Problem Sheet 6, MP473, Semester 2, 2000

1. Let $K=\mathbb{Q}(\sqrt{-d}), d>1$ squarefree.
(a) Prove that O_{K} is not a UFD if one of the following holds:
(i) $d \equiv 1(\bmod 4), d>1$;
(ii) $d \equiv 2(\bmod 4), d>2$;
(ii) $d \equiv 7(\bmod 8), d>7$.
(b) If O_{K} is a UFD and $d>3$ and $d \equiv 3(\bmod 8)$, prove that d is a prime and that $x^{2}+x+\frac{d+1}{4}$ assumes prime values for $x=0, \ldots, \frac{d-7}{4}$.
2. (Chinese Remainder Theorem) Let A and B be ideals of O_{K} with $(A, B)=(1)$. Prove that the mapping $f: O_{K} / A B \rightarrow O_{K} / A \oplus O_{K} / B$, given by

$$
f(x+A B)=(x+A, x+B)
$$

is well-defined and an isomorphism.
3. A commutative ring is called reduced if $x^{n}=0, n \in \mathbb{N} \Rightarrow x=0$. Prove that if $(A, B)=(1)$, that $O_{K} / A B$ is reduced if and only if O_{K} / A and O_{K} / B are reduced. If P is a prime ideal of O_{K}, prove that O_{K} / P^{e} is reduced if and only if $e=1$. Deduce that $O_{K} /(p)$ is not reduced if and only if p ramifies (ie. one of the prime ideal factors of (p) occurs to an exponent $e>1$.)
(P. Samuel uses this result in his book Algebraic theory of numbers to prove Dedekind's theorem: p ramifies if and only if $p \mid D_{K}$.)
4. Find the group structure of the multiplicative group of equivalence classes of ideals in $\mathbb{Q}(\sqrt{-21})$.
5. Let $K=\mathbb{Q}(\sqrt{34})$.
(a) Determine which primes must be examined in order to determine I_{K}.
(b) Use the Kummer-Dedekind theorem to factorize the principal ideals (2), (3) and (5):

$$
(2)=P_{2}^{2}, \quad(3)=P_{3} Q_{3}, \quad(5)=P_{5} Q_{5} .
$$

(c) Use the equation $N_{K}(6+\sqrt{34})=2$ to prove that $P_{2}=(6+\sqrt{34})$.
(d) Let $\alpha=7+\sqrt{34}$. With a suitable choice of labelling, prove that $\alpha \in P_{3}$ and $\alpha \in P_{5}$ and deduce that

$$
P_{3} P_{5}=(\alpha) .
$$

(e) Prove that $P_{3}^{2}=(-5+\sqrt{34})$.
(f) Given that $\eta=35+6 \sqrt{34}$ is the fundamental unit of K and that $N_{K}(\eta)=1$, prove that P_{3} is not principal.
(g) Determine the structure of the class group I_{K}.
6. Suppose that $m \equiv 3(\bmod 8), m$ is a prime and that $x^{2}+x+\frac{m+1}{4}$ assumes prime values for $x=0,1, \ldots, \frac{m-7}{4}$. Prove that $\mathbb{Q}(\sqrt{-m})$ is a UFD by showing that all ideals are principal.
7. Let $K=\mathbb{Q}(\sqrt{d})$, where d is a squarefree integer, $d \neq 1$.
(i) If $d<0$ and $g \in \mathbb{N}$, where $g<\left|D_{K}\right| / 4$, prove that there does not exist an $\alpha \in O_{K}$ satisfying $N_{K}(\alpha)=g$, unless $g=m^{2}, m \in \mathbb{N}$ and $\alpha= \pm m$.
(ii) Let $d=-14$. Prove that if $J=(3,1+\sqrt{-14})$ and $K=(2, \sqrt{-14})$, then

$$
J^{2}=(9,-2+\sqrt{-14}), \text { and } J^{2} K=(-2+\sqrt{-14})
$$

Also prove that J^{4} is principal and J^{2} is not principal. (Use part (i).)
(iii) Prove that $I_{K} \cong C_{4}$.
8. In $\mathbb{Z}[\sqrt{-5}]$, let

$$
A=(3,4+\sqrt{-5}), B=(3,4-\sqrt{-5}), C=(7,4+\sqrt{-5}), D=(7,4-\sqrt{-5})
$$

Show that $A B=(3), C D=(7), A C=(4+\sqrt{-5}), B D=(4-\sqrt{-5})$ and that A, B, C and D are prime ideals.

Factorize $(1+2 \sqrt{-5})$.
Please hand in Question 5 as Assignment 4.

