1. Let $K=\mathbb{Q}(\sqrt[4]{2})$. Find all isomorphisms $\sigma: K \rightarrow \mathbb{C}$ and the minimum polynomials and field polynomials of $\sqrt[4]{2}, \sqrt{2}, 2, \sqrt{2}+1$.
2. (*) Let θ be an algebraic integer of degree n and let D be the discriminant of θ. Let F_{k} be the additive group

$$
F_{k}=\mathbb{Z} \frac{1}{D} \oplus \mathbb{Z} \frac{\theta}{D} \oplus \cdots \oplus \mathbb{Z} \frac{\theta^{k}}{D}
$$

$k=0, \ldots, n-1$ and let $R_{k}=F_{k} \cap O_{K}$, where $K=\mathbb{Q}(\theta)$.
(a) Prove that $R_{0}=\mathbb{Z}$ and $R_{n-1}=O_{K}$.
(b) Let d_{k} be the least positive integer such that $d_{k} R_{k} \subseteq \mathbb{Z}[\theta]$. Show that $x R_{k} \subseteq \mathbb{Z}[\theta]$ implies $d_{k} \mid x$.
Show that $d_{0}=1$ and $d_{k}\left|d_{k+1}\right| D$.
(c) Noting that the elements of R_{k} have the form

$$
\alpha_{k}=\frac{a_{k 0}+a_{k 1} \theta+\cdots+a_{k k} \theta^{k}}{d_{k}}
$$

where $a_{k 0}, \ldots, a_{k k} \in \mathbb{Z}$, define a minimal integer of degree k to be an element of R_{k} with least positive $a_{k k}$. Use induction on k to prove that $a_{k k}=1$.
(d) If $1, \alpha_{1}, \ldots, \alpha_{n-1}$ are minimal integers of degrees $0,1, \ldots, n-1$ respectively, prove that they form an integral basis of K.
(e) Prove that the index of θ is $d_{1} \cdots d_{n-1}$. Also show that D is divisible by $d_{k}^{2(n-k)}$.
(f) Show that the α_{k} can be chosen so that $0 \leq a_{k j}<d_{k} / d_{j}$ if $k>j$.
3. Use the above question to do Question 6, Sheet 3.
4. Let θ be a root of $x^{3}-a x^{2}-(a+3) x-1$, where $m=a^{2}+3 a+9$ is squarefree.
(a) Prove that $\Delta_{K}\left(1, \theta, \theta^{2}\right)=m^{2}$ and deduce that $1, \theta, \theta^{2}$ form an integral basis.
(b) Prove that the conjugates of θ are $\theta^{\prime}=-1 /(1+\theta)$ and $\theta^{\prime \prime}=$ $-1 /\left(1+\theta^{\prime}\right)$.
(c) Show that θ and $1+\theta$ are units. (They are in fact a pair of fundamental units.)
5. Let $\zeta=e^{2 \pi i / 5}, K=\mathbb{Q}(\zeta)$ and $u=-\zeta^{2}(1+\zeta)$.
(a) Show that $u \in U_{K}$.
(b) Show that $1<u<2$.
(c) Show that $\mathbb{R} \cap \mathbb{Q}(\zeta)=\mathbb{Q}(\sqrt{5})$.
(d) Use (a),(b),(c) to prove that $u=(1+\sqrt{5}) / 2$.
(e) Prove that u is a fundamental unit of K. List the units of K.
6. If $d>0$ is squarefree and $d \equiv 1(\bmod 8)$, prove that there is no unit of $\mathbb{Q}(\sqrt{d})$ of the form $(x+y \sqrt{d}) / 2$, where x and y are odd.
7. Find the fundamental unit of $\mathbb{Q}(\sqrt{69})$. (Ans: $11+3 \omega$.)
8. If $\alpha \in K$ is a root of a monic polynomial $f(x) \in \mathbb{Z}[x]$ and if $f(r)= \pm 1$, where $r \in \mathbb{Z}$, show that $\alpha-r \in U_{K}$.

