Publications of Jan H. Chabrowski

168. Chabrowski, Jan; Tintarev, Cyril. An elliptic problem with an indefinite nonlinearity and a parameter in the boundary condition, NoDEA Nonlinear Differential Equations Appl. 21 (2014), no. 4, 519-540.
167. Chabrowski, Jan. On a singular nonlinear Neumann problem. Opuscula Math. 34 (2014), no. 2, 271-290.
166. Chabrowski, Jan. Inhomogeneous Neumann problem with critical Sobolev exponent. Adv. Nonlinear Anal. 1 (2012), no. 3, 221-255.
165. Chabrowski, Jan. On the Neumann problem with a nonlinear boundary condition. Ann. Univ. Buchar. Math. Ser. 2(LX) (2011), no. 1, 27-51.
164. Chabrowski, Jan. On the Neumann problem for systems of elliptic equations involving homogeneous nonlinearities of a critical degree. Colloq. Math. 125, No. 1, (2011) 115-127
163. Chabrowski, J. H. On the existence of a solution to a class of variational inequalities. Ric. Mat. 60 (2011), no. 2, 333-350.
162. Chabrowski, J.; Tintarev, K. Ground state for the Schrödinger operator with the weighted Hardy potential. Int. J. Differ. Equ. 2011, Art. ID 358087, 26 pp.
161. Chabrowski, Jan H.; Grotowski, Joseph F. On radial solutions of the Schrödinger type equation. Adv. Nonlinear Stud. 11 (2011), no. 2, 295-310.
160. Chabrowski, J. Multiple solutions for a nonlinear Neumann problem involving a critical Sobolev exponent. Note Mat. 28 (2008), no. 1, 15-28.
159. Chabrowski, J. The critical Neumann problem for semilinear elliptic equations with the Hardy potential. Adv. Differential Equations 13 (2008), no. 3-4, 323-348.
158. Chabrowski, J. On an obstacle problem for degenerate elliptic operators involving the critical Sobolev exponent. J. Fixed Point Theory Appl. 4 (2008), no. 1, 137-150.
157. Chabrowski, J.; Costa, D. G. On a class of Schrödinger-type equations with indefinite weight functions. Comm. Partial Differential Equations 33 (2008), no. 7-9, 1368-1394.
156. Chabrowski, J. On a critical Neumann problem with a perturbation of lower order. Acta Math. Appl. Sin. Engl. Ser. 24 (2008), no. 3, 441-452,
155. Chabrowski, J. On a singular Neumann problem for semilinear elliptic equations with critical Sobolev exponent and lower order terms. J. Fixed Point Theory Appl. 2 (2007), no. 2, 333-352.
154. Chabrowski, Jan. The Neumann problem for semilinear elliptic equations with critical Sobolev exponent. Milan J. Math. 75 (2007), 197-224.
153. Chabrowski, Jan. The critical Neumann problem for semilinear elliptic equations with concave perturbations. Ric. Mat. 56 (2007), no. 2, 297-319.
152. Cao, Daomin; Chabrowski, Jan. Critical Neumann problem with competing Hardy potentials. Rev. Mat. Complut. 20 (2007), no. 2, 309-338.
151. Chabrowski, Jan; Wang, Zhi-Qiang. Exterior nonlinear Neumann problem. NoDEA Nonlinear Differential Equations Appl. 13 (2007), no. 5-6, 683-697.
150. Chabrowski, J. On the Neumann problem with the Hardy-Sobolev potential. Ann. Mat. Pura Appl. (4) 186 (2007), no. 4, 703-719.
149. Chabrowski, Jan; Ruf, Bernhard. On the critical Neumann problem with lower order perturbations. Colloq. Math. 108 (2007), no. 2, 225-246.
148. Chabrowski, Jan. The Hardy potential and eigenvalue problems. Opuscula Math. 31 (2011), no. 2, 173-194.
147. Chabrowski, J.; Peral, I.; Ruf, B. On an eigenvalue problem involving the Hardy potential. Commun. Contemp. Math. 12 (2010), no. 6, 953-975.
