
Problem Sheet 3, MP473, Semester 2, 2000

1. Let θ be a root of the irreducible polynomial x3 + 11x+ 4.

Verify that ∆K(1, θ, θ2) = −4 · 1439 and prove that

1, θ,
(θ + θ2)

2

form an integral basis for K = Q(θ). Also find DK .

2. Let θ ∈ C satisfy θ3 + 2θ − 6 = 0.

(i) Calculate NK(3θ + 2) and ∆K(1, θ, θ2).

(ii) Use the Eisenstein lemma to get the exact value numerical value of DK .
(Warning: The Stickelberger criterion does not apply.)

3. Let K = Q(
√

2,
√

3).

(i) Let θ = (
√

2 +
√

6)/2. Verify that ∆K(1, θ, θ2, θ3) = 28 · 32.

(ii) Let φ = θ + 1. Compute mφ(x) and hence prove DK = 28 · 32. (Hint:

L = Q(
√

3) ⊆ K. Then use the fact that D
[K:L]
L divides DK .)

(iii) Verify that ∆K(1,
√

2,
√

3,
√

2+
√

6
2

) = 28 · 32.

4. With respect to the field L of Question 7, Sheet 2:

(i) Use the fact that ζ, . . . , ζp−1 form an integral basis for K to prove that
1, ω1, . . . , ω(p−3)/2 and 1, ω, . . . , ω(p−3)/2 form integral bases for L.

(ii) Prove that TL(ωr) = −1 if p 6 |r.
(iii) Prove that

TL(ωrωs) =

{
p− 2 if 1 ≤ r = s ≤ (p− 3)/2,
−2 if 1 ≤ r 6= s ≤ (p− 3)/2

and deduce that DL = p(p−3)/2.

5. Let ω1, . . . , ωn belong to OK and form a Q–basis for K. Show that every θ ∈ OK

can be written as

θ =
n∑
j=1

xj
∆K(ω1, . . . , ωn)

ωj,

where xj and x2
j/∆K(ω1, . . . , ωn) are rational integers. (Hint: Use Cramer’s rule.)

6. (hard) With respect to problem 3, Sheet 2, prove that 1, θ, θ2 form an integral
basis for K. (Hint: use a remark made at the end of the proof of the Eisensteinian
proof, together with the previous question.)

Problems 1,2,5 to be handed in as ASSIGNMENT 2.
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