1. Let \(K = \mathbb{Q}(\sqrt{-d}), d > 1 \) squarefree.

(a) Prove that \(\mathcal{O}_K \) is not a UFD if one of the following holds:
 (i) \(d \equiv 1 \pmod{4}, d > 1 \);
 (ii) \(d \equiv 2 \pmod{4}, d > 2 \);
 (ii) \(d \equiv 7 \pmod{8}, d > 7 \).

(b) If \(\mathcal{O}_K \) is a UFD and \(d > 3 \) and \(d \equiv 3 \pmod{8} \), prove that \(d \) is a prime and that
 \[x^2 + x + \frac{d+1}{4} \]
 assumes prime values for \(x = 0, \ldots, \frac{d-7}{4} \).

2. (Chinese Remainder Theorem) Let \(A \) and \(B \) be ideals of \(\mathcal{O}_K \) with \((A,B) = (1)\).
 Prove that the mapping \(f: \mathcal{O}_K/AB \to \mathcal{O}_K/A \oplus \mathcal{O}_K/B \), given by
 \[f(x + AB) = (x + A, x + B) \]
 is well-defined and an isomorphism.

3. A commutative ring is called reduced if \(x^n = 0, n \in \mathbb{N} \Rightarrow x = 0 \). Prove that if
 \((A,B) = (1)\), that \(\mathcal{O}_K/AB \) is reduced if and only if \(\mathcal{O}_K/A \) and \(\mathcal{O}_K/B \) are reduced.
 If \(P \) is a prime ideal of \(\mathcal{O}_K \), prove that \(\mathcal{O}_K/P^e \) is reduced if and only if \(e = 1 \).
 Deduce that \(\mathcal{O}_K/(p) \) is not reduced if and only if \(p \) ramifies (ie. one of the prime
 ideal factors of \((p) \) occurs to an exponent \(e > 1 \).)
 (P. Samuel uses this result in his book \textit{Algebraic theory of numbers} to prove Dedekind’s
 theorem: \(p \) ramifies if and only if \(p|D_K \).)

4. Find the group structure of the multiplicative group of equivalence classes of ideals
 in \(\mathbb{Q}(\sqrt{-21}) \).

5. Let \(K = \mathbb{Q}(\sqrt{34}) \).

 (a) Determine which primes must be examined in order to determine \(I_K \).

 (b) Use the Kummer–Dedekind theorem to factorize the principal ideals \((2), (3) \)
 and \((5) \):
 \[(2) = P_2^2, \quad (3) = P_3Q_3, \quad (5) = P_5Q_5. \]

 (c) Use the equation \(N_K(6 + \sqrt{34}) = 2 \) to prove that \(P_2 = (6 + \sqrt{34}) \).

 (d) Let \(\alpha = 7 + \sqrt{34} \). With a suitable choice of labelling, prove that \(\alpha \in P_3 \) and
 \(\alpha \in P_5 \) and deduce that
 \[P_3P_5 = (\alpha). \]

 (e) Prove that \(P_3^2 = (-5 + \sqrt{34}) \).

 (f) Given that \(\eta = 35 + 6\sqrt{34} \) is the fundamental unit of \(K \) and that \(N_K(\eta) = 1 \),
 prove that \(P_3 \) is not principal.

 (g) Determine the structure of the class group \(I_K \).
6. Suppose that $m \equiv 3 \pmod{8}$, m is a prime and that $x^2 + x + \frac{m+1}{4}$ assumes prime values for $x = 0, 1, \ldots, \frac{m-3}{4}$. Prove that $\mathbb{Q}((\sqrt{-m}))$ is a UFD by showing that all ideals are principal.

7. Let $K = \mathbb{Q}(\sqrt{d})$, where d is a squarefree integer, $d \neq 1$.

 (i) If $d < 0$ and $g \in \mathbb{N}$, where $g < |D_K|/4$, prove that there does not exist an $\alpha \in O_K$ satisfying $N_K(\alpha) = g$, unless $g = m^2$, $m \in \mathbb{N}$ and $\alpha = \pm m$.

 (ii) Let $d = -14$. Prove that if $J = (3, 1 + \sqrt{-14})$ and $K = (2, \sqrt{-14})$, then

 $J^2 = (9, -2 + \sqrt{-14})$, and $J^2 K = (-2 + \sqrt{-14})$.

 Also prove that J^4 is principal and J^2 is not principal. (Use part (i).)

 (iii) Prove that $I_K \cong C_4$.

8. In $\mathbb{Z}[\sqrt{-5}]$, let

 $A = (3, 4 + \sqrt{-5}), B = (3, 4 - \sqrt{-5}), C = (7, 4 + \sqrt{-5}), D = (7, 4 - \sqrt{-5})$.

 Show that $AB = (3), CD = (7), AC = (4 + \sqrt{-5}), BD = (4 - \sqrt{-5})$ and that A, B, C and D are prime ideals.

 Factorize $(1 + 2\sqrt{-5})$.

Please hand in Question 5 as Assignment 4.