146. Chabrowski, J.; Costa, D. G. On existence of positive solutions for a class of Caffarelli-Kohn-Nirenberg type equations. Colloq. Math. 120 (2010), no. 1, 43-62.
145. Chabrowski, J. On the Neumann problem with multiple critical nonlinearities. Complex Var. Elliptic Equ. 55 (2010), no. 5-6, 501-524.
144. Chabrowski, Jan; Szulkin, Andrzej; Willem, Michel. Schrödinger equation with multiparticle potential and critical nonlinearity. Topol. Methods Nonlinear Anal. 34 (2009), no. 2, 201-211.
143. Chabrowski, Jan. On elliptic problems with a nonlinearity depending on the gradient. Opuscula Math. 29 (2009), no. 4, 377-391.
142. Chabrowski, J. On the Neumann problem with singular and superlinear nonlinearities. Commun. Appl. Anal. 13 (2009), no. 3, 327-339,
141. Chabrowski, Jan. Multiple solutions for a nonlinear Neumann problem involving a critical Sobolev exponent. Note Mat. 28 (2008), no. 1, 15-28.
140. Chabrowski, J. On the Neumann problem with L1 data. Colloq. Math. 107 (2007), no. 2, 301-316.
139. Chabrowski, J. Indefinite quasilinear Neumann problem on unbounded domains. Bull. Pol. Acad. Sci. Math. 54 (2006), no. 3-4, 207-217.
138. Chabrowski, Jan; Filippas, Stathis; Tertikas, Achilles. Positive solutions of a Neumann problem with competing critical nonlinearities. Topol. Methods Nonlinear Anal. 28 (2006), no. 1, 1-31.
137. Chabrowski, Jan; Fu, Yongqiang. Corrigendum to: "Laplacian problems on a bounded domain" [J. Math. Anal. Appl. 306 (2005), no. 2, 604-618] J. Math. Anal. Appl. 323 (2006), no. 2, 1483,
136. Chabrowski, J.; Willem, M. Hardy's inequality on exterior domains. Proc. Amer. Math. Soc. 134 (2006), no. 4, 1019-1022 (electronic).
135. Chabrowski, J. On the exterior Neumann problem with critical growth. Differential Integral Equations 19 (2006), no. 1, 75-90.
134. Chabrowski, Jan; Drábek, Pavel; Tonkes, Elliot. Asymptotic bifurcation results for quasilinear elliptic operators. Glasg. Math. J. 47 (2005), no. 1, 55-67.
133. Chabrowski, Jan; Yang, Jianfu. On the Neumann problem with combined nonlinearities. Ann. Polon. Math. 85 (2005), no. 3, 239-250.
132. Chabrowski, Jan; Willem, Michel. On multiple solutions of the exterior Neumann problem involving critical Sobolev exponent. Topol. Methods Nonlinear Anal. 26 (2005), no. 1, 89-108.
131. Chabrowski, Jan; Tintarev, Kyril. An elliptic Neumann problem with subcritical nonlinearity. Bull. Pol. Acad. Sci. Math. 53 (2005), no. 1, 7-16,
130. Chabrowski, Jan; Fu, Yongqiang. Existence of solutions for p(x)-Laplacian problems on a bounded domain. J. Math. Anal. Appl. 306 (2005), no. 2, 604-618.
129. Chabrowski, Jan; Yang, Jianfu. Sharp Sobolev inequality involving a critical nonlinearity on a boundary. Topol. Methods Nonlinear Anal. 25 (2005), no. 1, 135-153.
128. Chabrowski, Jan; Szulkin, Andrzej. On the Schrödinger equation involving a critical Sobolev exponent and magnetic field. Topol. Methods Nonlinear Anal. 25 (2005), no. 1, 3-21.
127. Chabrowski, Jan. On multiple solutions of the Neumann problem involving the critical Sobolev exponent. Colloq. Math. 101 (2004), no. 2, 203-220,
126. Chabrowski, Jan. On the nonlinear Neumann problem involving the critical Sobolev exponent and Hardy potential. Rev. Mat. Complut. 17 (2004), no. 1, 195-227.
