1. (a) Explain what is meant by the statements: (i) \(\theta \) is an algebraic integer, (ii) \(K \) is an algebraic number field of degree \(n \), (iii) \(\omega_1, \ldots, \omega_n \) is an integral basis for \(K \), \(u \) is a unit of the ring \(O_K \), (iv) \(D_K \), the discriminant of \(K \), (v) \(T_K(\alpha) \), (vi) \(N_K(\alpha) \).

(b) Write down integral bases and discriminants for \(\mathbb{Q}(\sqrt{d}) \), where \(d \) is squarefree and for \(\mathbb{Q}(\sqrt[p]{\eta}) \), where \(p \) is an odd prime.

(c) Let \(\omega = \zeta + \zeta^{-1} = 2 \cos \frac{2\pi}{5}, \) where \(\zeta = e^{\frac{2\pi i}{5}} \).
Prove that \(u = (-1 + \sqrt{5})/2 \).

(d) Let \(\alpha \in \mathbb{Q}(\sqrt{d}), d \) squarefree, \(d \neq 1 \). If \(N_K(\alpha) \) and \(T_K(\alpha) \) belong to \(\mathbb{Z} \), prove that \(\alpha \) is an algebraic integer.

(e) Prove that if \(u \in O_K \), then \(u \) is a unit of \(O_K \) if and only if \(N_K(u) = \pm 1 \). Find the smallest unit \(\eta > 1 \) in \(O_K \) when \(K = \mathbb{Q}(\sqrt{21}) \).

2. (a) State Stickelberger’s theorem.

(b) If \(K \) is a number field of degree \(n \) and \(\omega_1, \ldots, \omega_n \) are \(\mathbb{Q} \)-linearly independent, define \(\Delta_K(\omega_1, \ldots, \omega_n) \).

(c) Let \(\theta = \sqrt[3]{2} \).

(i) Prove that \(\Delta_K(1, \theta, \theta^2) = -27 \times 4 \). Deduce that \(D_K = -27 \times 4 \) or \(-3 \times 4 \), using the fact that \(m_\theta(x) \) is Eisensteinian with respect to \(p = 2 \).

(ii) Let \(\phi = \theta - 2 \). Find \(m_\phi(x) \), observe that it is Eisensteinian with respect to \(p = 3 \) and finally deduce that \(D_K = -27 \times 4 \).

3. (a) Define the terms ideal, prime ideal in \(O_K \).

(b) If \(A \) and \(B \) are ideals in \(O_K \), prove that \(A + B \) is an ideal of \(O_K \).

(c) Define \(N(A) \), the norm of the ideal \(A \) and prove that if \(N(A) = p \), where \(p \) is a prime, then \(A \) is a prime ideal.

(d) If \(K = \mathbb{Q}(\sqrt{-5}) \), prove that \((8 + 3\sqrt{-5}, 3 + 4\sqrt{-5}) = (1) \).

(e) Let \(d \) be a squarefree integer, \(d \equiv 2 \mod 4 \), \(K = \mathbb{Q}(\sqrt{d}) \). Also let \(P = (2, \sqrt{d}) \). Without using the Kummer–Dedekind theorem,

(i) Prove that \(P^2 = (2) \).

(ii) Let \(\alpha = a + b\sqrt{d} \in O_K \). Prove that \(\alpha \in P \) if and only if \(2 | a \).
Deduce that \(P \) is a prime ideal in \(O_K \).

4. (a) Define \(I_K \), the ideal class group of \(K \) and give a method for determining a family of generators for \(I_K \).

(b) Let \(K = \mathbb{Q}(\sqrt{-23}) \). Also let \(\omega = \frac{1 + \sqrt{-23}}{2} \) and \(\omega' = \frac{1 - \sqrt{-23}}{2} \). Let \(P_2 = (2, \omega), Q_2 = (2, \omega'), P_3 = (3, \omega), Q_3 = (3, \omega') \).

(i) Prove that \(P_2Q_2 = (2) \), \(P_3Q_3 = (3) \) and that \(P_2, Q_2, P_3, Q_3 \) are prime ideals of norms \(2, 2, 3, 3 \), respectively.
(ii) Prove that $2 - \omega \in P_2$ but $2 - \omega \not\in Q_2$ and using this fact, or otherwise, noting the equation

$$8 = (2 - \omega)(2 - \omega'),$$

deduce that $P_2^3 = (2 - \omega)$.

(iii) Prove that $P_2P_3 = (\omega)$.

(iv) Determine the structure of I_K.

5. Prove that $\gcd(\sqrt{2}x - 1, \sqrt{2}x + 1) = 1$ in the UFD $\mathbb{Z}[\sqrt{2}]$.