1. (a) Explain what is meant by the statements: (i) θ is an algebraic integer, (ii) K is an algebraic number field of degree n, (iii) $\omega_{1}, \ldots, \omega_{n}$ is an integral basis for K, u is a unit of the ring O_{K}, (iv) D_{K}, the discriminant of K, (v) $T_{K}(\alpha)$, (vi) $N_{K}(\alpha)$.
(b) Write down integral bases and discriminants for $\mathbb{Q}(\sqrt{d})$, where d is squarefree and for $\mathbb{Q}\left(e^{\frac{2 \pi i}{p}}\right)$, where p is an odd prime.
(c) Let $\omega=\zeta+\zeta^{-1}=2 \cos \frac{2 \pi}{5}$, where $\zeta=e^{\frac{2 \pi i}{5}}$.

Prove that $w=(-1+\sqrt{5}) / 2$.
(d) Let $\alpha \in \mathbb{Q}(\sqrt{d}), d$ squarefree, $d \neq 1$. If $N_{K}(\alpha)$ and $T_{K}(\alpha)$ belong to \mathbb{Z}, prove that α is an algebraic integer.
(e) Prove that if $u \in O_{K}$, then u is a unit of O_{K} if and only if $N_{K}(u)=$ ± 1. Find the smallest unit $\eta>1$ in O_{K} when $K=\mathbb{Q}(\sqrt{21})$.
2. (a) State Stickelberger's theorem.
(b) If K is a number field of degree n and $\omega_{1}, \ldots, \omega_{n}$ are \mathbb{Q}-linearly independent, define $\Delta_{K}\left(\omega_{1}, \ldots, \omega_{n}\right)$.
(c) Let $\theta=\sqrt[3]{2}$.
(i) Prove that $\Delta_{K}\left(1, \theta, \theta^{2}\right)=-27 \times 4$. Deduce that $D_{K}=-27 \times 4$ or -3×4, using the fact that $m_{\theta}(x)$ is Eisensteinian with respect to $p=2$.
(ii) Let $\phi=\theta-2$. Find $m_{\phi}(x)$, observe that it is Eisensteinian with respect to $p=3$ and finally deduce that $D_{K}=-27 \times 4$.
3. (a) Define the terms ideal, prime ideal in O_{K}.
(b) If A and B are ideals in O_{K}, prove that $A+B$ is an ideal of O_{K}.
(c) Define $N(A)$, the norm of the ideal A and prove that if $N(A)=p$, where p is a prime, then A is a prime ideal.
(d) If $K=\mathbb{Q}(\sqrt{-5})$, prove that $(8+3 \sqrt{-5}, 3+4 \sqrt{-5})=(1)$.
(e) Let d be a squarefree integer, $d \equiv 2(\bmod 4), K=\mathbb{Q}(\sqrt{d})$. Also let $P=(2, \sqrt{d})$. Without using the Kummer-Dedekind theorem,
(i) Prove that $P^{2}=(2)$.
(ii) Let $\alpha=a+b \sqrt{d} \in O_{K}$. Prove that $\alpha \in P$ if and only if $2 \mid a$. Deduce that P is a prime ideal in O_{K}.
4. (a) Define I_{K}, the ideal class group of K and give a method for determining a family of generators for I_{K}.
(b) Let $K=\mathbb{Q}(\sqrt{-23})$. Also let $\omega=\frac{1+\sqrt{-23}}{2}$ and $\omega^{\prime}=\frac{1-\sqrt{-23}}{2}$. Let

$$
P_{2}=(2, \omega), Q_{2}=\left(2, \omega^{\prime}\right), P_{3}=(3, \omega), Q_{3}=\left(3, \omega^{\prime}\right) .
$$

(i) Prove that $P_{2} Q_{2}=(2), P_{3} Q_{3}=(3)$ and that $P_{2}, Q_{2}, P_{3}, Q_{3}$ are prime ideals of norms $2,2,3,3$, respectively.
(ii) Prove that $2-\omega \in P_{2}$ but $2-\omega \notin Q_{2}$ and using this fact, or otherwise, noting the equation

$$
8=(2-\omega)\left(2-\omega^{\prime}\right)
$$

deduce that $P_{2}^{3}=(2-\omega)$.
(iii) Prove that $P_{2} P_{3}=(\omega)$.
(iv) Determine the structure of I_{K}.
5. Prove that $\operatorname{gcd}(\sqrt{2} x-1, \sqrt{2} x+1)=1$ in the UFD $\mathbb{Z}[\sqrt{2}]$.