125. Chabrowski, Jan; Girão, Pedro. On the exterior Neumann problem involving the critical Sobolev exponent. Topol. Methods Nonlinear Anal. 23 (2004), no. 1, 33-43,
124. Chabrowski, J. On the nonlinear Neumann problem involving the critical Sobolev exponent on the boundary. J. Math. Anal. Appl. 290 (2004), no. 2, 605-619.
123. Chabrowski, J.; Tonkes, E. On elliptic systems pertaining to the Schrödinger equation. Ann. Polon. Math. 81 (2003), no. 3, 273-294.
122. Chabrowski, J.; Yang, Jianfu. Multiple solutions of a nonlinear elliptic equation involving Neumann conditions and a critical Sobolev exponent. Rend. Sem. Mat. Univ. Padova 110 (2003), 1-24.
121. Chabrowski, J.; Tonkes, E. On the nonlinear Neumann problem with critical and supercritical nonlinearities. Dissertationes Math. (Rozprawy Mat.) 417 (2003), 59 pp.
120. Chabrowski, J.; Ruf, Bernhard. On the critical Neumann problem with weight in exterior domains. Nonlinear Anal. 54 (2003), no. 1, 143-163.
119. Chabrowski, Jan. On the nonlinear Neumann problem with indefinite weight and Sobolev critical nonlinearity. Bull. Polish Acad. Sci. Math. 50 (2002), no. 3, 323-333.
118. Chabrowski, J. Existence results for nonlinear Schrödinger equations with electromagnetic fields. Monatsh. Math. 137 (2002), no. 4, 261-272.
117. Chabrowski, J.; Willem, M. Least energy solutions of a critical Neumann problem with a weight. Calc. Var. Partial Differential Equations 15 (2002), no. 4, 421-431.
116. Chabrowski, J. Mean curvature and least energy solutions for the critical Neumann problem with weight. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 5 (2002), no. 3, 715-733.
115. Chabrowski, J.; Yan, Shusen. On the nonlinear Neumann problem at resonance with critical Sobolev nonlinearity. Colloq. Math. 94 (2002), no. 1, 141-150.
114. Chabrowski, Jan; Girão, Pedro M. Symmetric solutions of the Neumann problem involving a critical Sobolev exponent. Topol. Methods Nonlinear Anal. 19 (2002), no. 1, 1-27.
113. Chabrowski, J.; Marcos do Ó, João. On some fourth-order semilinear elliptic problems in RN. Nonlinear Anal. 49 (2002), no. 6, Ser. A: Theory Methods, 861-884,
112. Chabrowski, J.; Drábek, P. On positive solutions of nonlinear elliptic equations involving concave and critical nonlinearities. Studia Math. 151 (2002), no. 1, 67-85.
111. Chabrowski, J.; Bezzera do Ó, João Marcos. On semilinear elliptic equations involving concave and convex nonlinearities. Math. Nachr. 233/234 (2002), 55-76.
110. Chabrowski, Jan; Szulkin, Andrzej. On a semilinear Schrödinger equation with critical Sobolev exponent. Proc. Amer. Math. Soc. 130 (2002), no. 1, 85-93 (electronic).
109. Chabrowski, J.; Yang, Jianfu. On the Neumann problem for an elliptic system of equations involving the critical Sobolev exponent. Colloq. Math. 90 (2001), no. 1, 19-35.
108. Chabrowski, J.; Watson, Peter J.; Yang, Jianfu. On shape and multiplicity of solutions for a singularly perturbed Neumann problem. Ann. Polon. Math. 77 (2001), no. 2, 119-159.
107. Chabrowski, J.; Girão, P. M. The nonlinear Neumann problem and sharp weighted Sobolev inequalities. Colloq. Math. 88 (2001), no. 2, 193-213,
106. Chabrowski, J.; Yang, Jianfu. Multiple semiclassical solutions of the Schrödinger equation involving a critical Sobolev exponent. Portugal. Math. 57 (2000), no. 3, 273-284.
