-h} .
$$

The example series F has degree m and its integer part is the polynomial $\lfloor F\rfloor=f_{m} X^{m}+f_{m-1} X^{m-1}+\cdots+f_{1} X+f_{0}$.
Matters are exactly as or more simple than in the numerical case. Convergents are quotients of relatively prime polynomials, continued fractions converge to Laurent series; but x / y is a convergent of F if and only if $\operatorname{deg}(x-F y)<-\operatorname{deg} y$. One point that needs care is, however, that the non-zero elements of K all are (trivial) units of $K[X]$; this fact has some seemingly nontrivial consequences.

Multlipying a Continued Fraction by a Constant

Multiplying a continued fraction [$a_{0}, a_{1}, a_{2}, a_{3}, \ldots$] by x leads to [$x a_{0}, a_{1} / x, x a_{2}, a_{3} / x, \ldots$], with the partial quotients alternately being multiplied and divided. An elegant version of the rule is given by
division) leads to drastically inadmissible partial quotients seriously nolluting the axnansion

Multlipying a Continued Fraction by a Constant

Multiplying a continued fraction [$a_{0}, a_{1}, a_{2}, a_{3}, \ldots$] by x leads to [$x a_{0}, a_{1} / x, x a_{2}, a_{3} / x, \ldots$], with the partial quotients alternately being multiplied and divided. An elegant version of the rule is given by

$$
x\left[y a_{0}, x a_{1}, y a_{2}, x a_{3}, y a_{4}, \ldots\right]=y\left[x a_{0}, y a_{1}, x a_{2}, y a_{3}, x a_{4}, \ldots\right]
$$

division) leads to drastically inadmissible partial quotients seriously polluting the expansion. There are tricks whereby one readies an

Multlipying a Continued Fraction by a Constant

Multiplying a continued fraction [$a_{0}, a_{1}, a_{2}, a_{3}, \ldots$] by x leads to [$x a_{0}, a_{1} / x, x a_{2}, a_{3} / x, \ldots$], with the partial quotients alternately being multiplied and divided. An elegant version of the rule is given by

$$
x\left[y a_{0}, x a_{1}, y a_{2}, x a_{3}, y a_{4}, \ldots\right]=y\left[x a_{0}, y a_{1}, x a_{2}, y a_{3}, x a_{4}, \ldots\right]
$$

Obviously, unless the multiplier is a unit, in general multiplication (or division) leads to drastically inadmissible partial quotients seriously polluting the expansion.

Multlipying a Continued Fraction by a Constant

Multiplying a continued fraction $\left[a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right]$ by x leads to [$x a_{0}, a_{1} / x, x a_{2}, a_{3} / x, \ldots$], with the partial quotients alternately being multiplied and divided. An elegant version of the rule is given by

$$
x\left[y a_{0}, x a_{1}, y a_{2}, x a_{3}, y a_{4}, \ldots\right]=y\left[x a_{0}, y a_{1}, x a_{2}, y a_{3}, x a_{4}, \ldots\right] .
$$

Obviously, unless the multiplier is a unit, in general multiplication (or division) leads to drastically inadmissible partial quotients seriously polluting the expansion. There are tricks whereby one readies an expansion for the multiplication, as in the 'elegant version' above.
a multiple state transduction of an $R L$-sequence.

Multlipying a Continued Fraction by a Constant

Multiplying a continued fraction $\left[a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right]$ by x leads to $\left[x a_{0}, a_{1} / x, x a_{2}, a_{3} / x, \ldots\right]$, with the partial quotients alternately being multiplied and divided. An elegant version of the rule is given by

$$
x\left[y a_{0}, x a_{1}, y a_{2}, x a_{3}, y a_{4}, \ldots\right]=y\left[x a_{0}, y a_{1}, x a_{2}, y a_{3}, x a_{4}, \ldots\right] .
$$

Obviously, unless the multiplier is a unit, in general multiplication (or division) leads to drastically inadmissible partial quotients seriously polluting the expansion. There are tricks whereby one readies an expansion for the multiplication, as in the 'elegant version' above. Or, there is a fine algorithm of George Raney viewing the multiplication as a multiple state transduction of an RL-sequence.
the effect on the expansion may be starting and unexpected.

Multlipying a Continued Fraction by a Constant

Multiplying a continued fraction [$\left.a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right]$ by x leads to [$x a_{0}, a_{1} / x, x a_{2}, a_{3} / x, \ldots$], with the partial quotients alternately being multiplied and divided. An elegant version of the rule is given by

$$
x\left[y a_{0}, x a_{1}, y a_{2}, x a_{3}, y a_{4}, \ldots\right]=y\left[x a_{0}, y a_{1}, x a_{2}, y a_{3}, x a_{4}, \ldots\right] .
$$

Obviously, unless the multiplier is a unit, in general multiplication (or division) leads to drastically inadmissible partial quotients seriously polluting the expansion. There are tricks whereby one readies an expansion for the multiplication, as in the 'elegant version' above. Or, there is a fine algorithm of George Raney viewing the multiplication as a multiple state transduction of an RL-sequence.
Even when the multiplication is by a unit, so that no great harm is done, the effect on the expansion may be startling and unexpected.
case of quadratic irrationals over function fields, it creates the

Multlipying a Continued Fraction by a Constant

Multiplying a continued fraction [$a_{0}, a_{1}, a_{2}, a_{3}, \ldots$] by x leads to $\left[x a_{0}, a_{1} / x, x a_{2}, a_{3} / x, \ldots\right]$, with the partial quotients alternately being multiplied and divided. An elegant version of the rule is given by

$$
x\left[y a_{0}, x a_{1}, y a_{2}, x a_{3}, y a_{4}, \ldots\right]=y\left[x a_{0}, y a_{1}, x a_{2}, y a_{3}, x a_{4}, \ldots\right]
$$

Obviously, unless the multiplier is a unit, in general multiplication (or division) leads to drastically inadmissible partial quotients seriously polluting the expansion. There are tricks whereby one readies an expansion for the multiplication, as in the 'elegant version' above. Or, there is a fine algorithm of George Raney viewing the multiplication as a multiple state transduction of an RL-sequence.
Even when the multiplication is by a unit, so that no great harm is done, the effect on the expansion may be startling and unexpected. In the case of quadratic irrationals over function fields, it creates the possibility of quasi-periodicity, where a 'wannabe' period in fact presents as a sequence of multiples of itself by $k, k^{2}, k^{3} . \ldots$.

Continued Fraction of the Square Root of a Polynomial

Set $Y^{2}=D(X)$ where $D \neq \square$ is a monic polynomial of degree $2 g+2$. Then we may write

where A is the polynomial part of the square root Y of D and $4 R$, with $\operatorname{dea} R<a$, is the remainder. We then take

thereby viewing Y as an element of $K\left(\left(X^{-1}\right)\right)$, Laurent series in the variable $1 / X$. All this makes sense over any base field K not of characteristic 2.
However, below I deal with the quadratic irrational function Z defined

Continued Fraction of the Square Root of a Polynomial

Set $Y^{2}=D(X)$ where $D \neq \square$ is a monic polynomial of degree $2 g+2$. Then we may write

$$
D(X)=(A(X))^{2}+4 R(X),
$$

where A is the polynomial part of the square root Y of D and $4 R$, with $\operatorname{deg} R \leq g$, is the remainder. We then take

$$
Y=A\left(1+4 R / A^{2}\right)^{1 / 2}=A(X)+c_{1} X^{-1}+c_{2} X^{-2}+\cdots
$$

thereby viewing Y as an element of $K\left(\left(X^{-1}\right)\right)$, Laurent series in the variable $1 / X$. All this makes sense over any base field K not of characteristic 2.
However, below I deal with the quadratic irrational function Z defined

Continued Fraction of the Square Root of a Polynomial

Set $Y^{2}=D(X)$ where $D \neq \square$ is a monic polynomial of degree $2 g+2$. Then we may write

$$
D(X)=(A(X))^{2}+4 R(X),
$$

where A is the polynomial part of the square root Y of D and $4 R$, with $\operatorname{deg} R \leq g$, is the remainder. We then take

$$
Y=A\left(1+4 R / A^{2}\right)^{1 / 2}=A(X)+c_{1} X^{-1}+c_{2} X^{-2}+\cdots
$$

thereby viewing Y as an element of $K\left(\left(X^{-1}\right)\right)$, Laurent series in the variable $1 / X$. All this makes sense over any base field K not of characteristic 2.
However, below I deal with the quadratic irrational function Z defined by

$$
\mathcal{C}: Z^{2}-A Z-R=0 ; \quad \text { in effect } Z=\frac{1}{2}(Y+A) \text {. }
$$

Continued Fraction of the Square Root of a Polynomial

Set $Y^{2}=D(X)$ where $D \neq \square$ is a monic polynomial of degree $2 g+2$. Then we may write

$$
D(X)=(A(X))^{2}+4 R(X),
$$

where A is the polynomial part of the square root Y of D and $4 R$, with $\operatorname{deg} R \leq g$, is the remainder. We then take

$$
Y=A\left(1+4 R / A^{2}\right)^{1 / 2}=A(X)+c_{1} X^{-1}+c_{2} X^{-2}+\cdots
$$

thereby viewing Y as an element of $K\left(\left(X^{-1}\right)\right)$, Laurent series in the variable $1 / X$. All this makes sense over any base field K not of characteristic 2.
However, below I deal with the quadratic irrational function Z defined by

$$
\mathcal{C}: Z^{2}-A Z-R=0 ; \quad \text { in effect } Z=\frac{1}{2}(Y+A) \text {. }
$$

Then $\operatorname{deg} Z=\operatorname{deg} A=g+1$, while its conjugate satisfies $\operatorname{deg} \bar{Z}<0$;

Continued Fraction of the Square Root of a Polynomial

Set $Y^{2}=D(X)$ where $D \neq \square$ is a monic polynomial of degree $2 g+2$. Then we may write

$$
D(X)=(A(X))^{2}+4 R(X),
$$

where A is the polynomial part of the square root Y of D and $4 R$, with $\operatorname{deg} R \leq g$, is the remainder. We then take

$$
Y=A\left(1+4 R / A^{2}\right)^{1 / 2}=A(X)+c_{1} X^{-1}+c_{2} X^{-2}+\cdots
$$

thereby viewing Y as an element of $K\left(\left(X^{-1}\right)\right)$, Laurent series in the variable $1 / X$. All this makes sense over any base field K not of characteristic 2.
However, below I deal with the quadratic irrational function Z defined by

$$
\mathcal{C}: Z^{2}-A Z-R=0 ; \quad \text { in effect } Z=\frac{1}{2}(Y+A) .
$$

Then $\operatorname{deg} Z=\operatorname{deg} A=g+1$, while its conjugate satisfies $\operatorname{deg} \bar{Z}<0$; so Z is reduced.

Continued Fraction of the Square Root of a Polynomial

Set $Y^{2}=D(X)$ where $D \neq \square$ is a monic polynomial of degree $2 g+2$. Then we may write

$$
D(X)=(A(X))^{2}+4 R(X),
$$

where A is the polynomial part of the square root Y of D and $4 R$, with $\operatorname{deg} R \leq g$, is the remainder. We then take

$$
Y=A\left(1+4 R / A^{2}\right)^{1 / 2}=A(X)+c_{1} X^{-1}+c_{2} X^{-2}+\cdots
$$

thereby viewing Y as an element of $K\left(\left(X^{-1}\right)\right)$, Laurent series in the variable $1 / X$. All this makes sense over any base field K not of characteristic 2.
However, below I deal with the quadratic irrational function Z defined by

$$
\mathcal{C}: Z^{2}-A Z-R=0 ; \quad \text { in effect } Z=\frac{1}{2}(Y+A) .
$$

Then $\operatorname{deg} Z=\operatorname{deg} A=g+1$, while its conjugate satisfies $\operatorname{deg} \bar{Z}<0$; so Z is reduced. Note that Z makes sense in arbitrary characteristic, including characteristic two.

Quadratic Function Fields

Let $Z^{2}-A Z-R=0$. In my remarks Z will denote a nontrivial quadratic irrational function of polynomial trace A and polynomial norm $-R$,

Quadratic Function Fields

Let $Z^{2}-A Z-R=0$. In my remarks Z will denote a nontrivial quadratic irrational function of polynomial trace A and polynomial norm $-R$, with $\operatorname{deg} R<\operatorname{deg} A$. The word 'irrational' entails that Z not be a

Quadratic Function Fields

Let $Z^{2}-A Z-R=0$. In my remarks Z will denote a nontrivial quadratic irrational function of polynomial trace A and polynomial norm $-R$, with $\operatorname{deg} R<\operatorname{deg} A$. The word 'irrational' entails that Z not be a polynomial; thus $R \neq 0$.

