09 S.M N 421



# REFINEMENTS OF SOME EXTREME FORMS

ъу

C.E. NELSON B.Sc. Hons. (Adel.)

A Thesis submitted for the Degree of
Master of Science

in the University of Adelaide

Department of Mathematics

Dec. 1968

# CONTENTS

# SUMMARY

| CHAP TER |                                                   | PAGE |
|----------|---------------------------------------------------|------|
| 1.       | The Lattices $\Lambda(\lambda)$ .                 | 1    |
| 2.       | The Packings $\mathbb{P}_n$ and $\mathbb{P}_n'$ . | 17   |
| 3.       | The Possibility of Refining $\Lambda_{6}$ .       | 25   |
| 140      | A Proof that $\Lambda_s$ can be Refined.          | 31   |
| 5•       | The Sets $A_n$ .                                  | 55   |
| 6.       | The Refinement $\Delta_6$ .                       | -66  |
| 7.       | The Refinement $\Delta_n(n \ge 6)$ .              | 73   |
| 8.       | Comments on the Method .                          | 91   |

#### BIBLIOGRAPHY

#### SUMMARY

Let  $f(x) = f(x_1, x_2, ..., x_n)$  be a positive definite quadratic form with determinant D, and let M be the minimum value assumed by f for integral  $x \neq 0$ . The relative minimum of f,  $\gamma_n(f)$ , is defined by

$$\gamma_n(f) = M/D^{1/n} .$$

We let

$$\gamma_n = \max_{\mathbf{f}} \gamma_n(\mathbf{f})$$

the maximum being taken over all positive definite n-variable forms. We call f extreme if  $\gamma_n(f)$  is a local maximum for varying f, and absolutely extreme if  $\gamma_n(f)$  is an absolute maximum, so that  $\gamma_n(f) = \gamma_n$ . Suppose f(x), g(x) are two positive n-variable forms with corresponding lattices  $\Lambda$ , M in  $E^n$ . If  $\Lambda \subset M$  we say that M refines  $\Lambda$ , and that g refines f.

Recently E.S. Barnes and G.E. Wall published a paper in which they constructed, for each  $N=2^n$  (n=2,3,...), a lattice  $\Lambda_n$  in  $E^N$  with form  $f_n$  which was extreme with

$$\gamma_{\mathbb{N}}(\mathbf{f}_{n}) = \left(\frac{1}{2}\mathbb{N}\right)^{\frac{1}{2}} \qquad \bullet$$

The forms  $f_2$ ,  $f_3$  are absolutely extreme, and for  $n \ge 4$ ,  $\gamma_N(f_n)$  exceeds  $\gamma_N(f)$  for any other known positive N-variable form  $f_*$ .

This thesis is concerned with the possibility of refining the form  $f_n$  to a form with the same minimum  $\mathbb{N}$ , but with higher relative minimum. This technique has been used by Barnes to construct new classes of extreme forms from known forms. That this method could be applied to  $f_6$  was suggested originally by two papers of J. Leech concerned with packings of the sphere in  $\mathbb{E}^n$ . By considerably extending this method of refining  $f_6$ , I have produced, for each  $n \ge 6$ , a lattice  $\Delta_n$  refining  $\Lambda_n$ , and a form  $g_n$  refining  $f_n$ , with  $g_n$  extreme, and

$$\gamma_{N}(g_{n}) = N^{2/N} 2^{-6/N} \left(\frac{1}{2}N\right)^{\frac{1}{2}}$$
.

If n is not too large, this is significantly larger than  $\gamma_{\mathrm{N}}(\mathbf{f}_n)$ , and will improve the lower bound for  $\gamma_{\mathrm{N}}(\mathrm{n} \ge 6)$ . A description of the construction of  $\Delta_n$  and  $\mathbf{g}_n$  forms the subject-matter of this thesis.