105. Chabrowski, Jan. Weak convergence methods for semilinear elliptic equations. World Scientific Publishing Co., Inc., River Edge, NJ, 1999. xii+234 pp.
104. Chabrowski, Jan; Yan, Shusen. Concentration of solutions for a nonlinear elliptic problem with nearly critical exponent. Topol. Methods Nonlinear Anal. 13 (1999), no. 2, 199-233.
103. Chabrowski, Jan; Yang, Jianfu. On Schrödinger equation with periodic potential and critical Sobolev exponent. Topol. Methods Nonlinear Anal. 12 (1998), no. 2, 245-261.
102. Chabrowski, Jan; Yan, Shusen. The effect of the graph topology on a semilinear elliptic equation with critical exponent. Topol. Methods Nonlinear Anal. 12 (1998), no. 1, 1-26.
101. Chabrowski, J.; Yang, Jianfu. Existence theorems for the Schrödinger equation involving a critical Sobolev exponent. Z. Angew. Math. Phys. 49 (1998), no. 2, 276-293.
100. Cao, Daomin; Chabrowski, J. Multiple solutions of nonhomogeneous elliptic equation with critical nonlinearity. Differential Integral Equations 10 (1997), no. 5, 797-814.
99. Chabrowski, J. Elliptic variational problems with indefinite nonlinearities. Topol. Methods Nonlinear Anal. 9 (1997), no. 2, 221-231.
98. Arioli, G.; Chabrowski, J. Periodic motions of a dynamical system consisting of an infinite lattice of particles. Dynam. Systems Appl. 6 (1997), no. 3, 387-395.
97. Chabrowski, Jan. Variational methods for potential operator equations. With applications to nonlinear elliptic equations. de Gruyter Studies in Mathematics, 24. Walter de Gruyter & Co., Berlin, 1997. x+290 pp.
96. Chabrowski, J.; Yang, Jianfu. Nonnegative solutions for semilinear biharmonic equations in RN. Analysis 17 (1997), no. 1, 35-59.
95. Chabrowski, J.; Yang, Jianfu. Existence theorems for elliptic equations involving supercritical Sobolev exponent. Adv. Differential Equations 2 (1997), no. 2, 231-256.
94. Chabrowski, J. On multiple solutions for nonhomogeneous system of elliptic equations. Rev. Mat. Univ. Complut. Madrid 9 (1996), no. 1, 207-234.
93. Chabrowski, J. Degenerate elliptic equation involving a subcritical Sobolev exponent. Portugal. Math. 53 (1996), no. 2, 167-177.
92. Chabrowski, J. On nodal radial solutions of an elliptic problem involving critical Sobolev exponent. Comment. Math. Univ. Carolin. 37 (1996), no. 1, 1-16.
91. Chabrowski, J. Introduction to the theory of critical points. The mountain pass theorem. Ekeland's variational principle. Instructional Workshop on Analysis and Geometry, Part III (Canberra, 1995), 137-181, Proc. Centre Math. Appl. Austral. Nat. Univ., 34, Austral. Nat. Univ., Canberra, 1996.
90. Cao, Daomin; Chabrowski, J. On the number of positive solutions for nonhomogeneous semilinear elliptic problem. Adv. Differential Equations 1 (1996), no. 5, 753-772.
89. Chabrowski, J. Concentration-compactness principle at infinity and semilinear elliptic equations involving critical and subcritical Sobolev exponents. Calc. Var. Partial Differential Equations 3 (1995), no. 4, 493-512.
88. Bianchi, Gabriele; Chabrowski, Jan; Szulkin, Andrzej. On symmetric solutions of an elliptic equation with a nonlinearity involving critical Sobolev exponent. Nonlinear Anal. 25 (1995), no. 1, 41-59.
87. Chabrowski, J. On multiple solutions for the nonhomogeneous p-Laplacian with a critical Sobolev exponent. Differential Integral Equations 8 (1995), no. 4, 705-716.