Quadratic Function Fields

Let $Z^{2}-A Z-R=0$. In my remarks Z will denote a nontrivial quadratic irrational function of polynomial trace A and polynomial norm $-R$, with $\operatorname{deg} R<\operatorname{deg} A$. The word 'irrational' entails that Z not be a polynomial; thus $R \neq 0$.
Exercise. Confirm that (a) given that Z is in $K\left(\left(X^{-1}\right)\right)$,

Quadratic Function Fields

Let $Z^{2}-A Z-R=0$. In my remarks Z will denote a nontrivial quadratic irrational function of polynomial trace A and polynomial norm $-R$, with $\operatorname{deg} R<\operatorname{deg} A$. The word 'irrational' entails that Z not be a polynomial; thus $R \neq 0$.
Exercise. Confirm that (a) given that Z is in $K\left(\left(X^{-1}\right)\right)$, there plainly is no loss of generality in supposing, as I have, that $\operatorname{deg} R<\operatorname{deg} A$, equivalently that A is the polynomial part of $\sqrt{D}=Z-\bar{Z}$, the square root of the discriminant $D=A^{2}+4 A$ of Z;

Quadratic Function Fields

Let $Z^{2}-A Z-R=0$. In my remarks Z will denote a nontrivial quadratic irrational function of polynomial trace A and polynomial norm $-R$, with $\operatorname{deg} R<\operatorname{deg} A$. The word 'irrational' entails that Z not be a polynomial; thus $R \neq 0$.
Exercise. Confirm that (a) given that Z is in $K\left(\left(X^{-1}\right)\right)$, there plainly is no loss of generality in supposing, as I have, that $\operatorname{deg} R<\operatorname{deg} A$, equivalently that A is the polynomial part of $\sqrt{D}=Z-\bar{Z}$, the square root of the discriminant $D=A^{2}+4 A$ of Z; and (b) given that $\operatorname{deg} Z>\operatorname{deg} \bar{Z}$, the conditions $\operatorname{deg} Z>0$ and $\operatorname{deg} \bar{Z}<0$ precisely affirm that Z is reduced, in the sense that the continued fraction process on a quadratic irrational always leads to and then sustains the conditions.

Quadratic Function Fields

Let $Z^{2}-A Z-R=0$. In my remarks Z will denote a nontrivial quadratic irrational function of polynomial trace A and polynomial norm $-R$, with $\operatorname{deg} R<\operatorname{deg} A$. The word 'irrational' entails that Z not be a polynomial; thus $R \neq 0$.
Exercise. Confirm that (a) given that Z is in $K\left(\left(X^{-1}\right)\right)$, there plainly is no loss of generality in supposing, as I have, that $\operatorname{deg} R<\operatorname{deg} A$, equivalently that A is the polynomial part of $\sqrt{D}=Z-\bar{Z}$, the square root of the discriminant $D=A^{2}+4 A$ of Z; and (b) given that $\operatorname{deg} Z>\operatorname{deg} \bar{Z}$, the conditions $\operatorname{deg} Z>0$ and $\operatorname{deg} \bar{Z}<0$ precisely affirm that Z is reduced, in the sense that the continued fraction process on a quadratic irrational always leads to and then sustains the conditions.
Technically, Z is a real quadratic irrational function; quadratic irrationals defined over $K[X]$ but not in $K\left(\left(X^{-1}\right)\right)$ are imaginary.

Quadratic Function Fields

Let $Z^{2}-A Z-R=0$. In my remarks Z will denote a nontrivial quadratic irrational function of polynomial trace A and polynomial norm $-R$, with $\operatorname{deg} R<\operatorname{deg} A$. The word 'irrational' entails that Z not be a polynomial; thus $R \neq 0$.
Exercise. Confirm that (a) given that Z is in $K\left(\left(X^{-1}\right)\right)$, there plainly is no loss of generality in supposing, as I have, that $\operatorname{deg} R<\operatorname{deg} A$, equivalently that A is the polynomial part of $\sqrt{D}=Z-\bar{Z}$, the square root of the discriminant $D=A^{2}+4 A$ of Z; and (b) given that $\operatorname{deg} Z>\operatorname{deg} \bar{Z}$, the conditions $\operatorname{deg} Z>0$ and $\operatorname{deg} \bar{Z}<0$ precisely affirm that Z is reduced, in the sense that the continued fraction process on a quadratic irrational always leads to and then sustains the conditions.
Technically, Z is a real quadratic irrational function; quadratic irrationals defined over $K[X]$ but not in $K\left(\left(X^{-1}\right)\right)$ are imaginary.

Periodicity of Continued Fraction Expansions

Set $Z_{h}=\left(Z+P_{h}\right) / Q_{h}$ where P_{h} and Q_{h} are polynomials with Q_{h} dividing the norm $\left(Z+P_{h}\right)\left(\bar{Z}+P_{h}\right)$. $\operatorname{deg} Z_{h}<0$; in other words that Z_{h} is reduced.

Periodicity of Continued Fraction Expansions

Set $Z_{h}=\left(Z+P_{h}\right) / Q_{h}$ where P_{h} and Q_{h} are polynomials with Q_{h} dividing the norm $\left(Z+P_{h}\right)\left(\bar{Z}+P_{h}\right)$. Suppose that deg $Z_{h}>0$ and deg $\bar{Z}_{h}<0$; in other words that Z_{h} is reduced.

Periodicity of Continued Fraction Expansions

Set $Z_{h}=\left(Z+P_{h}\right) / Q_{h}$ where P_{h} and Q_{h} are polynomials with Q_{h} dividing the norm $\left(Z+P_{h}\right)\left(\bar{Z}+P_{h}\right)$. Suppose that deg $Z_{h}>0$ and $\operatorname{deg} \bar{Z}_{h}<0$; in other words that Z_{h} is reduced.
Exercise (a) Show that Z_{h} is reduced if and only if $\operatorname{deg} P \leq g-1$ and $\operatorname{deg} Q_{h} \leq g$.
\qquad

Periodicity of Continued Fraction Expansions

Set $Z_{h}=\left(Z+P_{h}\right) / Q_{h}$ where P_{h} and Q_{h} are polynomials with Q_{h} dividing the norm $\left(Z+P_{h}\right)\left(\bar{Z}+P_{h}\right)$. Suppose that deg $Z_{h}>0$ and $\operatorname{deg} \bar{Z}_{h}<0$; in other words that Z_{h} is reduced.
Exercise (a) Show that Z_{h} is reduced if and only if $\operatorname{deg} P \leq g-1$ and deg $Q_{h} \leq g$. (b) Denote the polynomial part of Z_{h} by a_{h} and set $Z_{h}=a_{h}-\bar{R}_{-h}$. Parody the argument of the numerical case to confirm that R_{-h} and $Z_{h+1}=-1 / \bar{R}_{-h}$ are reduced.
It seems to follow that every reduced element must have a purely periodic continued fraction expansion. And that's true, but only sort of. The trouble is that if the base field K is infinite then the period is
\qquad apply because if K is infinite then there are infinitely many polynomials of bounded degree.

Periodicity of Continued Fraction Expansions

Set $Z_{h}=\left(Z+P_{h}\right) / Q_{h}$ where P_{h} and Q_{h} are polynomials with Q_{h} dividing the norm $\left(Z+P_{h}\right)\left(\bar{Z}+P_{h}\right)$. Suppose that $\operatorname{deg} Z_{h}>0$ and $\operatorname{deg} \bar{Z}_{h}<0$; in other words that Z_{h} is reduced.
Exercise (a) Show that Z_{h} is reduced if and only if $\operatorname{deg} P \leq g-1$ and deg $Q_{h} \leq g$. (b) Denote the polynomial part of Z_{h} by a_{h} and set $Z_{h}=a_{h}-\bar{R}_{-h}$. Parody the argument of the numerical case to confirm that R_{-h} and $Z_{h+1}=-1 / \bar{R}_{-h}$ are reduced.
It seems to follow that every reduced element must have a purely periodic continued fraction expansion. And that's true, but only sort of. The trouble is that if the base field K is infinite then the period is generically of infinite length. The point is that the box principle does not apply because if K is infinite then there are infinitely many polynomials of bounded degree.

Wore, it is then rare and unusual happenstance for any reduced $Z 0$ to have a periodic expansion.

Periodicity of Continued Fraction Expansions

Set $Z_{h}=\left(Z+P_{h}\right) / Q_{h}$ where P_{h} and Q_{h} are polynomials with Q_{h} dividing the norm $\left(Z+P_{h}\right)\left(\bar{Z}+P_{h}\right)$. Suppose that deg $Z_{h}>0$ and $\operatorname{deg} \bar{Z}_{h}<0$; in other words that Z_{h} is reduced.
Exercise (a) Show that Z_{h} is reduced if and only if deg $P \leq g-1$ and deg $Q_{h} \leq g$. (b) Denote the polynomial part of Z_{h} by a_{h} and set $Z_{h}=a_{h}-\bar{R}_{-h}$. Parody the argument of the numerical case to confirm that R_{-h} and $Z_{h+1}=-1 / \bar{R}_{-h}$ are reduced.
It seems to follow that every reduced element must have a purely periodic continued fraction expansion. And that's true, but only sort of. The trouble is that if the base field K is infinite then the period is generically of infinite length. The point is that the box principle does not apply because if K is infinite then there are infinitely many polynomials of bounded degree.
More, it is then rare and unusual happenstance for any reduced Z_{0} to have a periodic expansion.

Continued Fractions and Hyperelliptic Curves

Note that $\left(Z+P_{h}\right)\left(\bar{Z}+P_{h}\right)=-R+A P_{h}+P_{h}^{2}$. Suppose ϑ_{h} denotes a typical zero of Q_{h}. Then the condition: Q_{h} divides the norm $\left(Z+P_{h}\right)\left(\bar{Z}+P_{h}\right)$ asserts that $R\left(\vartheta_{h}\right)=\left(A\left(\vartheta_{h}\right)+P_{h}\left(\vartheta_{h}\right)\right) P_{h}\left(\vartheta_{h}\right)$.
However, recall that Z defines the hyperelliptic curve

Continued Fractions and Hyperelliptic Curves

Note that $\left(Z+P_{h}\right)\left(\bar{Z}+P_{h}\right)=-R+A P_{h}+P_{h}^{2}$. Suppose ϑ_{h} denotes a typical zero of Q_{h}. Then the condition: Q_{h} divides the norm $\left(Z+P_{h}\right)\left(\bar{Z}+P_{h}\right)$ asserts that $R\left(\vartheta_{h}\right)=\left(A\left(\vartheta_{h}\right)+P_{h}\left(\vartheta_{h}\right)\right) P_{h}\left(\vartheta_{h}\right)$. However, recall that Z defines the hyperelliptic curve

$$
\mathcal{C}: Z^{2}-A Z-R=0
$$

of genus g. Of course \mathcal{C} is defined over K but, for a moment
conjugate zeros

Continued Fractions and Hyperelliptic Curves

Note that $\left(Z+P_{h}\right)\left(\bar{Z}+P_{h}\right)=-R+A P_{h}+P_{h}^{2}$. Suppose ϑ_{h} denotes a typical zero of Q_{h}. Then the condition: Q_{h} divides the norm $\left(Z+P_{h}\right)\left(\bar{Z}+P_{h}\right)$ asserts that $R\left(\vartheta_{h}\right)=\left(A\left(\vartheta_{h}\right)+P_{h}\left(\vartheta_{h}\right)\right) P_{h}\left(\vartheta_{h}\right)$. However, recall that Z defines the hyperelliptic curve

$$
\mathcal{C}: Z^{2}-A Z-R=0
$$

of genus g. Of course \mathcal{C} is defined over K but, for a moment disregarding that, it follows from the remarks above that the point $\left(\vartheta_{h},-P_{h}\left(\vartheta_{h}\right)\right)$ is a point on \mathcal{C}.

