- 1. Let $K = \mathbb{Q}(\sqrt[4]{2})$. Find all isomorphisms $\sigma : K \to \mathbb{C}$ and the minimum polynomials and field polynomials of $\sqrt[4]{2}$, $\sqrt{2}$, 2, $\sqrt{2} + 1$.
- 2. (*) Let θ be an algebraic integer of degree n and let D be the discriminant of θ . Let F_k be the additive group

$$F_k = \mathbb{Z} \frac{1}{D} \oplus \mathbb{Z} \frac{\theta}{D} \oplus \cdots \oplus \mathbb{Z} \frac{\theta^k}{D},$$

 $k = 0, \ldots, n - 1$ and let $R_k = F_k \cap O_K$, where $K = \mathbb{Q}(\theta)$.

- (a) Prove that $R_0 = \mathbb{Z}$ and $R_{n-1} = O_K$.
- (b) Let d_k be the least positive integer such that $d_k R_k \subseteq \mathbb{Z}[\theta]$. Show that $xR_k \subseteq \mathbb{Z}[\theta]$ implies $d_k|x$. Show that $d_0 = 1$ and $d_k|d_{k+1}|D$.
- (c) Noting that the elements of R_k have the form

$$\alpha_k = \frac{a_{k0} + a_{k1}\theta + \dots + a_{kk}\theta^k}{d_k},$$

where $a_{k0}, \ldots, a_{kk} \in \mathbb{Z}$, define a minimal integer of degree k to be an element of R_k with least positive a_{kk} . Use induction on k to prove that $a_{kk} = 1$.

- (d) If 1, $\alpha_1, \ldots, \alpha_{n-1}$ are minimal integers of degrees 0, 1, ..., n-1 respectively, prove that they form an integral basis of K.
- (e) Prove that the index of θ is $d_1 \cdots d_{n-1}$. Also show that D is divisible by $d_{\mu}^{2(n-k)}$.
- (f) Show that the α_k can be chosen so that $0 \le a_{kj} < d_k/d_j$ if k > j.
- 3. Use the above question to do Question 6, Sheet 3.
- 4. Let θ be a root of $x^3 ax^2 (a+3)x 1$, where $m = a^2 + 3a + 9$ is squarefree.
 - (a) Prove that $\Delta_K(1, \theta, \theta^2) = m^2$ and deduce that $1, \theta, \theta^2$ form an integral basis.
 - (b) Prove that the conjugates of θ are $\theta' = -1/(1 + \theta)$ and $\theta'' = -1/(1 + \theta')$.
 - (c) Show that θ and $1 + \theta$ are units. (They are in fact a pair of fundamental units.)
- 5. Let $\zeta = e^{2\pi i/5}$, $K = \mathbb{Q}(\zeta)$ and $u = -\zeta^2(1+\zeta)$.
 - (a) Show that $u \in U_K$.
 - (b) Show that 1 < u < 2.
 - (c) Show that $\mathbb{R} \cap \mathbb{Q}(\zeta) = \mathbb{Q}(\sqrt{5})$.
 - (d) Use (a),(b),(c) to prove that $u = (1 + \sqrt{5})/2$.

- (e) Prove that u is a fundamental unit of K. List the units of K.
- 6. If d > 0 is squarefree and $d \equiv 1 \pmod{8}$, prove that there is no unit of $\mathbb{Q}(\sqrt{d})$ of the form $(x + y\sqrt{d})/2$, where x and y are odd.
- 7. Find the fundamental unit of $\mathbb{Q}(\sqrt{69})$. (Ans: $11 + 3\omega$.)
- 8. If $\alpha \in K$ is a root of a monic polynomial $f(x) \in \mathbb{Z}[x]$ and if $f(r) = \pm 1$, where $r \in \mathbb{Z}$, show that $\alpha r \in U_K$.