1. Define the terms integral basis of K, D_K, the discriminant of K and $\Delta(1, \theta, \ldots, \theta^{n-1})$, the discriminant of θ, where $\theta \in K$.

Let $\theta = (\sqrt{2} + \sqrt{6})/2$ and $K = \mathbb{Q}(\theta)$.

(a) Prove that θ is an algebraic integer and find $m_\theta(x)$.
(b) Find $N_K(\theta), T_K(\theta), N_K(\theta^2 - 2)$ and also compute $\Delta(1, \theta, \theta^2, \theta^3)$.
(c) Let $\phi = \theta + 1$. Find $m_\phi(x)$. What does this tell us about D_K?
(d) Prove that K is a normal extension of \mathbb{Q}.

2. (a) If I is an ideal of O_K, define $N(I)$, the norm of I.
(b) If $N(I) = p$, where p is a prime number, prove that I is a prime.
(c) Prove that $N(I)$ is always a prime power if I is prime ideal.
(d) Give an example of a quadratic field K and a prime ideal I of O_K, for which $N(I)$ is not a prime number.
(e) Let I be an ideal of O_K and let $\alpha \in I$ satisfy

$$N(I) = |N_K(\alpha)|.$$

Prove that $I = (\alpha)$.
(f) Let K be a real quadratic field and suppose that the fundamental unit η of K satisfies $N_K(\eta) = 1$. Let I be an ideal of O_K with the property that

$$I^2 = (\alpha),$$

where $N_K(\alpha) < 0$. Prove that I is not a principal ideal.

3. Define I_K, the ideal class group of K.

Let $K = \mathbb{Q}(\sqrt{34})$.

(a) Determine which primes must be examined in order to determine I_K.
(b) Use the Kummer–Dedekind theorem to factorize the principal ideals $(2), (3)$ and (5):

$$(2) = P_2^2, \quad (3) = P_3Q_3, \quad (5) = P_5Q_5.$$

(c) Use the equation $N_K(6 + \sqrt{34}) = 2$ to prove that $P_2 = (6 + \sqrt{34})$.
(d) Let $\alpha = 7 + \sqrt{34}$. With a suitable choice of labelling, prove that $\alpha \in P_3$ and $\alpha \in P_5$ and deduce that

$$P_3P_5 = (\alpha).$$

(e) Prove that $P_3^2 = (-5 + \sqrt{34})$.

1
(f) Given that \(\eta = 35 + 6\sqrt{34} \) is the fundamental unit of \(K \) and that \(N_K(\eta) = 1 \), use Question 2(f) to prove that \(P_3 \) is not principal.

(g) Determine the structure of the class group \(I_K \).

4. (a) If \(a \in \mathbb{N} \), show that the polynomial \(x^3 + ax - 1 \) is irreducible over \(\mathbb{Q} \) and has only one real root \(\alpha \).

(b) Prove that \(\Delta(1, \alpha, \alpha^2) = -(4a^3 + 27) \).

(c) Suppose that \(4a^3 + 27 \) is squarefree. Explain why \(D_K = -(4a^3 + 27) \) and prove that the fundamental unit \(\eta \) satisfies \(\eta > a \).

(d) Observe that \(\alpha \) is a unit between 0 and 1. Prove that \(a < \alpha^{-1} < a + 1 \) and deduce that \(\eta = \alpha^{-1} \) if \(a \geq 2 \).

5. (a) Let \(K = \mathbb{Q}(\sqrt{-5}) \). Prove that the ideal \((3, 1 + \sqrt{-5}) \) is not principal.

(b) Let \(K = \mathbb{Q}(i) \).

(1) List the units of \(O_K \).

(2) If \(y = 2n + 1, n \in \mathbb{Z} \), prove that \(1 + i \) divides \(y \pm i \). Assuming that \(\mathbb{Z}[i] \) is a UFD, prove that

\[
\gcd \left(\frac{y + i}{1 + i}, \frac{y - i}{1 + i} \right) = 1.
\]