86. Chabrowski, J.; Zhang, Kewei. On shape from shading problem. Functional analysis, approximation theory and numerical analysis, 93-105, World Sci. Publ., River Edge, NJ, 1994.
85. Chabrowski, J.; Zhang, Kewei. On variational approach to the Hamilton-Jacobi PDE. Comment. Math. Univ. Carolin. 34 (1993), no. 4, 613-633.
84. Chabrowski, Jan; Zhang, Kewei. On variational approach to photometric stereo. Ann. Inst. H. Poincaré Anal. Non Linéaire 10 (1993), no. 4, 363-375,
83. Chabrowski, J. On the existence of G-symmetric entire solutions for semilinear elliptic equations. Rend. Circ. Mat. Palermo (2) 41 (1992), no. 3, 413-440.
82. Chabrowski, J. Existence results for quasilinear Dirichlet problem. Tsukuba J. Math. 16 (1992), no. 2, 295-313.
81. Chabrowski, J.; Zhang, Kewei. Quasi-monotonicity and perturbated systems with critical growth. Indiana Univ. Math. J. 41 (1992), no. 2, 483-504.
80. Chabrowski, J. On compact embeddings of radial Sobolev spaces and their applications. Comm. Partial Differential Equations 17 (1992), no. 5-6, 941-952.
79. Chabrowski, Jan. On nonlinear eigenvalue problems. Forum Math. 4 (1992), no. 4, 359-375.
78. Chabrowski, Jan. Multiple solutions for a class of nonlocal problems for semilinear elliptic equations. Publ. Res. Inst. Math. Sci. 28 (1992), no. 1, 1-11.
77. Chabrowski, Jan. The Dirichlet problem with L2-boundary data for elliptic linear equations. Lecture Notes in Mathematics, 1482. Springer-Verlag, Berlin, 1991. vi+173 pp.
76. Chabrowski, J. On entire solutions of the p-Laplacian. Workshop on Theoretical and Numerical Aspects of Geometric Variational Problems (Canberra, 1990), 27-61, Proc. Centre Math. Appl. Austral. Nat. Univ., 26, Austral. Nat. Univ., Canberra, 1991.
75. Chabrowski, J. Existence results for singular elliptic equations. Hokkaido Math. J. 20 (1991), no. 3, 465-475.
74. Chabrowski, J. Some existence theorems for the Dirichlet problem for quasilinear elliptic equations. Ann. Mat. Pura Appl. (4) 158 (1991), 391-398.
73. Chabrowski, J.; König, M. On entire solutions of elliptic equations with a singular nonlinearity. Comment. Math. Univ. Carolin. 31 (1990), no. 4, 643-654.
72. Chabrowski, J. On pairs of decaying positive solutions of semilinear elliptic equations in unbounded domains. Boll. Un. Mat. Ital. A (7) 4 (1990), no. 1, 21-30,
71. Chabrowski, J. Some remarks on the Dirichlet problem for semi-linear elliptic equations with the Ambrosetti-Prodi conditions. Hokkaido Math. J. 18 (1989), no. 3, 385-395.
70. Chabrowski, J. On nonlocal problems for elliptic linear equations. Funkcial. Ekvac. 32 (1989), no. 2, 215-226,
69. Chabrowski, J. H. Remarks on multiplicity result for the Dirichlet problem for nonlinear elliptic equations. Rend. Circ. Mat. Palermo (2) 37 (1988), no. 2, 307-320.
68. Chabrowski, J. On the existence of solutions of the Dirichlet problem for nonlinear elliptic equations. Rend. Circ. Mat. Palermo (2) 37 (1988), no. 1, 65-87.
67. Chabrowski, J. Multiplicity result for a class of quasilinear elliptic equations. Boll. Un. Mat. Ital. B (7) 2 (1988), no. 4, 779-793.
66. Chabrowski, J. Quasilinear ellipticity and the Dirichlet problem. Israel J. Math. 63 (1988), no. 3, 353-379.
65. Chabrowski, J. H.; Thompson, H. B. Singular and quasi-bounded functions associated with the heat equation. Math. Z. 199 (1988), no. 1, 81-98.
