Problem Sheet 5, MP473, Semester 2, 2000

1. In $\mathbb{Q}(\sqrt{6})$, we have the factorization

$$
5=(1+\sqrt{6})(-1+\sqrt{6})=(71+29 \sqrt{6})(-71+29 \sqrt{6}) .
$$

Prove that $\pm 1+\sqrt{6}$ and $\pm 71+29 \sqrt{6}$ are irreducibles.
Verify that $(-71+29 \sqrt{6}) /(1+\sqrt{6})$ is a unit.
2. Find $\operatorname{gcd}(-25+47 i, 34+32 i)$.
3. Factorize $7+4 i$ in $\mathbb{Z}[i]$.
4. (a) Prove that $\operatorname{gcd}(y-2 i, y+2 i)=1$ if y is an odd integer.
(b) Prove that gcd $(y-i, y+i)=1+i$ if y is an odd integer.
(c) Show that the only solutions of the Diophantine equation

$$
x^{2}+4=y^{3}
$$

are $x= \pm 11, y=5$ and $x= \pm 2, y=2$.
5. Show that the only solutions of the Diophantine equation

$$
x^{2}+11=y^{3}
$$

are $x= \pm 4, y=3$ and $x= \pm 58, y=15$.
6. Show that the only solutions of the Diophantine equation

$$
x^{2}+1=2 y^{3}
$$

are $x= \pm 1, y=1$.

For Assignment 3, please hand in Question 4.