Continued Fractions and Hyperelliptic Curves

Note that $\left(Z+P_{h}\right)\left(\bar{Z}+P_{h}\right)=-R+A P_{h}+P_{h}^{2}$. Suppose ϑ_{h} denotes a typical zero of Q_{h}. Then the condition: Q_{h} divides the norm $\left(Z+P_{h}\right)\left(\bar{Z}+P_{h}\right)$ asserts that $R\left(\vartheta_{h}\right)=\left(A\left(\vartheta_{h}\right)+P_{h}\left(\vartheta_{h}\right)\right) P_{h}\left(\vartheta_{h}\right)$. However, recall that Z defines the hyperelliptic curve

$$
\mathcal{C}: Z^{2}-A Z-R=0
$$

of genus g. Of course \mathcal{C} is defined over K but, for a moment disregarding that, it follows from the remarks above that the point $\left(\vartheta_{h},-P_{h}\left(\vartheta_{h}\right)\right)$ is a point on \mathcal{C}. In general deg $Q_{h}=g$ and so has g conjugate zeros.

Continued Fractions and Hyperelliptic Curves

Note that $\left(Z+P_{h}\right)\left(\bar{Z}+P_{h}\right)=-R+A P_{h}+P_{h}^{2}$. Suppose ϑ_{h} denotes a typical zero of Q_{h}. Then the condition: Q_{h} divides the norm $\left(Z+P_{h}\right)\left(\bar{Z}+P_{h}\right)$ asserts that $R\left(\vartheta_{h}\right)=\left(A\left(\vartheta_{h}\right)+P_{h}\left(\vartheta_{h}\right)\right) P_{h}\left(\vartheta_{h}\right)$. However, recall that Z defines the hyperelliptic curve

$$
\mathcal{C}: Z^{2}-A Z-R=0
$$

of genus g. Of course \mathcal{C} is defined over K but, for a moment disregarding that, it follows from the remarks above that the point $\left(\vartheta_{h},-P_{h}\left(\vartheta_{h}\right)\right)$ is a point on \mathcal{C}. In general deg $Q_{h}=g$ and so has g conjugate zeros. That gives a g-tuple of conjugate points on \mathcal{C}, or in proper language, a divisor defined over K on \mathcal{C}.

Continued Fractions and Hyperelliptic Curves

Note that $\left(Z+P_{h}\right)\left(\bar{Z}+P_{h}\right)=-R+A P_{h}+P_{h}^{2}$. Suppose ϑ_{h} denotes a typical zero of Q_{h}. Then the condition: Q_{h} divides the norm $\left(Z+P_{h}\right)\left(\bar{Z}+P_{h}\right)$ asserts that $R\left(\vartheta_{h}\right)=\left(A\left(\vartheta_{h}\right)+P_{h}\left(\vartheta_{h}\right)\right) P_{h}\left(\vartheta_{h}\right)$. However, recall that Z defines the hyperelliptic curve

$$
\mathcal{C}: Z^{2}-A Z-R=0
$$

of genus g. Of course \mathcal{C} is defined over K but, for a moment disregarding that, it follows from the remarks above that the point $\left(\vartheta_{h},-P_{h}\left(\vartheta_{h}\right)\right)$ is a point on \mathcal{C}. In general deg $Q_{h}=g$ and so has g conjugate zeros. That gives a g-tuple of conjugate points on \mathcal{C}, or in proper language, a divisor defined over K on \mathcal{C}.
Equivalence classes of divisors provide the points of the Jacobian of \mathcal{C}. So the continued fraction provides a sequence of points on $\mathrm{Jac}(\mathcal{C})$. It turns out that consecutive such points differ by some multiple (in fact the degree of a_{h}) of the class of the divisor at infinity on \mathcal{C}.
about honest-to-goodness points on the curve.

Continued Fractions and Hyperelliptic Curves

Note that $\left(Z+P_{h}\right)\left(\bar{Z}+P_{h}\right)=-R+A P_{h}+P_{h}^{2}$. Suppose ϑ_{h} denotes a typical zero of Q_{h}. Then the condition: Q_{h} divides the norm $\left(Z+P_{h}\right)\left(\bar{Z}+P_{h}\right)$ asserts that $R\left(\vartheta_{h}\right)=\left(A\left(\vartheta_{h}\right)+P_{h}\left(\vartheta_{h}\right)\right) P_{h}\left(\vartheta_{h}\right)$. However, recall that Z defines the hyperelliptic curve

$$
\mathcal{C}: Z^{2}-A Z-R=0
$$

of genus g. Of course \mathcal{C} is defined over K but, for a moment disregarding that, it follows from the remarks above that the point $\left(\vartheta_{h},-P_{h}\left(\vartheta_{h}\right)\right)$ is a point on \mathcal{C}. In general deg $Q_{h}=g$ and so has g conjugate zeros. That gives a g-tuple of conjugate points on \mathcal{C}, or in proper language, a divisor defined over K on \mathcal{C}.
Equivalence classes of divisors provide the points of the Jacobian of \mathcal{C}. So the continued fraction provides a sequence of points on $\mathrm{Jac}(\mathcal{C})$. It turns out that consecutive such points differ by some multiple (in fact the degree of a_{h}) of the class of the divisor at infinity on \mathcal{C}.
If $g=1, \mathcal{C}$ is an elliptic curve equal to its Jacobian; and this story is about honest-to-goodness points on the curve,

Negative Continued Fraction Expansions

We get the sequence of positive partial quotients, say $\left(a_{h}\right)$, of a simple continued fraction expansion by underestimating each successive complete quotient by its floor. We obtain

If, instead, we define the partial quotients by overestimating the
successive complete quotients by their ceiling, we obtain a negative continued fraction with partial quotients (b_{h}), say.

Negative Continued Fraction Expansions

We get the sequence of positive partial quotients, say $\left(a_{h}\right)$, of a simple continued fraction expansion by underestimating each successive complete quotient by its floor. We obtain

$$
\left[a_{0}, a_{1}, a_{2}, \ldots\right]=a_{0}+\frac{1}{a_{1}}+\frac{1}{a_{2}}+\frac{1}{a_{3}}+\frac{1}{a_{4}}+\cdots
$$

If, instead, we define the partial quotients by overestimating the
successive complete quotients by their ceiling, we obtain a negative continued fraction with partial quotients $\left(b_{h}\right)$, say. But a negative
\qquad

Negative Continued Fraction Expansions

We get the sequence of positive partial quotients, say $\left(a_{h}\right)$, of a simple continued fraction expansion by underestimating each successive complete quotient by its floor. We obtain

$$
\left[a_{0}, a_{1}, a_{2}, \ldots\right]=a_{0}+\frac{1}{a_{1}}+\frac{1}{a_{2}}+\frac{1}{a_{3}}+\frac{1}{a_{4}}+\cdots
$$

If, instead, we define the partial quotients by overestimating the successive complete quotients by their ceiling, we obtain a negative continued fraction with partial quotients $\left(b_{h}\right)$, say.
quotients of alternating sign:

Here, \bar{b} is a convenient shorthand for

Negative Continued Fraction Expansions

We get the sequence of positive partial quotients, say $\left(a_{h}\right)$, of a simple continued fraction expansion by underestimating each successive complete quotient by its floor. We obtain

$$
\left[a_{0}, a_{1}, a_{2}, \ldots\right]=a_{0}+\frac{1}{a_{1}}+\frac{1}{a_{2}}+\frac{1}{a_{3}}+\frac{1}{a_{4}}+\cdots
$$

If, instead, we define the partial quotients by overestimating the successive complete quotients by their ceiling, we obtain a negative continued fraction with partial quotients $\left(b_{h}\right)$, say. But a negative continued fraction is just a regular continued fraction with partial quotients of alternating sign:

$$
\begin{aligned}
& {\left[b_{0}, b_{1}, b_{2}, \ldots\right]^{-}=b_{0}-\frac{1}{b_{1}}-\frac{1}{b_{2}}-\frac{1}{b_{3}}-\frac{1}{b_{4}}-\cdots} \\
& \quad=b_{0}+\frac{1}{\overline{b_{1}}}+\frac{1}{b_{2}}+\frac{1}{\overline{b_{3}}}+\frac{1}{b_{4}}+\cdots=\left[b_{0}, \overline{b_{1}}, b_{2}, \bar{b}_{3}, b_{4}, \bar{b}_{5}, \ldots\right]
\end{aligned}
$$

Here, \bar{b} is a convenient shorthand for $-b$.

Of course, formulas for evaluating continued fractions cannot know or care about the signs of partial quotients. If one is so moved, one may
and can change the sign of all succeeding partial quotients in an expansion by inserting the string $0,1,1,1,0$ into an expansion.

Of course, formulas for evaluating continued fractions cannot know or care about the signs of partial quotients. If one is so moved, one may and can change the sign of all succeeding partial quotients in an expansion by inserting the string $0, \overline{1}, 1, \overline{1}, 0$ into an expansion.

Of course, formulas for evaluating continued fractions cannot know or care about the signs of partial quotients. If one is so moved, one may and can change the sign of all succeeding partial quotients in an expansion by inserting the string $0, \overline{1}, 1, \overline{1}, 0$ into an expansion. Then, for example,

$$
-\pi=[\overline{3}, \overline{7}, \overline{15}, \overline{1}, \overline{292}, \overline{1}, \bar{\ldots}]
$$

Of course, formulas for evaluating continued fractions cannot know or care about the signs of partial quotients. If one is so moved, one may and can change the sign of all succeeding partial quotients in an expansion by inserting the string $0, \overline{1}, 1, \overline{1}, 0$ into an expansion. Then, for example,

$$
\begin{aligned}
& -\pi=[\overline{3}, \overline{7}, \overline{15}, \overline{1}, \overline{292}, \overline{1}, \bar{\ldots}] \\
& \quad=[\overline{3}, 0, \overline{1}, 1, \overline{1}, 0,7,15,1,292,1, \ldots]
\end{aligned}
$$

Of course, formulas for evaluating continued fractions cannot know or care about the signs of partial quotients. If one is so moved, one may and can change the sign of all succeeding partial quotients in an expansion by inserting the string $0, \overline{1}, 1, \overline{1}, 0$ into an expansion. Then, for example,

$$
\begin{aligned}
-\pi=[\overline{3}, \overline{7}, \overline{15}, \overline{1}, \overline{292}, \overline{1}, \bar{\cdots}] & \\
& =[\overline{3}, 0, \overline{1}, 1, \overline{1}, 0,7,15,1,292,1, \ldots] \\
& =[\overline{4}, 1,6,15,1,292,1, \ldots] .
\end{aligned}
$$

Negation Lemma. The computation

Of course, formulas for evaluating continued fractions cannot know or care about the signs of partial quotients. If one is so moved, one may and can change the sign of all succeeding partial quotients in an expansion by inserting the string $0, \overline{1}, 1, \overline{1}, 0$ into an expansion. Then, for example,

$$
\begin{aligned}
-\pi=[\overline{3}, \overline{7}, \overline{15}, \overline{1}, \overline{292}, \overline{1}, \bar{\cdots}] & \\
& =[\overline{3}, 0, \overline{1}, 1, \overline{1}, 0,7,15,1,292,1, \ldots] \\
& =[\overline{4}, 1,6,15,1,292,1, \ldots] .
\end{aligned}
$$

Negation Lemma.