64. Chabrowski, J. On the solvability of the Dirichlet problem for nonlinear elliptic equations. J. Analyse Math. 50 (1988), 65-78.
63. Chabrowski, J. On positive solutions of quasilinear elliptic equations. Hokkaido Math. J. 17 (1988), no. 1, 93-99.
62. Chabrowski, J. H. On solvability of boundary value problem for elliptic equations with Bitsadze-Samarskiĭ condition. Internat. J. Math. Math. Sci. 11 (1988), no. 1, 101-113.
61. Chabrowski, J. H. The Dirichlet problem in half-space for elliptic equations with unbounded coefficients. Rend. Sem. Mat. Univ. Padova 77 (1987), 15-36.
60. Chabrowski, J. H. On the Dirichlet problem for degenerate elliptic equations. Publ. Res. Inst. Math. Sci. 23 (1987), no. 1, 1-16.
59. Chabrowski, J. H. On the Dirichlet problem for a degenerate elliptic equation. Comment. Math. Univ. Carolin. 28 (1987), no. 1, 141-155.
58. Chabrowski, J. H. On the Dirichlet problem for a quasilinear elliptic equation. Rend. Circ. Mat. Palermo (2) 35 (1986), no. 1, 159-168.
57. Chabrowski, J.; Lieberman, Gary M. On the Dirichlet problem with L2 boundary values in a half-space. Indiana Univ. Math. J. 35 (1986), no. 3, 623-642.
56. Chabrowski, Jan. On positive solutions for a class of elliptic boundary value problems. Tohoku Math. J. (2) 38 (1986), no. 3, 343-350,
55. Chabrowski, J. On traces of solutions of linear elliptic systems and their application to the Dirichlet problem. Tsukuba J. Math. 10 (1986), no. 1, 35-46.
54. Chabrowski, J. On boundary values of solutions of a quasilinear partial differential equation of elliptic type. Rocky Mountain J. Math. 16 (1986), no. 2, 223-236.
53. Chabrowski, J. H. On the Dirichlet problem for a linear elliptic equation with unbounded coefficients. Boll. Un. Mat. Ital. B (6) 5 (1986), no. 1, 71-91.
52. Chabrowski, J. H. On the Dirichlet problem with L1-boundary data. Funkcial. Ekvac. 28 (1985), no. 3, 327-339.
51. Chabrowski, J. Dirichlet problem for a linear elliptic equation in unbounded domains with L2-boundary data. Rend. Sem. Mat. Univ. Padova 71 (1984), 287-328.
50. Chabrowski, J. On the nonlocal problem with a functional for parabolic equation. Funkcial. Ekvac. 27 (1984), no. 1, 101-123.
49. Chabrowski, J. The Dirichlet problem for a linear elliptic equation in a half space with L2-boundary data. Miniconference on operator theory and partial differential equations (Canberra, 1983), 61-66, Proc. Centre Math. Anal. Austral. Nat. Univ., 5, Austral. Nat. Univ., Canberra, 1984,
48. Chabrowski, J. On the Dirichlet problem for semilinear elliptic equation with L2-boundary data. Math. Z. 187 (1984), no. 2, 171-183.
47. Chabrowski, J. On nonlocal problems for parabolic equations. Nagoya Math. J. 93 (1984), 109-131.
46. Chabrowski, J.; Thompson, B. On traces of solutions of a semilinear partial differential equation of elliptic type. Ann. Polon. Math. 42 (1983), 45-71.
45. Chabrowski, J.; Thompson, H. B. On the boundary values of the solutions of linear elliptic equations. Bull. Austral. Math. Soc. 27 (1983), no. 1, 1-30.
