Attempt all questions

1. (In what follows, O_{K} denotes the ring of integers in an algebraic number field $K,[K: \mathbb{Q}]=n$ and $\theta \in K$.
(a) Define the terms (i) $m_{\theta}(x)$, (ii) integral basis of K, (iii) $\Delta\left(1, \theta, \ldots, \theta^{n-1}\right)$, (iv) D_{K} and (v) $N_{K}(\theta)$.
(b) Let $\theta \in \mathbb{C}$ satisfy $\theta^{3}+2 \theta-6=0$.
(i) Calculate $N_{K}(\theta)$ and $N_{K}(3 \theta+2)$.
(ii) Calculate $\Delta\left(1, \theta, \theta^{2}\right)$.
(iii) Use the Eisenstein lemma to get the exact value numerical value of D_{K}. (Warning: The Stickelberger criterion does not apply.)
2. Let $\zeta=e^{2 \pi i / p}, p>3$ a prime and let

$$
\omega_{r}=\zeta^{r}+\zeta^{-r}, \quad r \geq 1, p \nmid r .
$$

Also let $\omega=\omega_{1}, K=\mathbb{Q}(\zeta)$ and $L=\mathbb{Q}(\omega)$.
(a) Prove that $K \cap \mathbb{R}=L$. [Hint: Use the fact that $\zeta, \ldots, \zeta^{p-1}$ form a \mathbb{Q}-basis for K.]
(b) Prove that $x^{2}-\omega x+1$ is irreducible over L. Deduce that $[L$: $\mathbb{Q}]=(p-1) / 2$.
(c) Using CMAT, or otherwise, find $m_{\omega}(x)$ when $p=5$.
(d) Describe the \mathbb{Q}-isomorphisms of L and prove that L is a normal extension of \mathbb{Q}.
3. (a) If I is an ideal of O_{K}, define $N(I)$, the norm of I.
(b) If $N(I)=p$, where p is a prime number, prove that I is a prime ideal. Give a counterexample to the converse statement.
(c) Prove that $N(I)$ is always a prime power if I is prime ideal.
(d) In $\mathbb{Q}(\sqrt{-5})$, if $I=(3,4+\sqrt{-5})$, prove from first principles that $N(I)=3$.
(e) Let $K=\mathbb{Q}(\theta)$, where $\theta=\sqrt{10}$. Prove from first principles that if $I=(2, \theta)$, then $I^{2}=(2)$. Also prove that I is not principal.
(f) If $d \not \equiv 1(\bmod 4)$ is squarefree, prove from first principles that if the Legendre symbol $\left(\frac{d}{p}\right)=-1$, then (p) is a prime ideal in $O_{K}, K=\mathbb{Q}(\sqrt{d})$.
4. (a) Define the ideal class group I_{K} of an algebraic number field K.
(b) Use the fact that if B is a nonzero ideal of O_{K}, there exists an $\alpha \in B$, such that $\left|N_{K}(\alpha)\right| \leq\left(\frac{4}{\pi}\right)^{s} \frac{n!}{n^{n}}\left(\sqrt{\left|D_{K}\right|}\right) N(B)$, to prove that I_{K} is finite. (Hint: If A is an ideal of O_{K}, let B be an ideal satisfying $A B=(d), d \in \mathbb{N}$.)
(c) State the Kummer-Dedekind theorem describing the prime ideal decomposition of (p), where p is a prime number.
(d) Let $K=\mathbb{Q}(\sqrt{-17})$.
(i) Let $J=\overline{(3,1+\sqrt{-17})}$. Prove that

$$
J^{2}=\overline{(2,1+\sqrt{-17})}, J^{3}=\overline{(3,1-\sqrt{-17})} .
$$

(ii) Prove that the ideal class group of K is C_{4}, with generator J.
5. (a) If O_{K} is a UFD and α, β, γ are non-zero relatively prime elements of O_{K} satisfying $\alpha \beta=\gamma^{3}$, what can be said of α and β ?
(b) Given that if $K=\mathbb{Q}(\sqrt{-2})$, then O_{K} is a principal ideal domain, describe the irreducible elements of O_{K}. Factorize $2,3,11$ and $5+2 \sqrt{-2}$ in O_{K}.
(c) Let x and y be rational integers satisfying

$$
\begin{equation*}
x^{2}+2=y^{3} . \tag{1}
\end{equation*}
$$

(i) If $K=\mathbb{Q}(\sqrt{-2})$, prove that $\operatorname{gcd}(x+\sqrt{-2}, x-\sqrt{-2})=1$ in the PID O_{K}.
(ii) By rewriting equation (1) as

$$
(x+\sqrt{-2})(x-\sqrt{-2})=y^{3},
$$

use (a) to deduce that $(x, y)=(\pm 5,3)$.

