MP473 Examination, November 1998 Time: 3 hours Answer all questions

- (a) Explain what is meant by the statements: (i) θ is an algebraic integer, (ii) K is an algebraic number field of degree n, (iii) ω₁,..., ω_n is an integral basis for K, u is a unit of the ring O_K, (iv) D_K, the discriminant of K, (v) T_K(α), (vi) N_K(α).
 - (b) Write down integral bases and discriminants for $\mathbb{Q}(\sqrt{d})$, where d is squarefree and for $\mathbb{Q}(e^{\frac{2\pi i}{p}})$, where p is an odd prime.
 - (c) Let $\omega = \zeta + \zeta^{-1} = 2\cos\frac{2\pi}{5}$, where $\zeta = e^{\frac{2\pi i}{5}}$. Prove that $w = (-1 + \sqrt{5})/2$.
 - (d) Let $\alpha \in \mathbb{Q}(\sqrt{d})$, d squarefree, $d \neq 1$. If $N_K(\alpha)$ and $T_K(\alpha)$ belong to \mathbb{Z} , prove that α is an algebraic integer.
 - (e) Prove that if $u \in O_K$, then u is a unit of O_K if and only if $N_K(u) = \pm 1$. Find the smallest unit $\eta > 1$ in O_K when $K = \mathbb{Q}(\sqrt{21})$.
- 2. (a) State Stickelberger's theorem.
 - (b) If K is a number field of degree n and $\omega_1, \ldots, \omega_n$ are \mathbb{Q} -linearly independent, define $\Delta_K(\omega_1, \ldots, \omega_n)$.
 - (c) Let $\theta = \sqrt[3]{2}$.
 - (i) Prove that $\Delta_K(1, \theta, \theta^2) = -27 \times 4$. Deduce that $D_K = -27 \times 4$ or -3×4 , using the fact that $m_{\theta}(x)$ is Eisensteinian with respect to p = 2.
 - (ii) Let $\phi = \theta 2$. Find $m_{\phi}(x)$, observe that it is Eisensteinian with respect to p = 3 and finally deduce that $D_K = -27 \times 4$.
- 3. (a) Define the terms *ideal*, prime *ideal* in O_K .
 - (b) If A and B are ideals in O_K , prove that A + B is an ideal of O_K .
 - (c) Define N(A), the norm of the ideal A and prove that if N(A) = p, where p is a prime, then A is a prime ideal.
 - (d) If $K = \mathbb{Q}(\sqrt{-5})$, prove that $(8 + 3\sqrt{-5}, 3 + 4\sqrt{-5}) = (1)$.
 - (e) Let d be a squarefree integer, d ≡ 2 (mod 4), K = Q(√d). Also let P = (2, √d). Without using the Kummer–Dedekind theorem,
 (i) Prove that P² = (2)
 - (i) Prove that $P^2 = (2)$.
 - (ii) Let $\alpha = a + b\sqrt{d} \in O_K$. Prove that $\alpha \in P$ if and only if 2|a. Deduce that P is a prime ideal in O_K .
- 4. (a) Define I_K , the *ideal class group* of K and give a method for determining a family of generators for I_K .

(b) Let
$$K = \mathbb{Q}(\sqrt{-23})$$
. Also let $\omega = \frac{1+\sqrt{-23}}{2}$ and $\omega' = \frac{1-\sqrt{-23}}{2}$. Let $P_2 = (2, \omega), Q_2 = (2, \omega'), P_3 = (3, \omega), Q_3 = (3, \omega')$.

(i) Prove that $P_2Q_2 = (2)$, $P_3Q_3 = (3)$ and that P_2, Q_2, P_3, Q_3 are prime ideals of norms 2, 2, 3, 3, respectively.

(ii) Prove that $2 - \omega \in P_2$ but $2 - \omega \notin Q_2$ and using this fact, or otherwise, noting the equation

$$8 = (2 - \omega)(2 - \omega'),$$

deduce that $P_2^3 = (2 - \omega)$.

- (iii) Prove that $P_2P_3 = (\omega)$.
- (iv) Determine the structure of I_K .
- 5. Prove that $gcd(\sqrt{2}x 1, \sqrt{2}x + 1) = 1$ in the UFD $\mathbb{Z}[\sqrt{2}]$.