1. Let $\omega=\zeta+\zeta^{-1}=2 \cos \frac{2 \pi}{5}$, where $\zeta=e^{\frac{2 \pi i}{5}}$.

Prove that $w=(-1+\sqrt{5}) / 2$.
2. Algebraic numbers $\alpha$ and $\beta$ have degrees $m$ and $n$, where $\operatorname{gcd}(m, n)=1$. Prove that $[\mathbb{Q}(\alpha, \beta): \mathbb{Q}]=m n$.
Let $K$ be the splitting field of $\left(x^{2}+1\right)\left(x^{3}-2\right)$. Find $[K: \mathbb{Q}]$.
3. Let $f(x)=x^{3}-3 x+1$ and $\theta$ a root of $f(x)$. Let $K=\mathbb{Q}(\theta)$.
(a) Prove that $f(x)$ is irreducible over $\mathbb{Q}$.
(b) Show that $\theta^{2}-2$ is also a root of $f(x)$ and find the other root.
(c) Calculate $N_{K}(\theta), T_{K}(\theta), N_{K}\left(\theta^{2}\right), T_{K}\left(\theta^{2}\right)$.
(d) Prove that $K$ is a normal extension of $\mathbb{Q}$.
(e) List the elements of $\operatorname{Gal}(K / \mathbb{Q})$ and identify the group.
4. Calculate $\Phi_{200}(x)$.
5. $G$ is a discrete additive group of real numbers if for each $n \in \mathbb{N}$, there are only finitely many group elements $g$ satisfying $|g| \leq n$. Prove that $G$ is an infinite cyclic group generated by the least positive element in $G$.
6. Let $\zeta_{n}=e^{2 \pi i / n}$. If $\operatorname{gcd}(m, n)=1$, prove that

$$
\mathbb{Q}\left(\zeta_{m n}\right)=\mathbb{Q}\left(\zeta_{m}, \zeta_{n}\right)
$$

7. Let $\zeta=e^{2 \pi i / p}, p>3$ a prime and let

$$
\omega_{r}=\zeta^{r}+\zeta^{-r}, \quad r \geq 1, p \nmid r .
$$

Also let $\omega=\omega_{1}, K=\mathbb{Q}(\zeta)$ and $L=\mathbb{Q}(\omega)$.
(i) Prove that $K \cap \mathbb{R}=L$. [Hint: Use the fact that $\zeta, \ldots, \zeta^{(p-1)}$ form a $\mathbb{Q}$-basis for $K$.]
(ii) Prove that $x^{2}-\omega x+1$ is irreducible over $L$ and that its roots are $\zeta$ and $\zeta^{-1}$. Deduce that $[L: \mathbb{Q}]=(p-1) / 2$.
(iii) Use CMAT to find $m_{\omega}(x)$ when $p=5,7,11$, by factorizing the field polynomial of $\omega$ in $K$ over $\mathbb{Q}[x]$.
(iv) Let $\sigma_{r}$ be the $\mathbb{Q}$-automorphism of $K$ defined by $\sigma_{r}(\zeta)=\zeta^{r}, p \nmid r$.

Prove that $\sigma_{r}(\omega) \neq \sigma_{s}(\omega)$ if $1 \leq r<s \leq(p-1) / 2$, but that $\sigma_{r}(\omega)=\sigma_{p-r}(\omega)$ if $1 \leq r \leq(p-1) / 2$. Deduce that $L$ is a normal extension of $\mathbb{Q}$.

Problems $1,2,3,4$ to be handed in as ASSIGNMENT 1.
(Handed out Friday 18th August 2000)