Of course, formulas for evaluating continued fractions cannot know or care about the signs of partial quotients. If one is so moved, one may and can change the sign of all succeeding partial quotients in an expansion by inserting the string $0, \overline{1}, 1, \overline{1}, 0$ into an expansion. Then, for example,

$$
\begin{aligned}
-\pi=[\overline{3}, \overline{7}, \overline{15}, \overline{1}, \overline{292}, \overline{1}, \bar{\cdots}] & \\
& =[\overline{3}, 0, \overline{1}, 1, \overline{1}, 0,7,15,1,292,1, \ldots] \\
& =[\overline{4}, 1,6,15,1,292,1, \ldots] .
\end{aligned}
$$

Negation Lemma. The computation

$$
-\beta=0+\bar{\beta}
$$

Of course, formulas for evaluating continued fractions cannot know or care about the signs of partial quotients. If one is so moved, one may and can change the sign of all succeeding partial quotients in an expansion by inserting the string $0, \overline{1}, 1, \overline{1}, 0$ into an expansion. Then, for example,

$$
\begin{aligned}
-\pi=[\overline{3}, \overline{7}, \overline{15}, \overline{1}, \overline{292}, \overline{1}, \bar{\cdots}] & \\
& =[\overline{3}, 0, \overline{1}, 1, \overline{1}, 0,7,15,1,292,1, \ldots] \\
& =[\overline{4}, 1,6,15,1,292,1, \ldots] .
\end{aligned}
$$

Negation Lemma. The computation

$$
\begin{aligned}
-\beta & =0+\bar{\beta} \\
-1 / \beta & =\overline{1}+(\beta-1) / \beta
\end{aligned}
$$

Of course, formulas for evaluating continued fractions cannot know or care about the signs of partial quotients. If one is so moved, one may and can change the sign of all succeeding partial quotients in an expansion by inserting the string $0, \overline{1}, 1, \overline{1}, 0$ into an expansion. Then, for example,

$$
\begin{aligned}
-\pi=[\overline{3}, \overline{7}, \overline{15}, \overline{1}, \overline{292}, \overline{1}, \bar{\cdots}] & \\
& =[\overline{3}, 0, \overline{1}, 1, \overline{1}, 0,7,15,1,292,1, \ldots] \\
& =[\overline{4}, 1,6,15,1,292,1, \ldots] .
\end{aligned}
$$

Negation Lemma. The computation

$$
\begin{aligned}
-\beta & =0+\bar{\beta} \\
-1 / \beta & =\overline{1}+(\beta-1) / \beta \\
\beta /(\beta-1) & =1+1 /(\beta-1)
\end{aligned}
$$

Of course, formulas for evaluating continued fractions cannot know or care about the signs of partial quotients. If one is so moved, one may and can change the sign of all succeeding partial quotients in an expansion by inserting the string $0, \overline{1}, 1, \overline{1}, 0$ into an expansion. Then, for example,

$$
\begin{aligned}
-\pi=[\overline{3}, \overline{7}, \overline{15}, \overline{1}, \overline{292}, \overline{1}, \bar{\cdots}] & \\
& =[\overline{3}, 0, \overline{1}, 1, \overline{1}, 0,7,15,1,292,1, \ldots] \\
& =[\overline{4}, 1,6,15,1,292,1, \ldots] .
\end{aligned}
$$

Negation Lemma. The computation

$$
\begin{aligned}
-\beta & =0+\bar{\beta} \\
-1 / \beta & =\overline{1}+(\beta-1) / \beta \\
\beta /(\beta-1) & =1+1 /(\beta-1) \\
\beta-1 & =\overline{1}+\beta
\end{aligned}
$$

Of course, formulas for evaluating continued fractions cannot know or care about the signs of partial quotients. If one is so moved, one may and can change the sign of all succeeding partial quotients in an expansion by inserting the string $0, \overline{1}, 1, \overline{1}, 0$ into an expansion. Then, for example,

$$
\begin{aligned}
-\pi=[\overline{3}, \overline{7}, \overline{15}, \overline{1}, \overline{292}, \overline{1}, \bar{\cdots}] & \\
& =[\overline{3}, 0, \overline{1}, 1, \overline{1}, 0,7,15,1,292,1, \ldots] \\
& =[\overline{4}, 1,6,15,1,292,1, \ldots] .
\end{aligned}
$$

Negation Lemma. The computation

$$
\begin{aligned}
-\beta & =0+\bar{\beta} \\
-1 / \beta & =\overline{1}+(\beta-1) / \beta \\
\beta /(\beta-1) & =1+1 /(\beta-1) \\
\beta-1 & =\overline{1}+\beta \\
1 / \beta & =0+1 / \beta
\end{aligned}
$$

Of course, formulas for evaluating continued fractions cannot know or care about the signs of partial quotients. If one is so moved, one may and can change the sign of all succeeding partial quotients in an expansion by inserting the string $0, \overline{1}, 1, \overline{1}, 0$ into an expansion. Then, for example,

$$
\begin{aligned}
-\pi=[\overline{3}, \overline{7}, \overline{15}, \overline{1}, \overline{292}, \overline{1}, \bar{\cdots}] & \\
& =[\overline{3}, 0, \overline{1}, 1, \overline{1}, 0,7,15,1,292,1, \ldots] \\
& =[\overline{4}, 1,6,15,1,292,1, \ldots] .
\end{aligned}
$$

Negation Lemma. The computation

$$
\begin{aligned}
-\beta & =0+\bar{\beta} \\
-1 / \beta & =\overline{1}+(\beta-1) / \beta \\
\beta /(\beta-1) & =1+1 /(\beta-1) \\
\beta-1 & =\overline{1}+\beta \\
1 / \beta & =0+1 / \beta \\
\beta & =\cdots
\end{aligned}
$$

Of course, formulas for evaluating continued fractions cannot know or care about the signs of partial quotients. If one is so moved, one may and can change the sign of all succeeding partial quotients in an expansion by inserting the string $0, \overline{1}, 1, \overline{1}, 0$ into an expansion. Then, for example,

$$
\begin{aligned}
-\pi=[\overline{3}, \overline{7}, \overline{15}, \overline{1}, \overline{292}, \overline{1}, \bar{\cdots}] & \\
& =[\overline{3}, 0, \overline{1}, 1, \overline{1}, 0,7,15,1,292,1, \ldots] \\
& =[\overline{4}, 1,6,15,1,292,1, \ldots] .
\end{aligned}
$$

Negation Lemma. The computation

$$
\begin{aligned}
-\beta & =0+\bar{\beta} \\
-1 / \beta & =\overline{1}+(\beta-1) / \beta \\
\beta /(\beta-1) & =1+1 /(\beta-1) \\
\beta-1 & =\overline{1}+\beta \\
1 / \beta & =0+1 / \beta \\
\beta & =\cdots
\end{aligned}
$$

shows that $-\beta=[0, \overline{1}, 1, \overline{1}, 0, \beta]$.

Exercise.

(a) Explain why obviously, and in what sense, inserting the word $0, \frac{1}{1}, \overline{1}, \frac{1}{1}, 0$ must have the same effect as inserting the word $0, \overline{1}, 1, \overline{1}, 0$.
(b) Does the Negation Lemma above fully justify my insertion claim? Confirm the 'zeros are eaten' rule.

Exercise.

(a) Explain why obviously, and in what sense, inserting the word $0,1, \overline{1}, 1,0$ must have the same effect as inserting the word $0, \overline{1}, 1, \overline{1}, 0$.
(b) Does the Negation Lemma above fully justify my insertion claim?
(c) Confirm the 'zeros are eaten' rule.

All this is enough to provide a succinct summary of just how a simple continued fraction expansion $\left[a_{0}, a_{1}, a_{2}, \ldots\right]$ - thus with all the a_{n} positive, may be transformed into a negative continued fraction

Exercise.

(a) Explain why obviously, and in what sense, inserting the word $0,1, \overline{1}, 1,0$ must have the same effect as inserting the word $0, \overline{1}, 1, \overline{1}, 0$.
(b) Does the Negation Lemma above fully justify my insertion claim?
(c) Confirm the 'zeros are eaten' rule.

All this is enough to provide a succinct summary of just how a simple continued fraction expansion [$\left.a_{0}, a_{1}, a_{2}, \ldots\right]$ - thus with all the a_{h} positive, may be transformed into a negative continued fraction $\left[b_{0}, \bar{b}_{1}, b_{2}, \bar{b}_{3}, b_{4}, \ldots\right]$ - where the entries have alternating sign. brief, one arranges the alternation of sign by alternately inserting the appropriate word $0,1,1,1,0$ or $0,1,1,1,0$ between the first pair of consecutive partial quotients that still have the same sign.

Exercise.

(a) Explain why obviously, and in what sense, inserting the word $0,1, \overline{1}, 1,0$ must have the same effect as inserting the word $0, \overline{1}, 1, \overline{1}, 0$.
(b) Does the Negation Lemma above fully justify my insertion claim?
(c) Confirm the 'zeros are eaten' rule.

All this is enough to provide a succinct summary of just how a simple continued fraction expansion $\left[a_{0}, a_{1}, a_{2}, \ldots\right]$ - thus with all the a_{n} positive, may be transformed into a negative continued fraction $\left[b_{0}, \bar{b}_{1}, b_{2}, \bar{b}_{3}, b_{4}, \ldots\right]$ - where the entries have alternating sign.

Exercise.

(a) Explain why obviously, and in what sense, inserting the word $0,1, \overline{1}, 1,0$ must have the same effect as inserting the word $0, \overline{1}, 1, \overline{1}, 0$.
(b) Does the Negation Lemma above fully justify my insertion claim?
(c) Confirm the 'zeros are eaten' rule.

All this is enough to provide a succinct summary of just how a simple continued fraction expansion [$a_{0}, a_{1}, a_{2}, \ldots$] - thus with all the a_{h} positive, may be transformed into a negative continued fraction $\left[b_{0}, \bar{b}_{1}, b_{2}, \bar{b}_{3}, b_{4}, \ldots\right]$ - where the entries have alternating sign. In brief, one arranges the alternation of sign by alternately inserting the appropriate word $0, \overline{1}, 1, \overline{1}, 0$ or $0,1, \overline{1}, 1,0$ between the first pair of consecutive partial quotients that still have the same sign.

Exercise.

(a) Explain why obviously, and in what sense, inserting the word $0,1, \overline{1}, 1,0$ must have the same effect as inserting the word $0, \overline{1}, 1, \overline{1}, 0$.
(b) Does the Negation Lemma above fully justify my insertion claim?
(c) Confirm the 'zeros are eaten' rule.

All this is enough to provide a succinct summary of just how a simple continued fraction expansion [$a_{0}, a_{1}, a_{2}, \ldots$] - thus with all the a_{h} positive, may be transformed into a negative continued fraction [$\left.b_{0}, \bar{b}_{1}, b_{2}, \bar{b}_{3}, b_{4}, \ldots\right]$ - where the entries have alternating sign. In brief, one arranges the alternation of sign by alternately inserting the appropriate word $0, \overline{1}, 1, \overline{1}, 0$ or $0,1, \overline{1}, 1,0$ between the first pair of consecutive partial quotients that still have the same sign. One finds that $\left[a_{0}, a_{1}, a_{2}, \ldots\right]$ becomes the negative continued fraction

$$
[a_{0}+1, \underbrace{2,2, \ldots, 2}_{a_{1}-1 \text { times }}, a_{2}+2, \underbrace{2,2, \ldots, 2}_{a_{3}-1 \text { times }}, a_{4}+2, \ldots]^{-}
$$

An Astonishing Result
Set $\omega=\sqrt{p}$ where $p \equiv 3(\bmod 4)$ is a prime number other than 3 with the property that $\mathbb{Q}(\omega)$ has class number $h(p)=1$ (that is, the reduced elements of $\mathbb{Q}(\omega)$ make up just one cycle). Then
$\frac{1}{3}\left(b_{0}+b_{1}+\cdots+b_{r-1}\right)-r$ is the number $h(-p)$ of distinct equivalence classes of quadratic forms of discriminant

An Astonishing Result

Set $\omega=\sqrt{p}$ where $p \equiv 3(\bmod 4)$ is a prime number other than 3 with the property that $\mathbb{Q}(\omega)$ has class number $h(p)=1$ (that is, the reduced elements of $\mathbb{Q}(\omega)$ make up just one cycle).

An Astonishing Result

Set $\omega=\sqrt{p}$ where $p \equiv 3(\bmod 4)$ is a prime number other than 3 with the property that $\mathbb{Q}(\omega)$ has class number $h(p)=1$ (that is, the reduced elements of $\mathbb{Q}(\omega)$ make up just one cycle). Then
$\frac{1}{3}\left(b_{0}+b_{1}+\cdots+b_{r-1}\right)-r$ is the number $h(-p)$ of distinct equivalence classes of quadratic forms of discriminant $-p$;

An Astonishing Result

Set $\omega=\sqrt{p}$ where $p \equiv 3(\bmod 4)$ is a prime number other than 3 with the property that $\mathbb{Q}(\omega)$ has class number $h(p)=1$ (that is, the reduced elements of $\mathbb{Q}(\omega)$ make up just one cycle). Then
$\frac{1}{3}\left(b_{0}+b_{1}+\cdots+b_{r-1}\right)-r$ is the number $h(-p)$ of distinct equivalence classes of quadratic forms of discriminant $-p$; here $b_{0}, b_{1}, \ldots, b_{r-1}$ is the (minimal) period of the negative continued fraction expansion of $\sqrt{p}+\lceil\sqrt{p}\rceil$.
Even if one does not at all understand what the theorem alleges, the incidental implication that the sum $b_{0}+b_{1}+\cdots+b_{r-1}$ must be divisible by 3 should astonish. Note that experimentally and

An Astonishing Result

Set $\omega=\sqrt{p}$ where $p \equiv 3(\bmod 4)$ is a prime number other than 3 with the property that $\mathbb{Q}(\omega)$ has class number $h(p)=1$ (that is, the reduced elements of $\mathbb{Q}(\omega)$ make up just one cycle). Then
$\frac{1}{3}\left(b_{0}+b_{1}+\cdots+b_{r-1}\right)-r$ is the number $h(-p)$ of distinct equivalence classes of quadratic forms of discriminant $-p$; here $b_{0}, b_{1}, \ldots, b_{r-1}$ is the (minimal) period of the negative continued fraction expansion of $\sqrt{p}+\lceil\sqrt{p}\rceil$.
Even if one does not at all understand what the theorem alleges, the incidental implication that the sum $b_{0}+b_{1}+\cdots+b_{r-1}$ must be divisible by 3 should astonish.

