(In what follows, O_K denotes the ring of integers in an algebraic number field K. Also if $\theta \in K$, $m_{\theta}(x)$ denotes the minimum polynomial of θ .)

- 1. Define the terms integral basis of K, D_K , the discriminant of K and $\Delta(1, \theta, \dots, \theta^{n-1})$, the discriminant of θ , where $\theta \in K$. Let $\theta = (\sqrt{2} + \sqrt{6})/2$ and $K = \mathbb{Q}(\theta)$.
 - (a) Prove that θ is an algebraic integer and find $m_{\theta}(x)$.
 - (b) Find $N_K(\theta), T_K(\theta), N_K(\theta^2 2)$ and also compute $\Delta(1, \theta, \theta^2, \theta^3)$.
 - (c) Let $\phi = \theta + 1$. Find $m_{\phi}(x)$. What does this tell us about D_K ?
 - (d) Prove that K is a normal extension of \mathbb{Q} .
- 2. (a) If I is an ideal of O_K , define N(I), the norm of I.
 - (b) If N(I) = p, where p is a prime number, prove that I is a prime
 - (c) Prove that N(I) is always a prime power if I is prime ideal.
 - (d) Give an example of a quadratic field K and a prime ideal I of O_K , for which N(I) is not a prime number.
 - (e) Let I be an ideal of O_K and let $\alpha \in I$ satisfy

$$N(I) = |N_K(\alpha)|.$$

Prove that $I = (\alpha)$.

(f) Let K be a real quadratic field and suppose that the fundamental unit η of K satisfies $N_K(\eta) = 1$. Let I be an ideal of O_K with the property that

$$I^2 = (\alpha),$$

where $N_K(\alpha) < 0$. Prove that I is not a principal ideal.

3. Define I_K , the ideal class group of K.

Let $K = \mathbb{Q}(\sqrt{34})$.

- (a) Determine which primes must be examined in order to determine I_K .
- (b) Use the Kummer–Dedekind theorem to factorize the principal ideals (2), (3) and (5):

$$(2) = P_2^2, \quad (3) = P_3 Q_3, \quad (5) = P_5 Q_5.$$

- (c) Use the equation $N_K(6+\sqrt{34})=2$ to prove that $P_2=(6+\sqrt{34})$.
- (d) Let $\alpha = 7 + \sqrt{34}$. With a suitable choice of labelling, prove that $\alpha \in P_3$ and $\alpha \in P_5$ and deduce that

$$P_3P_5 = (\alpha).$$

(e) Prove that $P_3^2 = (-5 + \sqrt{34}).$

- (f) Given that $\eta = 35 + 6\sqrt{34}$ is the fundamental unit of K and that $N_K(\eta) = 1$, use Question 2(f) to prove that P_3 is not principal.
- (g) Determine the structure of the class group I_K .
- 4. (a) If $a \in \mathbb{N}$, show that the polynomial $x^3 + ax 1$ is irreducible over \mathbb{Q} and has only one real root α .
 - (b) Prove that $\Delta(1, \alpha, \alpha^2) = -(4a^3 + 27)$.
 - (c) Suppose that $4a^3 + 27$ is squarefree. Explain why $D_K = -(4a^3 + 27)$ and prove that the fundamental unit η satisfies $\eta > a$.
 - (d) Observe that α is a unit between 0 and 1. Prove that $a < \alpha^{-1} < a + 1$ and deduce that $\eta = \alpha^{-1}$ if $a \ge 2$.
- 5. (a) Let $K = \mathbb{Q}(\sqrt{-5})$. Prove that the ideal $(3, 1 + \sqrt{-5})$ is not principal.
 - (b) Let $K = \mathbb{Q}(i)$.
 - (1) List the units of O_K .
 - (2) If y = 2n + 1, $n \in \mathbb{Z}$, prove that 1 + i divides $y \pm i$. Assuming that $\mathbb{Z}[i]$ is a UFD, prove that

$$\gcd\left(\frac{y+i}{1+i}, \frac{y-i}{1+i}\right) = 1.$$