09 S.M N 421 # REFINEMENTS OF SOME EXTREME FORMS ъу C.E. NELSON B.Sc. Hons. (Adel.) A Thesis submitted for the Degree of Master of Science in the University of Adelaide Department of Mathematics Dec. 1968 # CONTENTS # SUMMARY | CHAP TER | | PAGE | |----------|---|------| | 1. | The Lattices $\Lambda(\lambda)$. | 1 | | 2. | The Packings \mathbb{P}_n and \mathbb{P}_n' . | 17 | | 3. | The Possibility of Refining Λ_{6} . | 25 | | 140 | A Proof that Λ_s can be Refined. | 31 | | 5• | The Sets A_n . | 55 | | 6. | The Refinement Δ_6 . | -66 | | 7. | The Refinement $\Delta_n(n \ge 6)$. | 73 | | 8. | Comments on the Method . | 91 | #### BIBLIOGRAPHY #### SUMMARY Let $f(x) = f(x_1, x_2, ..., x_n)$ be a positive definite quadratic form with determinant D, and let M be the minimum value assumed by f for integral $x \neq 0$. The relative minimum of f, $\gamma_n(f)$, is defined by $$\gamma_n(f) = M/D^{1/n} .$$ We let $$\gamma_n = \max_{\mathbf{f}} \gamma_n(\mathbf{f})$$ the maximum being taken over all positive definite n-variable forms. We call f extreme if $\gamma_n(f)$ is a local maximum for varying f, and absolutely extreme if $\gamma_n(f)$ is an absolute maximum, so that $\gamma_n(f) = \gamma_n$. Suppose f(x), g(x) are two positive n-variable forms with corresponding lattices Λ , M in E^n . If $\Lambda \subset M$ we say that M refines Λ , and that g refines f. Recently E.S. Barnes and G.E. Wall published a paper in which they constructed, for each $N=2^n$ (n=2,3,...), a lattice Λ_n in E^N with form f_n which was extreme with $$\gamma_{\mathbb{N}}(\mathbf{f}_{n}) = \left(\frac{1}{2}\mathbb{N}\right)^{\frac{1}{2}} \qquad \bullet$$ The forms f_2 , f_3 are absolutely extreme, and for $n \ge 4$, $\gamma_N(f_n)$ exceeds $\gamma_N(f)$ for any other known positive N-variable form f_* . This thesis is concerned with the possibility of refining the form f_n to a form with the same minimum \mathbb{N} , but with higher relative minimum. This technique has been used by Barnes to construct new classes of extreme forms from known forms. That this method could be applied to f_6 was suggested originally by two papers of J. Leech concerned with packings of the sphere in \mathbb{E}^n . By considerably extending this method of refining f_6 , I have produced, for each $n \ge 6$, a lattice Δ_n refining Λ_n , and a form g_n refining f_n , with g_n extreme, and $$\gamma_{N}(g_{n}) = N^{2/N} 2^{-6/N} \left(\frac{1}{2}N\right)^{\frac{1}{2}}$$. If n is not too large, this is significantly larger than $\gamma_{\mathrm{N}}(\mathbf{f}_n)$, and will improve the lower bound for $\gamma_{\mathrm{N}}(\mathrm{n} \ge 6)$. A description of the construction of Δ_n and \mathbf{g}_n forms the subject-matter of this thesis.