An Astonishing Result

Set $\omega=\sqrt{p}$ where $p \equiv 3(\bmod 4)$ is a prime number other than 3 with the property that $\mathbb{Q}(\omega)$ has class number $h(p)=1$ (that is, the reduced elements of $\mathbb{Q}(\omega)$ make up just one cycle). Then $\frac{1}{3}\left(b_{0}+b_{1}+\cdots+b_{r-1}\right)-r$ is the number $h(-p)$ of distinct equivalence classes of quadratic forms of discriminant $-p$; here $b_{0}, b_{1}, \ldots, b_{r-1}$ is the (minimal) period of the negative continued fraction expansion of $\sqrt{p}+\lceil\sqrt{p}\rceil$.
Even if one does not at all understand what the theorem alleges, the incidental implication that the sum $b_{0}+b_{1}+\cdots+b_{r-1}$ must be divisible by 3 should astonish. Note that experimentally and conjecturally a majority of primes $p=4 n+3$ have class number 1 .
negative feelings about negative continued fractions. But eventually
\qquad
\square

An Astonishing Result

Set $\omega=\sqrt{p}$ where $p \equiv 3(\bmod 4)$ is a prime number other than 3 with the property that $\mathbb{Q}(\omega)$ has class number $h(p)=1$ (that is, the reduced elements of $\mathbb{Q}(\omega)$ make up just one cycle). Then
$\frac{1}{3}\left(b_{0}+b_{1}+\cdots+b_{r-1}\right)-r$ is the number $h(-p)$ of distinct equivalence classes of quadratic forms of discriminant $-p$; here $b_{0}, b_{1}, \ldots, b_{r-1}$ is the (minimal) period of the negative continued fraction expansion of $\sqrt{p}+\lceil\sqrt{p}\rceil$.
Even if one does not at all understand what the theorem alleges, the incidental implication that the sum $b_{0}+b_{1}+\cdots+b_{r-1}$ must be divisible by 3 should astonish. Note that experimentally and conjecturally a majority of primes $p=4 n+3$ have class number 1 . Comment. Those bizarre strings of 2 s led me to start off with quite negative feelings about negative continued fractions. But eventually I learned not to underestimate the usefulness of overestimation*.

[^2]
163 surprises

A reasonably hefty example may be helpful. Take $p=163$ and set $\omega=\sqrt{163}$; note that $|\omega|=12$. Then

163 surprises

A reasonably hefty example may be helpful.

163 surprises

A reasonably hefty example may be helpful. Take $p=163$ and set $\omega=\sqrt{163}$; note that $\lfloor\omega\rfloor=12$. Then

163 surprises

A reasonably hefty example may be helpful. Take $p=163$ and set $\omega=\sqrt{163}$; note that $\lfloor\omega\rfloor=12$. Then

$$
(\omega+12) / 1=24-(\omega+12) / 1
$$

163 surprises

A reasonably hefty example may be helpful. Take $p=163$ and set $\omega=\sqrt{163}$; note that $\lfloor\omega\rfloor=12$. Then

$$
\begin{aligned}
& (\omega+12) / 1=24-(\omega+12) / 1 \\
& (\omega+12) / 19=1-(\omega+7) / 19
\end{aligned}
$$

163 surprises

A reasonably hefty example may be helpful. Take $p=163$ and set $\omega=\sqrt{163}$; note that $\lfloor\omega\rfloor=12$. Then

$$
\begin{aligned}
& (\omega+12) / 1=24-(\omega+12) / 1 \\
& (\omega+12) / 19=1-(\omega+7) / 19 \\
& (\omega+7) / 6=3-(\omega+11) / 6
\end{aligned}
$$

163 surprises

A reasonably hefty example may be helpful. Take $p=163$ and set $\omega=\sqrt{163}$; note that $\lfloor\omega\rfloor=12$. Then

$$
\begin{aligned}
& (\omega+12) / 1=24-(\omega+12) / 1 \\
& (\omega+12) / 19=1-(\omega+7) / 19 \\
& (\omega+7) / 6=3-(\omega+11) / 6 \\
& (\omega+11) / 7=3-(\omega+10) / 7
\end{aligned}
$$

163 surprises

A reasonably hefty example may be helpful. Take $p=163$ and set $\omega=\sqrt{163}$; note that $\lfloor\omega\rfloor=12$. Then

$$
\begin{aligned}
& (\omega+12) / 1=24-(\omega+12) / 1 \\
& (\omega+12) / 19=1-(\omega+7) / 19 \\
& (\omega+7) / 6=3-(\omega+11) / 6 \\
& (\omega+11) / 7=3-(\omega+10) / 7 \\
& (\omega+10) / 9=2-(\omega+8) / 9
\end{aligned}
$$

163 surprises

A reasonably hefty example may be helpful. Take $p=163$ and set $\omega=\sqrt{163}$; note that $\lfloor\omega\rfloor=12$. Then

$$
\begin{aligned}
& (\omega+12) / 1=24-(\omega+12) / 1 \\
& (\omega+12) / 19=1-(\omega+7) / 19 \\
& (\omega+7) / 6=3-(\omega+11) / 6 \\
& (\omega+11) / 7=3-(\omega+10) / 7 \\
& (\omega+10) / 9=2-(\omega+8) / 9 \\
& (\omega+8) / 11=1-(\omega+3) / 11
\end{aligned}
$$

163 surprises

A reasonably hefty example may be helpful. Take $p=163$ and set $\omega=\sqrt{163}$; note that $\lfloor\omega\rfloor=12$. Then

$$
\begin{aligned}
& (\omega+12) / 1=24-(\omega+12) / 1 \\
& (\omega+12) / 19=1-(\omega+7) / 19 \\
& (\omega+7) / 6=3-(\omega+11) / 6 \\
& (\omega+11) / 7=3-(\omega+10) / 7 \\
& (\omega+10) / 9=2-(\omega+8) / 9 \\
& (\omega+8) / 11=1-(\omega+3) / 11 \\
& (\omega+3) / 14=1-(\omega+11) / 14
\end{aligned}
$$

163 surprises

A reasonably hefty example may be helpful. Take $p=163$ and set $\omega=\sqrt{163}$; note that $\lfloor\omega\rfloor=12$. Then

$$
\begin{aligned}
& (\omega+12) / 1=24-(\omega+12) / 1 \\
& (\omega+12) / 19=1-(\omega+7) / 19 \\
& (\omega+7) / 6=3-(\omega+11) / 6 \\
& (\omega+11) / 7=3-(\omega+10) / 7 \\
& (\omega+10) / 9=2-(\omega+8) / 9 \\
& (\omega+8) / 11=1-(\omega+3) / 11 \\
& (\omega+3) / 14=1-(\omega+11) / 14 \\
& (\omega+11) / 3=7-(\omega+10) / 3
\end{aligned}
$$

163 surprises

A reasonably hefty example may be helpful. Take $p=163$ and set $\omega=\sqrt{163}$; note that $\lfloor\omega\rfloor=12$. Then

$$
\begin{aligned}
& (\omega+12) / 1=24-(\omega+12) / 1 \\
& (\omega+12) / 19=1-(\omega+7) / 19 \\
& (\omega+7) / 6=3-(\omega+11) / 6 \\
& (\omega+11) / 7=3-(\omega+10) / 7 \\
& (\omega+10) / 9=2-(\omega+8) / 9 \\
& (\omega+8) / 11=1-(\omega+3) / 11 \\
& (\omega+3) / 14=1-(\omega+11) / 14 \\
& (\omega+11) / 3=7-(\omega+10) / 3 \\
& (\omega+10) / 21=1-(\omega+11) / 21
\end{aligned}
$$

163 surprises

A reasonably hefty example may be helpful. Take $p=163$ and set $\omega=\sqrt{163}$; note that $\lfloor\omega\rfloor=12$. Then

$$
\begin{aligned}
& (\omega+12) / 1=24-(\omega+12) / 1 \\
& (\omega+12) / 19=1-(\omega+7) / 19 \\
& (\omega+7) / 6=3-(\omega+11) / 6 \\
& (\omega+11) / 7=3-(\omega+10) / 7 \\
& (\omega+10) / 9=2-(\omega+8) / 9 \\
& (\omega+8) / 11=1-(\omega+3) / 11 \\
& (\omega+3) / 14=1-(\omega+11) / 14 \\
& (\omega+11) / 3=7-(\omega+10) / 3 \\
& (\omega+10) / 21=1-(\omega+11) / 21 \\
& (\omega+11) / 2=11-(\omega+11) / 2
\end{aligned}
$$

163 surprises

A reasonably hefty example may be helpful. Take $p=163$ and set $\omega=\sqrt{163}$; note that $\lfloor\omega\rfloor=12$. Then

$$
\begin{aligned}
& (\omega+12) / 1=24-(\omega+12) / 1 \\
& (\omega+12) / 19=1-(\omega+7) / 19 \\
& (\omega+7) / 6=3-(\omega+11) / 6 \\
& (\omega+11) / 7=3-(\omega+10) / 7 \\
& (\omega+10) / 9=2-(\omega+8) / 9 \\
& (\omega+8) / 11=1-(\omega+3) / 11 \\
& (\omega+3) / 14=1-(\omega+11) / 14 \\
& (\omega+11) / 3=7-(\omega+10) / 3 \\
& (\omega+10) / 21=1-(\omega+11) / 21 \\
& (\omega+11) / 2=11-(\omega+11) / 2
\end{aligned}
$$

So $\omega+12=[\overline{24,1,3,3,2,1,1,7,1,11,1,7,1,1,2,3,3,1}]$.

Exercise. (a) List the reduced elements $(\omega+P) / Q, \omega^{2}-163=0$, and confirm that each reduced element appears in the computation above, thus that $h(163)=1$. (b) Compute the sum of the partial quotients of the minimal period of the negative continued fraction expansion of $\omega+13$ either indirectly from the expansion of $\omega+12$, or by direct computation of the negative continued fraction (though that requires adding two many partial quotients for my taste; there are eighteen 2 s). Confirm that 3 divides the sum.

Exercise. (a) List the reduced elements $(\omega+P) / Q, \omega^{2}-163=0$, and confirm that each reduced element appears in the computation above, thus that $h(163)=1$.
the minimal period of the negative continued fraction expansion of $\omega+13$ either indirectly from the expansion of $\omega+12$, or by direct
computation of the negative continued fraction (though that requires adding two many partial quotients for my taste; there are eighteen 2 s) Confirm that 3 divides the sum. (c) Deduce the class number

Exercise. (a) List the reduced elements $(\omega+P) / Q, \omega^{2}-163=0$, and confirm that each reduced element appears in the computation above, thus that $h(163)=1$. (b) Compute the sum of the partial quotients of the minimal period of the negative continued fraction expansion of $\omega+13$ either indirectly from the expansion of $\omega+12$, or by direct computation of the negative continued fraction (though that requires adding two many partial quotients for my taste; there are eighteen 2 s). Confirm that 3 divides the sum.

Exercise. (a) List the reduced elements $(\omega+P) / Q, \omega^{2}-163=0$, and confirm that each reduced element appears in the computation above, thus that $h(163)=1$. (b) Compute the sum of the partial quotients of the minimal period of the negative continued fraction expansion of $\omega+13$ either indirectly from the expansion of $\omega+12$, or by direct computation of the negative continued fraction (though that requires adding two many partial quotients for my taste; there are eighteen 2 s). Confirm that 3 divides the sum. (c) Deduce the class number $h(-163)$.

Exercise. (a) List the reduced elements $(\omega+P) / Q, \omega^{2}-163=0$, and confirm that each reduced element appears in the computation above, thus that $h(163)=1$. (b) Compute the sum of the partial quotients of the minimal period of the negative continued fraction expansion of $\omega+13$ either indirectly from the expansion of $\omega+12$, or by direct computation of the negative continued fraction (though that requires adding two many partial quotients for my taste; there are eighteen 2 s). Confirm that 3 divides the sum. (c) Deduce the class number $h(-163)$.
Some 163 wonders.
with all those values prime.

