Problems, Sheet 1, MP473, Semester 2, 2000

1. Let m be a positive integer, not a perfect square. Prove that the Jacobi symbol $\left(\frac{a}{m}\right)$ has the property that there is an integer b such that $\left(\frac{b}{m}\right)=-1$ and deduce that

$$
S=\sum_{a=1}^{m-1}\left(\frac{a}{m}\right)=0
$$

[Hint: Consider $\left(\frac{b}{m}\right) S$.]
2. Let m and k be integers, k positive.

$$
g(m, k)=\sum_{t=0}^{k-1} e^{\frac{2 \pi i t^{2} m}{k}}
$$

If $\operatorname{gcd}\left(k_{1}, k_{2}\right)=1$ and $k_{1} \geq 1, k_{2} \geq 1, m \in \mathbb{Z}$, prove that

$$
g\left(m k_{1}, k_{2}\right) g\left(m k_{2}, k_{1}\right)=g\left(m, k_{1} k_{2}\right)
$$

State a generalisation to $g\left(m, k_{1} k_{2} \cdots k_{n}\right)$, where $\operatorname{gcd}\left(k_{i}, k_{j}\right)=1$ if $i \neq j$.
3. Let p be an odd prime not dividing m. Prove that if $b \geq 2$,

$$
g\left(m, p^{b}\right)=p g\left(m, p^{b-2}\right)= \begin{cases}p^{\frac{b}{2}} & \text { if } b \text { is even } \\ p^{\frac{b-1}{2}} g(m, p) & \text { if } b \text { is odd }\end{cases}
$$

[Hint: If $0 \leq k<p^{b}$, write $k=p^{b-1} z+t, 0<z<p, 0<t<p^{b-1}$.]
4. Use the previous exercises, together with the case k prime (proved in lectures) to prove that if $\operatorname{gcd}(m, k)=1, m, k$ integers, k odd, $k>1$, then

$$
g(m, k)= \begin{cases}\left(\frac{m}{k}\right) \sqrt{k} & \text { if } k \equiv 1(\bmod 4) \\ \left(\frac{m}{k}\right) i \sqrt{k} & \text { if } k \equiv-1(\bmod 4)\end{cases}
$$

5. Let m be odd. Prove that
(i) $g(m, 4)=2\left(1+i^{m}\right)$;
(ii) $g(m, 8)=4 e^{\frac{\pi i m}{4}}=\left(\frac{2}{m}\right)\left(1+i^{m}\right) 2^{\frac{3}{2}}$,
where $\left(\frac{2}{m}\right)=\left(\frac{2}{|m|}\right)$.
6. If $s \geq 4$ and $b=2^{s}$, prove that

$$
g(m, b)=2 g(m, b / 4)= \begin{cases}2^{\frac{s-2}{2}} g(m, 4) & \text { if } s \text { is even } \\ 2^{\frac{s-3}{2}} g(m, 8) & \text { if } s \text { is odd }\end{cases}
$$

by writing

$$
g(m, b)=\sum_{\substack{k=0 \\ k \text { odd }}}^{b-1} e^{\frac{2 \pi i k^{2} m}{b}}+\sum_{\substack{k=0 \\ k \text { even }}}^{b-1} e^{\frac{2 \pi i k^{2} m}{b}} .
$$

Show that the first sum is 0 by noting that

$$
e^{\frac{2 \pi i\left(k+\frac{b}{4}\right)^{2} m}{b}}=-e^{\frac{2 \pi i k^{2} m}{b}} .
$$

Also deduce that if $s \geq 2$, then

$$
g\left(m, 2^{s}\right)=\left(\frac{2^{s}}{m}\right)\left(1+i^{m}\right) 2^{\frac{s}{2}}
$$

7. Let $\operatorname{gcd}(m, b)=1, m$ and b integers, $b>0$ and $4 \mid b$. Prove that

$$
g(m, b)=\left(\frac{b}{m}\right)\left(1+i^{m}\right) \sqrt{b} .
$$

