## Problem Sheet 3, MP473, Semester 2, 2000

1. Let $\theta$ be a root of the irreducible polynomial $x^{3}+11 x+4$.

Verify that $\Delta_{K}\left(1, \theta, \theta^{2}\right)=-4 \cdot 1439$ and prove that

$$
1, \theta, \frac{\left(\theta+\theta^{2}\right)}{2}
$$

form an integral basis for $K=\mathbb{Q}(\theta)$. Also find $D_{K}$.
2. Let $\theta \in \mathbb{C}$ satisfy $\theta^{3}+2 \theta-6=0$.
(i) Calculate $N_{K}(3 \theta+2)$ and $\Delta_{K}\left(1, \theta, \theta^{2}\right)$.
(ii) Use the Eisenstein lemma to get the exact value numerical value of $D_{K}$. (Warning: The Stickelberger criterion does not apply.)
3. Let $K=\mathbb{Q}(\sqrt{2}, \sqrt{3})$.
(i) Let $\theta=(\sqrt{2}+\sqrt{6}) / 2$. Verify that $\Delta_{K}\left(1, \theta, \theta^{2}, \theta^{3}\right)=2^{8} \cdot 3^{2}$.
(ii) Let $\phi=\theta+1$. Compute $m_{\phi}(x)$ and hence prove $D_{K}=2^{8} \cdot 3^{2}$. (Hint: $L=\mathbb{Q}(\sqrt{3}) \subseteq K$. Then use the fact that $D_{L}^{[K: L]}$ divides $D_{K}$.)
(iii) Verify that $\Delta_{K}\left(1, \sqrt{2}, \sqrt{3}, \frac{\sqrt{2}+\sqrt{6}}{2}\right)=2^{8} \cdot 3^{2}$.
4. With respect to the field $L$ of Question 7, Sheet 2:
(i) Use the fact that $\zeta, \ldots, \zeta^{p-1}$ form an integral basis for $K$ to prove that $1, \omega_{1}, \ldots, \omega_{(p-3) / 2}$ and $1, \omega, \ldots, \omega^{(p-3) / 2}$ form integral bases for $L$.
(ii) Prove that $T_{L}\left(\omega_{r}\right)=-1$ if $p \nmid r$.
(iii) Prove that

$$
T_{L}\left(\omega_{r} \omega_{s}\right)= \begin{cases}p-2 & \text { if } 1 \leq r=s \leq(p-3) / 2 \\ -2 & \text { if } 1 \leq r \neq s \leq(p-3) / 2\end{cases}
$$

and deduce that $D_{L}=p^{(p-3) / 2}$.
5. Let $\omega_{1}, \ldots, \omega_{n}$ belong to $O_{K}$ and form a $\mathbb{Q}$-basis for $K$. Show that every $\theta \in O_{K}$ can be written as

$$
\theta=\sum_{j=1}^{n} \frac{x_{j}}{\Delta_{K}\left(\omega_{1}, \ldots, \omega_{n}\right)} \omega_{j}
$$

where $x_{j}$ and $x_{j}^{2} / \Delta_{K}\left(\omega_{1}, \ldots, \omega_{n}\right)$ are rational integers. (Hint: Use Cramer's rule.)
6. (hard) With respect to problem 3, Sheet 2, prove that $1, \theta, \theta^{2}$ form an integral basis for $K$. (Hint: use a remark made at the end of the proof of the Eisensteinian proof, together with the previous question.)

Problems $1,2,5$ to be handed in as ASSIGNMENT 2.
(Handed out Friday 25th August 2000)