Exercise. (a) List the reduced elements $(\omega+P) / Q, \omega^{2}-163=0$, and confirm that each reduced element appears in the computation above, thus that $h(163)=1$. (b) Compute the sum of the partial quotients of the minimal period of the negative continued fraction expansion of $\omega+13$ either indirectly from the expansion of $\omega+12$, or by direct computation of the negative continued fraction (though that requires adding two many partial quotients for my taste; there are eighteen 2 s). Confirm that 3 divides the sum. (c) Deduce the class number $h(-163)$.
Some 163 wonders. The polynomial $f(x)=x^{2}+x+41$ has the interesting property that $f(0)=41, f(1)=43, f(2)=47, f(3)=53$, $f(4)=61, f(5)=71, f(6)=83, f(7)=97, f(8)=113, f(9)=131$, $f(10)=151, \ldots$, with all those values prime.

Exercise. (a) List the reduced elements $(\omega+P) / Q, \omega^{2}-163=0$, and confirm that each reduced element appears in the computation above, thus that $h(163)=1$. (b) Compute the sum of the partial quotients of the minimal period of the negative continued fraction expansion of $\omega+13$ either indirectly from the expansion of $\omega+12$, or by direct computation of the negative continued fraction (though that requires adding two many partial quotients for my taste; there are eighteen 2 s). Confirm that 3 divides the sum. (c) Deduce the class number $h(-163)$.
Some 163 wonders. The polynomial $f(x)=x^{2}+x+41$ has the interesting property that $f(0)=41, f(1)=43, f(2)=47, f(3)=53$, $f(4)=61, f(5)=71, f(6)=83, f(7)=97, f(8)=113, f(9)=131$, $f(10)=151, \ldots$, with all those values prime.
Scientific American, April 1975, suggested that $e^{\pi \sqrt{163}}$ is an integer.

Short Periods

The examples $\omega=\sqrt{W^{2}+1}$ trivially provide

$$
\omega+|W|=2|W|-(\bar{\omega}+|W|)
$$

displaying period length 1.
Exercise. (a) Notice here that $n=\omega \bar{\omega}=-1$. Comment. (b) Is it obvious, or even true, that the example gives all cases of period

Short Periods

The examples $\omega=\sqrt{W^{2}+1}$ trivially provide

$$
\omega+|W|=2|W|-(\bar{\omega}+|W|)
$$

displaying period length 1.
Exercise. (a) Notice here that $n=\omega \bar{\omega}=-1$. Comment. (b) Is it obvious, or even true, that the example gives all cases of period length 1?

Short Periods

The examples $\omega=\sqrt{W^{2}+1}$ trivially provide

$$
\omega+|W|=2|W|-(\bar{\omega}+|W|)
$$

displaying period length 1.
Exercise. (a) Notice here that $n=\omega \bar{\omega}=-1$. Comment. (b) Is it obvious, or even true, that the example gives all cases of period length 1?

It turns out that the correct generalisation of our examples is the cases $\sqrt{W^{2}+c}$ with c dividing $4 W$. I make the divisibility manifest by considering the cases $\sqrt{a^{2} W^{2}+4 a}$.
\qquad
\qquad

Short Periods

The examples $\omega=\sqrt{W^{2}+1}$ trivially provide

$$
\omega+|W|=2|W|-(\bar{\omega}+|W|)
$$

displaying period length 1.
Exercise. (a) Notice here that $n=\omega \bar{\omega}=-1$. Comment. (b) Is it obvious, or even true, that the example gives all cases of period length 1?
It turns out that the correct generalisation of our examples is the cases $\sqrt{W^{2}+c}$ with c dividing $4 W$. I make the divisibility manifest by considering the cases $\sqrt{a^{2} W^{2}+4 a}$.
Suppose we ask much more generally for polynomials $F=F(W)$ so
that, as W varies in \mathbb{Z}, (i) $F(W)$ takes only integer values not all

Short Periods

The examples $\omega=\sqrt{W^{2}+1}$ trivially provide

$$
\omega+|W|=2|W|-(\bar{\omega}+|W|)
$$

displaying period length 1.
Exercise. (a) Notice here that $n=\omega \bar{\omega}=-1$. Comment. (b) Is it obvious, or even true, that the example gives all cases of period length 1?
It turns out that the correct generalisation of our examples is the cases $\sqrt{W^{2}+c}$ with c dividing $4 W$. I make the divisibility manifest by considering the cases $\sqrt{a^{2} W^{2}+4 a}$.
Suppose we ask much more generally for polynomials $F=F(W)$ so that, as W varies in \mathbb{Z}, (i) $F(W)$ takes only integer values not all square

Short Periods

The examples $\omega=\sqrt{W^{2}+1}$ trivially provide

$$
\omega+|W|=2|W|-(\bar{\omega}+|W|)
$$

displaying period length 1.
Exercise. (a) Notice here that $n=\omega \bar{\omega}=-1$. Comment. (b) Is it obvious, or even true, that the example gives all cases of period length 1?
It turns out that the correct generalisation of our examples is the cases $\sqrt{W^{2}+c}$ with c dividing $4 W$. I make the divisibility manifest by considering the cases $\sqrt{a^{2} W^{2}+4 a}$.
Suppose we ask much more generally for polynomials $F=F(W)$ so that, as W varies in \mathbb{Z}, (i) $F(W)$ takes only integer values not all square and (ii) the period length of the continued fraction expansion of $\sqrt{|F(W)|}$ is bounded independent of W

Short Periods

The examples $\omega=\sqrt{W^{2}+1}$ trivially provide

$$
\omega+|W|=2|W|-(\bar{\omega}+|W|)
$$

displaying period length 1.
Exercise. (a) Notice here that $n=\omega \bar{\omega}=-1$. Comment. (b) Is it obvious, or even true, that the example gives all cases of period length 1?
It turns out that the correct generalisation of our examples is the cases $\sqrt{W^{2}+c}$ with c dividing $4 W$. I make the divisibility manifest by considering the cases $\sqrt{a^{2} W^{2}+4 a}$.
Suppose we ask much more generally for polynomials $F=F(W)$ so that, as W varies in \mathbb{Z}, (i) $F(W)$ takes only integer values not all square and (ii) the period length of the continued fraction expansion of $\sqrt{|F(W)|}$ is bounded independent of W (thus in terms of F alone).

These questions, specifically (ii), were ingeniously asked and fully answered by Andrzej Schinzel more than forty years ago ${ }^{\dagger}$.
if F is of odd degree or if its leading coefficient is not a square then the periods certainly are unbounded, so I presume from here on that F has even degree and has square leading coefficient.
${ }^{\dagger}$ A. Schinzel, "On some problems of the arithmetical theory of continued fractions", Acta Arith. VI (1961), 393-413, and "On some problems of the arithmetical theory of continued fractions II", Acta Arith. VII (1962), 287-298.

These questions, specifically (ii), were ingeniously asked and fully answered by Andrzej Schinzel more than forty years ago ${ }^{\dagger}$. In particular, if F is of odd degree or if its leading coefficient is not a square then the periods certainly are unbounded, so I presume from here on that F has even degree and has square leading coefficient.
In that case, the period is bounded if and only if, has a periodic continued fraction expansion as a
${ }^{\dagger}$ A. Schinzel, "On some problems of the arithmetical theory of continued fractions", Acta Arith. VI (1961), 393-413, and "On some problems of the arithmetical theory of continued fractions II", Acta Arith. VII (1962), 287-298.

These questions, specifically (ii), were ingeniously asked and fully answered by Andrzej Schinzel more than forty years ago ${ }^{\dagger}$. In particular, if F is of odd degree or if its leading coefficient is not a square then the periods certainly are unbounded, so I presume from here on that F has even degree and has square leading coefficient.
In that case, the period is bounded if and only if,
(1) $Y=\sqrt{F(X)}$ has a periodic continued fraction expansion as a quadratic irrational integral function in the domain $\mathbb{Q}[X, Y]$

must be an element of
${ }^{\dagger}$ A. Schinzel, "On some problems of the arithmetical theory of continued fractions", Acta Arith. VI (1961), 393-413, and "On some problems of the arithmetical theory of continued fractions II", Acta Arith. VII (1962), 287-298.

These questions, specifically (ii), were ingeniously asked and fully answered by Andrzej Schinzel more than forty years ago ${ }^{\dagger}$. In particular, if F is of odd degree or if its leading coefficient is not a square then the periods certainly are unbounded, so I presume from here on that F has even degree and has square leading coefficient.
In that case, the period is bounded if and only if,
(1) $Y=\sqrt{F(X)}$ has a periodic continued fraction expansion as a quadratic irrational integral function in the domain $\mathbb{Q}[X, Y]$ - such expansions are only periodic by happenstance, because \mathbb{Q} is infinite; and
(2) some resulting nontrivial unit of norm dividing 4 in the quadratic function field $\mathbb{Q}(X, Y)$ must have its coefficients in \mathbb{Z}, that is, it must be an element of $\mathbb{Z}[X, Y]$.
and I have called this second criterion
For F quadratic only Schinzel's Condition is relevant.

[^3]These questions, specifically (ii), were ingeniously asked and fully answered by Andrzej Schinzel more than forty years ago ${ }^{\dagger}$. In particular, if F is of odd degree or if its leading coefficient is not a square then the periods certainly are unbounded, so I presume from here on that F has even degree and has square leading coefficient.
In that case, the period is bounded if and only if,
(1) $Y=\sqrt{F(X)}$ has a periodic continued fraction expansion as a quadratic irrational integral function in the domain $\mathbb{Q}[X, Y]$ - such expansions are only periodic by happenstance, because \mathbb{Q} is infinite; and
(2) some resulting nontrivial unit of norm dividing 4 in the quadratic function field $\mathbb{Q}(X, Y)$ must have its coefficients in \mathbb{Z}, that is, it must be an element of $\mathbb{Z}[X, Y]$.

Roger Patterson and I have called this second criterion Schinzel's Condition. For F quadratic only Schinzel's Condition is relevant.
${ }^{\dagger}$ A. Schinzel, "On some problems of the arithmetical theory of continued fractions", Acta Arith. VI (1961), 393-413, and "On some problems of the arithmetical theory of continued fractions II", Acta Arith. VII (1962), 287-298.

Exercise.

(a) Polynomials are usually thought of as having a basis consisting of the powers $1, X, X^{2}, X^{3}, \ldots$ of the variable. So if $F(W)$ takes
only integers values it seems natural to guess that all its coefficients must be integral.

Exercise.

(a) Polynomials are usually thought of as having a basis consisting of the powers $1, X, X^{2}, X^{3}, \ldots$ of the variable. So if $F(W)$ takes only integers values it seems natural to guess that all its coefficients must be integral.

Exercise.

(a) Polynomials are usually thought of as having a basis consisting of the powers $1, X, X^{2}, X^{3}, \ldots$ of the variable. So if $F(W)$ takes only integers values it seems natural to guess that all its coefficients must be integral. Not.

Exercise.

(a) Polynomials are usually thought of as having a basis consisting of the powers $1, X, X^{2}, X^{3}, \ldots$ of the variable. So if $F(W)$ takes only integers values it seems natural to guess that all its coefficients must be integral. Not. Just as good a basis is given by the running powers $1, X, \frac{1}{2} X(X+1), \frac{1}{6} X(X+1)(X+2), \ldots$

Exercise.

(a) Polynomials are usually thought of as having a basis consisting of the powers $1, X, X^{2}, X^{3}, \ldots$ of the variable. So if $F(W)$ takes only integers values it seems natural to guess that all its coefficients must be integral. Not. Just as good a basis is given by the running powers $1, X, \frac{1}{2} X(X+1), \frac{1}{6} X(X+1)(X+2), \ldots$ so a polynomial of degree s may have denominators as large as s ! in its usual presentation, yet take only integer values.

Exercise.

(a) Polynomials are usually thought of as having a basis consisting of the powers $1, X, X^{2}, X^{3}, \ldots$ of the variable. So if $F(W)$ takes only integers values it seems natural to guess that all its coefficients must be integral. Not. Just as good a basis is given by the running powers $1, X, \frac{1}{2} X(X+1), \frac{1}{6} X(X+1)(X+2), \ldots$ so a polynomial of degree s may have denominators as large as s ! in its usual presentation, yet take only integer values. Can one do better yet?
coefficient may be written uniquely as $F=G^{2}+4 R$, where the
'remainder' polynomial $4 R$ has degree less than that of the polynomial G.

