Problem Sheet 2, MP473, Semester 2, 2000

- 1. Let $\omega = \zeta + \zeta^{-1} = 2 \cos \frac{2\pi}{5}$, where $\zeta = e^{\frac{2\pi i}{5}}$. Prove that $w = (-1 + \sqrt{5})/2$.
- 2. Algebraic numbers α and β have degrees m and n, where gcd(m, n) = 1. Prove that $[\mathbb{Q}(\alpha, \beta) : \mathbb{Q}] = mn$.

Let K be the splitting field of $(x^2 + 1)(x^3 - 2)$. Find $[K : \mathbb{Q}]$.

- 3. Let $f(x) = x^3 3x + 1$ and θ a root of f(x). Let $K = \mathbb{Q}(\theta)$.
 - (a) Prove that f(x) is irreducible over \mathbb{Q} .
 - (b) Show that $\theta^2 2$ is also a root of f(x) and find the other root.
 - (c) Calculate $N_K(\theta), T_K(\theta), N_K(\theta^2), T_K(\theta^2)$.
 - (d) Prove that K is a normal extension of \mathbb{Q} .
 - (e) List the elements of $\operatorname{Gal}(K/\mathbb{Q})$ and identify the group.
- 4. Calculate $\Phi_{200}(x)$.
- 5. G is a *discrete* additive group of real numbers if for each $n \in \mathbb{N}$, there are only finitely many group elements g satisfying $|g| \leq n$. Prove that G is an infinite cyclic group generated by the least positive element in G.
- 6. Let $\zeta_n = e^{2\pi i/n}$. If gcd(m, n) = 1, prove that

$$\mathbb{Q}(\zeta_{mn}) = \mathbb{Q}(\zeta_m, \zeta_n)$$

7. Let $\zeta = e^{2\pi i/p}$, p > 3 a prime and let

$$\omega_r = \zeta^r + \zeta^{-r}, \quad r \ge 1, \ p \not| r.$$

Also let $\omega = \omega_1$, $K = \mathbb{Q}(\zeta)$ and $L = \mathbb{Q}(\omega)$.

- (i) Prove that $K \cap \mathbb{R} = L$. [Hint: Use the fact that $\zeta, \ldots, \zeta^{(p-1)}$ form a \mathbb{Q} -basis for K.]
- (ii) Prove that $x^2 \omega x + 1$ is irreducible over L and that its roots are ζ and ζ^{-1} . Deduce that $[L:\mathbb{Q}] = (p-1)/2$.
- (iii) Use CMAT to find $m_{\omega}(x)$ when p = 5, 7, 11, by factorizing the field polynomial of ω in K over $\mathbb{Q}[x]$.
- (iv) Let σ_r be the Q-automorphism of K defined by $\sigma_r(\zeta) = \zeta^r$, $p \not| r$. Prove that $\sigma_r(\omega) \neq \sigma_s(\omega)$ if $1 \leq r < s \leq (p-1)/2$, but that $\sigma_r(\omega) = \sigma_{p-r}(\omega)$ if $1 \leq r \leq (p-1)/2$. Deduce that L is a normal extension of Q.

Problems 1,2,3,4 to be handed in as ASSIGNMENT 1.

(Handed out Friday 18th August 2000)