44. Chabrowski, Jan. On maximal functions and parabolic limits. Math. Z. 184 (1983), no. 2, 271-282,
43. Chabrowski, J.; Výborný, R. Maximum principle for nonlinear degenerate inequalities of parabolic type. Miniconference on partial differential equations (Canberra, 1981), 103-105, Proc. Centre Math. Anal. Austral. Nat. Univ., 1, Austral. Nat. Univ., Canberra, 1982,
42. Chabrowski, J.; Thompson, B. Singular and quasibounded functions associated with the heat equation. Miniconference on partial differential equations (Canberra, 1981), 101-102, Proc. Centre Math. Anal. Austral. Nat. Univ., 1, Austral. Nat. Univ., Canberra, 1982,
41. Chabrowski, Jan. Note on the Dirichlet problem with L2-boundary data. Manuscripta Math. 40 (1982), no. 1, 91-108,
40. Chabrowski, J. Representation theorems for parabolic systems. J. Austral. Math. Soc. Ser. A 32 (1982), no. 2, 246-288,
39. Chabrowski, Jan; Výborný, Rudolf. Maximum principle for nonlinear degenerate equations of the parabolic type. Bull. Austral. Math. Soc. 25 (1982), no. 2, 251-263.
38. Chabrowski, J.; Watson, N. A. Properties of solutions of weakly coupled parabolic systems. J. London Math. Soc. (2) 23 (1981), no. 3, 475-495,
37. Chabrowski, J.; Thompson, B. On the behaviour near the boundary of solutions of a semilinear partial differential equation of elliptic type. J. Austral. Math. Soc. Ser. A 31 (1981), no. 4, 405-414.
36. Chabrowski, Jan. Energy estimates for some quasilinear parabolic system of partial differential equations and their applications. Uniw. Śląski w Katowicach Prace Nauk.-Prace Mat. No. 9 (1979), 29-45.
35. Chabrowski, Jan. Asymptotic estimates for solutions of the second boundary value problem for parabolic equations. Demonstratio Math. 11 (1978), no. 4, 997-1013 (1979).
34. Chabrowski, Jan; Johnson, Raymond. An axiomatic approach to the problem of representation of solutions of parabolic equations and systems. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 26 (1978), no. 11, 887-893 (1979).
33. Chabrowski, J.; Johnson, R. Backwards uniqueness in time for solutions of possibly degenerate equations of parabolic type. J. Differential Equations 22 (1976), no. 1, 209-226.
32. Chabrowski, J.; Reynaud, G. Principe de maximum de certaines solutions d'inégalité aux dérivées partielles de type parabolique dans un cylindre Ω ˣ ] - ∞,T). Demonstratio Math. 9 (1976), no. 2, 159-180.
31. Chabrowski, J.; Reynaud, G. Propriétés de certaines solutions d'inégalité aux dérivées partielles de type parabolique. Ann. Polon. Math. 30 (1975), no. 3, 283-295.
30. Chabrowski, J.; Reynaud, G. Inéquations portant sur des systèmes linéaires de type parabolique et applications à la recherche de classes d'unicité. Ann. Polon. Math. 30 (1975), no. 3, 243-256.
29. Chabrowski, J.; Reynaud, G. Inegalité en norme Lp pour les solutions de système aux derivées partielles de type parabolique. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 1 (1974), 205-227 (1975).
28. Chabrowski, J. Representation theorems and Fatou theorems for parabolic systems in the sense of Petrovskiĭ. Colloq. Math. 31 (1974), 301-315.
27. Chabrowski, Jan. On quasilinear differential inequalities of parabolic type. Uniw. Śląski w Katowicach-Prace Mat. 4 (1973), 7-12. (loose errata).
26. Chabrowski, J. On the representation of non-negative solutions of linear parabolic systems of partial differential equations. Ann. Polon. Math. 28 (1973), 11-16.
25. Chabrowski, Jan. Sur un système non linéaire d'inégalités aux dérivées partielles du type parabolique. Uniw. Śląski w Katowicach-Prace Mat. 3 (1973), 17-23.
24. Chabrowski, J. Differential inequalities of parabolic type in the Sobolev space. Ann. Polon. Math. 28 (1973), 1-9.
23. Chabrowski, J. On behaviour of non-negative weak solutions of parabolic equations at the boundary. Colloq. Math. 25 (1972), 127-134.