Exercise.

(a) Polynomials are usually thought of as having a basis consisting of the powers $1, X, X^{2}, X^{3}, \ldots$ of the variable. So if $F(W)$ takes only integers values it seems natural to guess that all its coefficients must be integral. Not. Just as good a basis is given by the running powers $1, X, \frac{1}{2} X(X+1), \frac{1}{6} X(X+1)(X+2), \ldots$ so a polynomial of degree s may have denominators as large as s ! in its usual presentation, yet take only integer values. Can one do better yet?
(b) Show that a polynomial F of even degree and with square leading coefficient may be written uniquely as $F=G^{2}+4 R$, where the 'remainder' polynomial $4 R$ has degree less than that of the polynomial G.

Exercise.

(a) Polynomials are usually thought of as having a basis consisting of the powers $1, X, X^{2}, X^{3}, \ldots$ of the variable. So if $F(W)$ takes only integers values it seems natural to guess that all its coefficients must be integral. Not. Just as good a basis is given by the running powers $1, X, \frac{1}{2} X(X+1), \frac{1}{6} X(X+1)(X+2), \ldots$ so a polynomial of degree s may have denominators as large as s ! in its usual presentation, yet take only integer values. Can one do better yet?
(b) Show that a polynomial F of even degree and with square leading coefficient may be written uniquely as $F=G^{2}+4 R$, where the 'remainder' polynomial $4 R$ has degree less than that of the polynomial G.
(c) Hence, this is not at all dead obvious, show if F is not the square of a polynomial, equivalently if R is not identically zero, that $F(H)$ cannot be a square for any sufficiently large integer H.
H has size of order H^{s}.

Exercise.

(a) Polynomials are usually thought of as having a basis consisting of the powers $1, X, X^{2}, X^{3}, \ldots$ of the variable. So if $F(W)$ takes only integers values it seems natural to guess that all its coefficients must be integral. Not. Just as good a basis is given by the running powers $1, X, \frac{1}{2} X(X+1), \frac{1}{6} X(X+1)(X+2), \ldots$ so a polynomial of degree s may have denominators as large as s ! in its usual presentation, yet take only integer values. Can one do better yet?
(b) Show that a polynomial F of even degree and with square leading coefficient may be written uniquely as $F=G^{2}+4 R$, where the 'remainder' polynomial $4 R$ has degree less than that of the polynomial G.
(c) Hence, this is not at all dead obvious, show if F is not the square of a polynomial, equivalently if R is not identically zero, that $F(H)$ cannot be a square for any sufficiently large integer H. It may here be useful to recognise that a polynomial of degree s evaluated at H has size of order H^{s}.

Set $Y^{2}=F(W):=a^{2} W^{2}+b W+c$, not a square, and note that Y has polynomial part $a W+b / 2 a$. Then the norm

$$
(Y+(a W+b / 2 a))(\bar{Y}+(a W+b / 2 a))=\left(b^{2}-4 a^{2} c\right) / 4 a^{2}
$$

already displays a unit in $\mathcal{R}:=\mathbb{Q}[W, Y]$; because any nonzero
constant divides 1 in $\mathbb{Q}[W]$.

Set $Y^{2}=F(W):=a^{2} W^{2}+b W+c$, not a square, and note that Y has polynomial part $a W+b / 2 a$. Then the norm

$$
(Y+(a W+b / 2 a))(\bar{Y}+(a W+b / 2 a))=\left(b^{2}-4 a^{2} c\right) / 4 a^{2}
$$

already displays a unit in $\mathcal{R}:=\mathbb{Q}[W, Y]$; because any nonzero constant divides 1 in $\mathbb{Q}[W]$.

Set $Y^{2}=F(W):=a^{2} W^{2}+b W+c$, not a square, and note that Y has polynomial part $a W+b / 2 a$. Then the norm

$$
(Y+(a W+b / 2 a))(\bar{Y}+(a W+b / 2 a))=\left(b^{2}-4 a^{2} c\right) / 4 a^{2}
$$

already displays a unit in $\mathcal{R}:=\mathbb{Q}[W, Y]$; because any nonzero constant divides 1 in $\mathbb{Q}[W]$.
Exercise. (a) Verify that there is a unit in \mathcal{R} of norm dividing 4 if and only if $b^{2}-4 a^{2} c$ divides both $16 a^{4}$ and $4 b^{2}$.
c 4a in fact yields all the cases above (unless c and a^{2} share an odd
square factor). (i) Show that there is no loss of generality in presuming
that both a and b are even.

Set $Y^{2}=F(W):=a^{2} W^{2}+b W+c$, not a square, and note that Y has polynomial part $a W+b / 2 a$. Then the norm

$$
(Y+(a W+b / 2 a))(\bar{Y}+(a W+b / 2 a))=\left(b^{2}-4 a^{2} c\right) / 4 a^{2}
$$

already displays a unit in $\mathcal{R}:=\mathbb{Q}[W, Y]$; because any nonzero constant divides 1 in $\mathbb{Q}[W]$.
Exercise. (a) Verify that there is a unit in \mathcal{R} of norm dividing 4 if and only if $b^{2}-4 a^{2} c$ divides both $16 a^{4}$ and $4 b^{2}$. (b) Prove that $b=0$ and $c \mid 4 a$ in fact yields all the cases above (unless c and a^{2} share an odd square factor).

Set $Y^{2}=F(W):=a^{2} W^{2}+b W+c$, not a square, and note that Y has polynomial part $a W+b / 2 a$. Then the norm

$$
(Y+(a W+b / 2 a))(\bar{Y}+(a W+b / 2 a))=\left(b^{2}-4 a^{2} c\right) / 4 a^{2}
$$

already displays a unit in $\mathcal{R}:=\mathbb{Q}[W, Y]$; because any nonzero constant divides 1 in $\mathbb{Q}[W]$.
Exercise. (a) Verify that there is a unit in \mathcal{R} of norm dividing 4 if and only if $b^{2}-4 a^{2} c$ divides both $16 a^{4}$ and $4 b^{2}$. (b) Prove that $b=0$ and $c \mid 4 a$ in fact yields all the cases above (unless c and a^{2} share an odd square factor). (i) Show that there is no loss of generality in presuming that both a and b are even.

Set $Y^{2}=F(W):=a^{2} W^{2}+b W+c$, not a square, and note that Y has polynomial part $a W+b / 2 a$. Then the norm

$$
(Y+(a W+b / 2 a))(\bar{Y}+(a W+b / 2 a))=\left(b^{2}-4 a^{2} c\right) / 4 a^{2}
$$

already displays a unit in $\mathcal{R}:=\mathbb{Q}[W, Y]$; because any nonzero constant divides 1 in $\mathbb{Q}[W]$.
Exercise. (a) Verify that there is a unit in \mathcal{R} of norm dividing 4 if and only if $b^{2}-4 a^{2} c$ divides both $16 a^{4}$ and $4 b^{2}$. (b) Prove that $b=0$ and $c \mid 4 a$ in fact yields all the cases above (unless c and a^{2} share an odd square factor). (i) Show that there is no loss of generality in presuming that both a and b are even. (ii) Hence replace $b \leftarrow 2 b$, and note the the condition becomes $b^{2}-a^{2} c$ divides both $4 a^{4}$ and $4 b^{2}$.

Set $Y^{2}=F(W):=a^{2} W^{2}+b W+c$, not a square, and note that Y has polynomial part $a W+b / 2 a$. Then the norm

$$
(Y+(a W+b / 2 a))(\bar{Y}+(a W+b / 2 a))=\left(b^{2}-4 a^{2} c\right) / 4 a^{2}
$$

already displays a unit in $\mathcal{R}:=\mathbb{Q}[W, Y]$; because any nonzero constant divides 1 in $\mathbb{Q}[W]$.
Exercise. (a) Verify that there is a unit in \mathcal{R} of norm dividing 4 if and only if $b^{2}-4 a^{2} c$ divides both $16 a^{4}$ and $4 b^{2}$. (b) Prove that $b=0$ and $c \mid 4 a$ in fact yields all the cases above (unless c and a^{2} share an odd square factor). (i) Show that there is no loss of generality in presuming that both a and b are even. (ii) Hence replace $b \leftarrow 2 b$, and note the the condition becomes $b^{2}-a^{2} c$ divides both $4 a^{4}$ and $4 b^{2}$. (iii)
Confirm there is now no loss of generality whatsoever in assuming that $0 \leq b<|a|$.

Set $Y^{2}=F(W):=a^{2} W^{2}+b W+c$, not a square, and note that Y has polynomial part $a W+b / 2 a$. Then the norm

$$
(Y+(a W+b / 2 a))(\bar{Y}+(a W+b / 2 a))=\left(b^{2}-4 a^{2} c\right) / 4 a^{2}
$$

already displays a unit in $\mathcal{R}:=\mathbb{Q}[W, Y]$; because any nonzero constant divides 1 in $\mathbb{Q}[W]$.
Exercise. (a) Verify that there is a unit in \mathcal{R} of norm dividing 4 if and only if $b^{2}-4 a^{2} c$ divides both $16 a^{4}$ and $4 b^{2}$. (b) Prove that $b=0$ and $c \mid 4 a$ in fact yields all the cases above (unless c and a^{2} share an odd square factor). (i) Show that there is no loss of generality in presuming that both a and b are even. (ii) Hence replace $b \leftarrow 2 b$, and note the the condition becomes $b^{2}-a^{2} c$ divides both $4 a^{4}$ and $4 b^{2}$. (iii)
Confirm there is now no loss of generality whatsoever in assuming that $0 \leq b<|a|$. (iv) Show that each case with $b \neq 0$ corresponds to cases with shorter period than the case $b=0$.

Set $Y^{2}=F(W):=a^{2} W^{2}+b W+c$, not a square, and note that Y has polynomial part $a W+b / 2 a$. Then the norm

$$
(Y+(a W+b / 2 a))(\bar{Y}+(a W+b / 2 a))=\left(b^{2}-4 a^{2} c\right) / 4 a^{2}
$$

already displays a unit in $\mathcal{R}:=\mathbb{Q}[W, Y]$; because any nonzero constant divides 1 in $\mathbb{Q}[W]$.
Exercise. (a) Verify that there is a unit in \mathcal{R} of norm dividing 4 if and only if $b^{2}-4 a^{2} c$ divides both $16 a^{4}$ and $4 b^{2}$. (b) Prove that $b=0$ and $c \mid 4 a$ in fact yields all the cases above (unless c and a^{2} share an odd square factor). (i) Show that there is no loss of generality in presuming that both a and b are even. (ii) Hence replace $b \leftarrow 2 b$, and note the the condition becomes $b^{2}-a^{2} c$ divides both $4 a^{4}$ and $4 b^{2}$. (iii)
Confirm there is now no loss of generality whatsoever in assuming that $0 \leq b<|a|$. (iv) Show that each case with $b \neq 0$ corresponds to cases with shorter period than the case $b=0$. (v) If $b=0$ deduce there is a unit in \mathcal{R} of norm dividing 4 for all integers W if and only if $c \mid 4 a^{2}$.

Set $Y^{2}=F(W):=a^{2} W^{2}+b W+c$, not a square, and note that Y has polynomial part $a W+b / 2 a$. Then the norm

$$
(Y+(a W+b / 2 a))(\bar{Y}+(a W+b / 2 a))=\left(b^{2}-4 a^{2} c\right) / 4 a^{2}
$$

already displays a unit in $\mathcal{R}:=\mathbb{Q}[W, Y]$; because any nonzero constant divides 1 in $\mathbb{Q}[W]$.
Exercise. (a) Verify that there is a unit in \mathcal{R} of norm dividing 4 if and only if $b^{2}-4 a^{2} c$ divides both $16 a^{4}$ and $4 b^{2}$. (b) Prove that $b=0$ and $c \mid 4 a$ in fact yields all the cases above (unless c and a^{2} share an odd square factor). (i) Show that there is no loss of generality in presuming that both a and b are even. (ii) Hence replace $b \leftarrow 2 b$, and note the the condition becomes $b^{2}-a^{2} c$ divides both $4 a^{4}$ and $4 b^{2}$. (iii)
Confirm there is now no loss of generality whatsoever in assuming that $0 \leq b<|a|$. (iv) Show that each case with $b \neq 0$ corresponds to cases with shorter period than the case $b=0$. (v) If $b=0$ deduce there is a unit in \mathcal{R} of norm dividing 4 for all integers W if and only if $c \mid 4 a^{2}$. (vi) Show that if p is an odd prime, then p times a short period is always at least as long.

