Attempt all questions

- 1. (In what follows, O_K denotes the ring of integers in an algebraic number field K, $[K : \mathbb{Q}] = n$ and $\theta \in K$.
 - (a) Define the terms (i) $m_{\theta}(x)$, (ii) integral basis of K, (iii) $\Delta(1, \theta, \dots, \theta^{n-1})$, (iv) D_K and (v) $N_K(\theta)$.
 - (b) Let $\theta \in \mathbb{C}$ satisfy $\theta^3 + 2\theta 6 = 0$.
 - (i) Calculate $N_K(\theta)$ and $N_K(3\theta + 2)$.
 - (ii) Calculate $\Delta(1, \theta, \theta^2)$.
 - (iii) Use the Eisenstein lemma to get the exact value numerical value of D_K . (Warning: The Stickelberger criterion does not apply.)
- 2. Let $\zeta = e^{2\pi i/p}$, p > 3 a prime and let

$$\omega_r = \zeta^r + \zeta^{-r}, \quad r \ge 1, \ p \not| r.$$

Also let $\omega = \omega_1$, $K = \mathbb{Q}(\zeta)$ and $L = \mathbb{Q}(\omega)$.

- (a) Prove that $K \cap \mathbb{R} = L$. [Hint: Use the fact that $\zeta, \ldots, \zeta^{p-1}$ form a \mathbb{Q} -basis for K.]
- (b) Prove that $x^2 \omega x + 1$ is irreducible over *L*. Deduce that $[L : \mathbb{Q}] = (p-1)/2$.
- (c) Using CMAT, or otherwise, find $m_{\omega}(x)$ when p = 5.
- (d) Describe the \mathbb{Q} -isomorphisms of L and prove that L is a normal extension of \mathbb{Q} .
- 3. (a) If I is an ideal of O_K , define N(I), the norm of I.
 - (b) If N(I) = p, where p is a prime number, prove that I is a prime ideal. Give a counterexample to the converse statement.
 - (c) Prove that N(I) is always a prime power if I is prime ideal.
 - (d) In $\mathbb{Q}(\sqrt{-5})$, if $I = (3, 4 + \sqrt{-5})$, prove from first principles that N(I)=3.
 - (e) Let $K = \mathbb{Q}(\theta)$, where $\theta = \sqrt{10}$. Prove from first principles that if $I = (2, \theta)$, then $I^2 = (2)$. Also prove that I is not principal.
 - (f) If $d \not\equiv 1 \pmod{4}$ is squarefree, prove from first principles that if the Legendre symbol $\left(\frac{d}{p}\right) = -1$, then (p) is a prime ideal in $O_K, \ K = \mathbb{Q}(\sqrt{d}).$
- 4. (a) Define the ideal class group I_K of an algebraic number field K.
 - (b) Use the fact that if B is a nonzero ideal of O_K , there exists an $\alpha \in B$, such that $|N_K(\alpha)| \leq (\frac{4}{\pi})^s \frac{n!}{n^n} (\sqrt{|D_K|}) N(B)$, to prove that I_K is finite. (Hint: If A is an ideal of O_K , let B be an ideal satisfying $AB = (d), d \in \mathbb{N}$.)

- (c) State the Kummer–Dedekind theorem describing the prime ideal decomposition of (p), where p is a prime number.
- (d) Let $K = \mathbb{Q}(\sqrt{-17})$.

(i) Let $J = \overline{(3, 1 + \sqrt{-17})}$. Prove that

$$J^2 = \overline{(2, 1 + \sqrt{-17})}, \ J^3 = \overline{(3, 1 - \sqrt{-17})}.$$

- (ii) Prove that the ideal class group of K is C_4 , with generator J.
- 5. (a) If O_K is a UFD and α, β, γ are non-zero relatively prime elements of O_K satisfying $\alpha\beta = \gamma^3$, what can be said of α and β ?
 - (b) Given that if $K = \mathbb{Q}(\sqrt{-2})$, then O_K is a principal ideal domain, describe the irreducible elements of O_K . Factorize 2, 3, 11 and $5 + 2\sqrt{-2}$ in O_K .
 - (c) Let x and y be rational integers satisfying

$$x^2 + 2 = y^3. (1)$$

- (i) If $K = \mathbb{Q}(\sqrt{-2})$, prove that $gcd(x + \sqrt{-2}, x \sqrt{-2}) = 1$ in the PID O_K .
- (ii) By rewriting equation (1) as

$$(x + \sqrt{-2})(x - \sqrt{-2}) = y^3,$$

use (a) to deduce that $(x, y) = (\pm 5, 3)$.