22. Chabrowski, Jan. Remarques sur l'unicité des solutions des équations paraboliques et elliptiques. Zeszyty Nauk. Uniw. Jagiello. Prace Mat. No. 15 (1971), 21-25.
21. Chabrowski, J. Sur la construction de la solution fondamentale principale pour l'équation du type parabolique. Ann. Polon. Math. 25 (1971/72), 157-165.
20. Chabrowski, J. Sur l'unicité du problème de Cauchy dans une classe de fonctions non bornées. Ann. Polon. Math. 24 (1970/71), 127-135.
19. Chabrowski, J. Les solutions non bornées d'un système parabolique d'équations. Ann. Polon. Math. 24 1970/1971 121-125.
18. Chabrowski, J. Certaines propriétés solutions non négatives d'un système parabolique d'équations. Ann. Polon. Math. 24 1970/1971 137-143.
17. Chabrowski, J. Sur la limitation des éléments de la matrice fondamentale d'un système parabolique. Colloq. Math. 22 1970 153-155.
16. Chabrowski, Jan. Propriétés asymptotiques d'une mesure associée à l'équation différentielle aux dérivées partielles du type parabolique. Funkcial. Ekvac. 13 1970 35-43.
15. Chabrowski, J. Sur la mesure parabolique. Colloq. Math. 21 1970 291-301.
14. Chabrowski, J. Propriétés des solutions faibles non négatives de l'équation parabolique. Nagoya Math. J. 39 1970 119-125.
13. Chabrowski, J. Sur la construction de la solution fondamentale de l'équation parabolique aux coefficients non bornés. Colloq. Math. 21 1970 141-148.
12. Chabrowski, J. Remarques sur l'unicité du problème de Cauchy. Colloq. Math. 21 1970 133-139.
11. Chabrowski, J. Le premier problème de Fourier relatif au système parabolique d'équations quasi linéaires dans les domaines non cylindriques. Prace Mat. 12 1969 237-244.
10. Chabrowski, J. Sur l'unicité de la solution du problème de Cauchy pour l'équation linéaire du type parabolique. Ann. Scuola Norm. Sup. Pisa (3) 23 1969 547-552.
9. Chabrowski, J. Les propriétés des solutions non négatives d'un système parabolique d'équations. Ann. Polon. Math. 22 1969/1970 323-331.
8. Chabrowski, J. Le premier problème de Fourier relatif à un système parabolique d'équations non linéaires. Ann. Polon. Math. 22 1969/1970 19-25.
7. Chabrowski, J. Sur la construction des solutions relativement extrémales de l'équation aux dérivées partielles du type parabolique. Prace Mat. 12 1969 245-250.
6. Chabrowski, J. Sur une mesure associée à l'équation différentielle aux derivées partielles du type parabolique. Ann. Scuola Norm. Sup. Pisa (3) 23 1969 99-113.
5. Chabrowski, Jan. Sur l'unicité des solutions des équations paraboliques et elliptiques. Zeszyty Nauk. Uniw. Jagiello. Prace Mat. Zeszyt 13 1969 13-18.
4. Chabrowski, J.; Łubczonok, G. Sur les semi-groupes à n paramètres des opérateurs linéaires. Studia Math. 33 1969 13-18.
3. Chabrowski, J. Sur un système non linéaire d'inégalités différentielles paraboliques dans un domaine non borné. Polon. Math. 22 1969/1970 27-35.
2. Chabrowski, J. Bemerkungen über Zeichen der Elemente der Matrix der Grundlösungen für parabolische Systeme von partiellen Differentialgleichungen zweiter Ordnung. Ann. Polon. Math. 19 1967 287-300.
1. Chabrowski, J. Les solutions non négatives d'un système parabolique d'équations. Ann. Polon. Math. 19 1967 193-197.

Books

Page layout: Alan Offer
Webmaster: Keith Matthews Last modified 18th June 2015