Short Periods in Detail

I act on theory and experience by primarily considering ω given by
(i) $\omega^{2}-\omega-\frac{1}{4}(D-1)=0$ or
(ii) $\omega^{2}-\frac{1}{4} D=0$, according as $D \equiv 1$ or $0 \bmod 4$;
(iii) $\omega^{2}-D=0$ otherwise.

I obtain the periods of $\sqrt{a^{2} W^{2}+4 c}$ with $c \mid a$, accordingly.
Indeed, presuming c a, we have
so, after a simple division by 2 , if $a W$ is odd

Short Periods in Detail

I act on theory and experience by primarily considering ω given by
(i) $\omega^{2}-\omega-\frac{1}{4}(D-1)=0$ or
(ii) $\omega^{2}-\frac{1}{4} D=0$, according as $D \equiv 1$ or $0 \bmod 4$;
(iii) $\omega^{2}-D=0$ otherwise.

I obtain the periods of $\sqrt{a^{2} W^{2}+4 c}$ with $c \mid a$, accordingly. Indeed, presuming $c \mid a$, we have
$\sqrt{a^{2} W^{2}-4 c}+|a W|=\left[2|a W|,-\frac{1}{2}|a W| / c, \sqrt{a^{2} W^{2}-4 c}+|a W|\right]$
so, after a simple division by 2 , if $a W$ is odd

Short Periods in Detail

I act on theory and experience by primarily considering ω given by
(i) $\omega^{2}-\omega-\frac{1}{4}(D-1)=0$ or
(ii) $\omega^{2}-\frac{1}{4} D=0$, according as $D \equiv 1$ or $0 \bmod 4$;
(iii) $\omega^{2}-D=0$ otherwise.

I obtain the periods of $\sqrt{a^{2} W^{2}+4 c}$ with $c \mid a$, accordingly. Indeed, presuming $c \mid a$, we have
$\sqrt{a^{2} W^{2}-4 c}+|a W|=\left[2|a W|,-\frac{1}{2}|a W| / c, \sqrt{a^{2} W^{2}-4 c}+|a W|\right]$
so, after a simple division by 2 , if aW is odd

$$
\frac{1}{2}\left(1+\sqrt{a^{2} W^{2}-4 c}\right)+\frac{1}{2}(|a W|-1)=[\overline{|a W|,-|a W| / c}]
$$

Short Periods in Detail

I act on theory and experience by primarily considering ω given by
(i) $\omega^{2}-\omega-\frac{1}{4}(D-1)=0$ or
(ii) $\omega^{2}-\frac{1}{4} D=0$, according as $D \equiv 1$ or $0 \bmod 4$;
(iii) $\omega^{2}-D=0$ otherwise.

I obtain the periods of $\sqrt{a^{2} W^{2}+4 c}$ with $c \mid a$, accordingly.
Indeed, presuming $c \mid a$, we have
$\sqrt{a^{2} W^{2}-4 c}+|a W|=\left[2|a W|,-\frac{1}{2}|a W| / c, \sqrt{a^{2} W^{2}-4 c}+|a W|\right]$
so, after a simple division by 2 , if $a W$ is odd

$$
\frac{1}{2}\left(1+\sqrt{a^{2} W^{2}-4 c}\right)+\frac{1}{2}(|a W|-1)=[\overline{|a W|,-|a W| / c}]
$$

and when $a W$ is even, of course also

$$
\frac{1}{2} \sqrt{a^{2} W^{2}-4 c}+\frac{1}{2}|a W|=[\overline{|a W|,-|a W| / c}]
$$

In the latter case, aW even allows us to replace $a W$ by $2 a W$ and to obtain

$$
\sqrt{a^{2} W^{2}-c}+|a W|=[\overline{2|a W|,-2|a W| / c}] ;
$$

Therefore if $c \mid a$ and regardless of the parity of $a W$

$$
a^{2} W^{2}-2 c+|a W|=[\overline{2|a W|,-|a W| / c}]
$$

In the latter case, aW even allows us to replace $a W$ by $2 a W$ and to obtain

$$
\sqrt{a^{2} W^{2}-c}+|a W|=[\overline{2|a W|,-2|a W| / c}] ;
$$

Therefore if $c \mid a$ and regardless of the parity of $a W$

$$
\sqrt{a^{2} W^{2}-2 c}+|a W|=[\overline{2|a W|,-|a W| / c}] .
$$

If $c \mid a$ but $a W$ is odd, we may multiply by 2 to obtain

In the latter case, aW even allows us to replace $a W$ by $2 a W$ and to obtain

$$
\sqrt{a^{2} W^{2}-c}+|a W|=[\overline{2|a W|,-2|a W| / c}] ;
$$

Therefore if $c \mid a$ and regardless of the parity of $a W$

$$
\sqrt{a^{2} W^{2}-2 c}+|a W|=[\overline{2|a W|,-|a W| / c}] .
$$

If $c \mid a$ but $a W$ is odd, we may multiply by 2 to obtain

$$
\begin{array}{r}
\sqrt{a^{2} W^{2}-4 c}+|a W|=\left[\overline{2|a W|,-\frac{1}{2}(1+|a W| / c), 2,-\frac{1}{2}(1+|a W|)},\right. \\
\frac{2|a W| / c,-\frac{1}{2}(1+|a W|), 2,-\frac{1}{2}(1+|a W| / c)}{2 \mid},
\end{array}
$$

with rather longer period than one might naïvely have expected.

In the latter case, aW even allows us to replace $a W$ by $2 a W$ and to obtain

$$
\sqrt{a^{2} W^{2}-c}+|a W|=[\overline{2|a W|,-2|a W| / c}] ;
$$

Therefore if $c \mid a$ and regardless of the parity of $a W$

$$
\sqrt{a^{2} W^{2}-2 c}+|a W|=[\overline{2|a W|,-|a W| / c}] .
$$

If $c \mid a$ but $a W$ is odd, we may multiply by 2 to obtain

$$
\begin{array}{r}
\sqrt{a^{2} W^{2}-4 c}+|a W|=\left[\overline{2|a W|,-\frac{1}{2}(1+|a W| / c), 2,-\frac{1}{2}(1+|a W|)},\right. \\
\frac{2|a W| / c,-\frac{1}{2}(1+|a W|), 2,-\frac{1}{2}(1+|a W| / c)}{2 \mid},
\end{array}
$$

with rather longer period than one might naïvely have expected.
Confirming this is a nice exercise in multiplying by 2.

In the latter case, aW even allows us to replace $a W$ by $2 a W$ and to obtain

$$
\sqrt{a^{2} W^{2}-c}+|a W|=[\overline{2|a W|,-2|a W| / c}] ;
$$

Therefore if $c \mid a$ and regardless of the parity of $a W$

$$
\sqrt{a^{2} W^{2}-2 c}+|a W|=[\overline{2|a W|,-|a W| / c}] .
$$

If $c \mid a$ but $a W$ is odd, we may multiply by 2 to obtain

$$
\begin{array}{r}
\sqrt{a^{2} W^{2}-4 c}+|a W|=\left[\overline{2|a W|,-\frac{1}{2}(1+|a W| / c), 2,-\frac{1}{2}(1+|a W|)},\right. \\
\frac{2|a W| / c,-\frac{1}{2}(1+|a W|), 2,-\frac{1}{2}(1+|a W| / c)}{2 \mid},
\end{array}
$$

with rather longer period than one might naïvely have expected. Confirming this is a nice exercise in multiplying by 2 . One indirect way to do that is to use the ideal matrices.

In the latter case, aW even allows us to replace aW by $2 a W$ and to obtain

$$
\sqrt{a^{2} W^{2}-c}+|a W|=[\overline{2|a W|,-2|a W| / c}] ;
$$

Therefore if $c \mid a$ and regardless of the parity of $a W$

$$
\sqrt{a^{2} W^{2}-2 c}+|a W|=[\overline{2|a W|,-|a W| / c}] .
$$

If $c \mid a$ but $a W$ is odd, we may multiply by 2 to obtain

$$
\begin{array}{r}
\sqrt{a^{2} W^{2}-4 c}+|a W|=\left[\overline{2|a W|,-\frac{1}{2}(1+|a W| / c), 2,-\frac{1}{2}(1+|a W|)},\right. \\
\frac{2|a W| / c,-\frac{1}{2}(1+|a W|), 2,-\frac{1}{2}(1+|a W| / c)}{2 \mid},
\end{array}
$$

with rather longer period than one might naïvely have expected.
Confirming this is a nice exercise in multiplying by 2 . One indirect way to do that is to use the ideal matrices.
The cases detailed above are intended to be all those for which $c \mid a$ and $a^{2} W^{2}-m c$, with $m=1,2$, or 4 , is not divisible by a square.

In the foregoing, I took $-c$ rather than c to emphasise the manner in which the sign influences the expansion.
Note that I do not observe the requirement that partial quotients should be positive, both so as to leave some exercises and to make clear that

In the foregoing, I took $-c$ rather than c to emphasise the manner in which the sign influences the expansion.
Note that I do not observe the requirement that partial quotients should be positive, both so as to leave some exercises and to make clear that results that appear in the literature as dozens of distinct cases are in fact just a handful of cases.
Exercise.

In the foregoing, I took $-c$ rather than c to emphasise the manner in which the sign influences the expansion.
Note that I do not observe the requirement that partial quotients should be positive, both so as to leave some exercises and to make clear that results that appear in the literature as dozens of distinct cases are in fact just a handful of cases.

Exercise.

(a) I speak of "dozens of different cases". If the computations above were completed by rewriting each expansion so that it has only positive partial quotients, and with c both positive and negative, how many different cases do in fact result?
(b) Rewrite several of the cases.

In the foregoing, I took $-c$ rather than c to emphasise the manner in which the sign influences the expansion.
Note that I do not observe the requirement that partial quotients should be positive, both so as to leave some exercises and to make clear that results that appear in the literature as dozens of distinct cases are in fact just a handful of cases.

Exercise.

(a) I speak of "dozens of different cases". If the computations above were completed by rewriting each expansion so that it has only positive partial quotients, and with c both positive and negative, how many different cases do in fact result?
(b) Rewrite several of the cases.

In the foregoing, I took $-c$ rather than c to emphasise the manner in which the sign influences the expansion.
Note that I do not observe the requirement that partial quotients should be positive, both so as to leave some exercises and to make clear that results that appear in the literature as dozens of distinct cases are in fact just a handful of cases.

Exercise.

(a) I speak of "dozens of different cases". If the computations above were completed by rewriting each expansion so that it has only positive partial quotients, and with c both positive and negative, how many different cases do in fact result?
(b) Rewrite several of the cases.
(c) Suppose $u=a+\omega b$ is a unit of $\mathbb{Z}[\omega]$ and set $u^{h}=a^{(h)}+\omega b^{(h)}$. If both $D=t^{2}-4 n$ and $b=b^{(1)}$ are odd show that $b^{(k)}$ is even if and only if 3 divides k.
[for negative readers] Redo (a) and (b) above so as to obtain partial quotients with alternating sign.

In the foregoing, I took $-c$ rather than c to emphasise the manner in which the sign influences the expansion.
Note that I do not observe the requirement that partial quotients should be positive, both so as to leave some exercises and to make clear that results that appear in the literature as dozens of distinct cases are in fact just a handful of cases.

Exercise.

(a) I speak of "dozens of different cases". If the computations above were completed by rewriting each expansion so that it has only positive partial quotients, and with c both positive and negative, how many different cases do in fact result?
(b) Rewrite several of the cases.
(c) Suppose $u=a+\omega b$ is a unit of $\mathbb{Z}[\omega]$ and set $u^{h}=a^{(h)}+\omega b^{(h)}$. If both $D=t^{2}-4 n$ and $b=b^{(1)}$ are odd show that $b^{(k)}$ is even if and only if 3 divides k.
(d) [for negative readers] Redo (a) and (b) above so as to obtain partial quotients with alternating sign.

[^0]: periodic.

[^1]: Exercise. Verify (or correct) all these many remarks.

[^2]: *I first heard the theorem in the course of Frits Hirzebruch's Mordell Lecture at Cambridge, UK in 1975. It is Satz 3, at p. 136 of D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.

[^3]: ${ }^{\dagger}$ A. Schinzel, "On some problems of the arithmetical theory of continued fractions", Acta Arith. VI (1961), 393-413, and "On some problems of the arithmetical theory of continued fractions II", Acta Arith. VII (1962), 287-298.

