END OF SEMESTER EXAM, MP473, 1992

Time: Three hours
Candidates should aim to complete SIX questions, but may attempt as many questions as they wish.
(In what follows, $\mathcal{A}(\sqrt{d})$ denotes the ring of integers in $\mathbb{Q}(\sqrt{d})$.)

1. (a) Define the term algebraic integer and prove that a complex number θ is an algebraic integer if and only if $\exists w_{1}, \ldots, w_{n}$, not all zero, such that for $1 \leq i \leq n$,

$$
w_{i} \theta=\sum_{j=1}^{n} a_{i j} w_{j}
$$

where $a_{i j} \in \mathbb{Z}$ for $1 \leq i \leq n, 1 \leq j \leq n$.
(b) If θ is an algebraic integer and is also a rational number, prove that θ is an integer.
(c) Prove that the sum and product of two algebraic integers is also an algebraic integer.
2. (a) Prove that the ring $\mathbb{Z}[i]$ of Gaussian integers is Euclidean.
(b) Determine the units of $\mathbb{Z}[i]$.
(c) Describe the factorization of a prime p into irreducibles of $\mathbb{Z}[i]$.
(d) Determine the factorization of $6+7 i$ into irreducibles of $\mathbb{Z}[i]$.
3. (a) If k is an odd rational integer, prove that

$$
\operatorname{gcd}(k+i, k-i)=1+i
$$

(b) Show that the only solutions of the Diophantine equation

$$
x^{2}+1=2 y^{3}
$$

are $x= \pm 1, y=1$.
4. An integer $\alpha>0$ of $\mathbb{Q}(\sqrt{d}), d>0$, is called primary if

$$
1 \leq\left|\frac{\alpha}{\sigma(\alpha)}\right|<\eta^{2},
$$

where η is the fundamental unit of $\mathbb{Q}(\sqrt{d})$.
(a) Prove that every non-zero integer of $\mathbb{Q}(\sqrt{d})$ is the associate of precisely one primary integer.
(b) Prove that the primary integers α with $N(\alpha)=n$ satisfy

$$
\alpha^{2}-A \alpha+n=0,
$$

where $|A|<\sqrt{|n|}(1+\eta)$.
(c) Find the primary integers of $\mathbb{Q}(\sqrt{2})$ with norm equal to 7 and hence find all solutions in integers of $x^{2}-2 y^{2}=7$.
5. (a) If p is a prime of the form $3 n+1$, use the fact that the integers of $\mathbb{Q}(\sqrt{-3})$ form a UFD to prove that $p=x^{2}-x y+y^{2}$ is soluble in integers x and y. How many solutions are there?
(b) If p is a prime of the form $8 n \pm 1$, use the fact that the integers of $\mathbb{Q}(\sqrt{2})$ form a UFD to prove that $p=x^{2}-2 y^{2}$ is soluble in integers x and y. (Hint: $\eta=1+\sqrt{2}$ is the fundamental unit and $N(\eta)=-1$.
6. (a) Prove Hurwitz' lemma: Let $\alpha, \beta \in \mathcal{A}(\sqrt{d}), g|N(\alpha), g| N(\beta), g \mid(\alpha \sigma(\beta)+$ $\beta \sigma(\alpha))$, where $\sigma(\alpha)$ is the conjugate of α. Prove that $g \mid \alpha \sigma(\beta)$. (HINT: $\xi=\alpha \sigma(\beta)$ satisfies the equation

$$
\left.\xi^{2}-T(\xi) \xi+N(\xi)=0 .\right)
$$

(b) Use Hurwitz' lemma to prove that if A is an ideal of $\mathcal{A}(\sqrt{d})$, then

$$
A \sigma(A)=(g),
$$

where $g \in \mathbb{N}$.
(c) Also prove that if A and C are ideals in $\mathcal{A}(\sqrt{d})$, then

$$
A \mid C \Leftrightarrow A \supseteq C .
$$

7. Let p be a prime, d a squarefree integer, $\omega=(1+\sqrt{d}) / 2$ if $d \equiv 1$ $(\bmod 4)$, but \sqrt{d} otherwise. Also let f be the defining polynomial of ω. Let $A=(p, a+\omega)$, where $a \in \mathbb{Z}$.
(a) Prove that $A=(1)$ if $f(-a) \not \equiv 0(\bmod p)$.
(HINT: $\operatorname{gcd}(x+a, f)=1$ in $\left.\mathbb{Z}_{p}[x].\right)$
(b) If $f(-a) \equiv 0(\bmod p)$, prove directly that $N(A)=p$ by showing that the integers $0, \ldots, p-1$ form a complete set of representatives $(\bmod A)$.
(HINT: (1) Write $\omega=-a+(\omega+a)$; (2) Use the fact that $f=$ $(x+a)(x+b)$ in $\mathbb{Z}_{p}[x]$ for some $b \in \mathbb{Z}$ so that

$$
(\omega+a)(\omega+b) \equiv 0 \quad(\bmod p) .)
$$

(c) Suppose that $f=(x+a)(x+b)$ in $\mathbb{Z}_{p}[x]$. Prove that

$$
(p)=(p, a+\omega)(p, b+\omega) .
$$

(HINT: Use the fact that $N((p))=p^{2}$.)
(d) If f is irreducible in $\mathbb{Z}_{p}[x]$, prove that (p) is a prime ideal.
(e) If $d=-23$, find the prime ideal decomposition of $(\omega-2)$.
(HINT: Find $N(\omega-2)$.)
8. (a) Define the Kronecker symbol $\left(\frac{\Delta}{k}\right)$, where Δ is a fundamental discriminant and $k \in \mathbb{N}$.
(b) Let $m \in \mathbb{N}$ and $\operatorname{gcd}(\Delta, m)=1$, where Δ is an odd fundamental discriminant. Prove that

$$
\left(\frac{\Delta}{m}\right)=\left(\frac{m}{|\Delta|}\right),
$$

where the right hand side is a Jacobi symbol. (HINT: write $m=$ $2^{l} w, w$ odd.)
(c) Let

$$
G(\Delta)=\sum_{k=1}^{|\Delta|}\left(\frac{\Delta}{k}\right) e^{\frac{2 \pi i k}{\Delta \mid}},
$$

(i) Verify directly that $G(5)=\sqrt{5}$.
(ii) Prove that if p is an odd prime and $p^{*}=(-1)^{\frac{p-1}{2}}$, then

$$
G\left(p^{*}\right)=\sum_{k=0}^{p-1} e^{\frac{2 \pi i k^{2}}{p}}
$$

and deduce that

$$
G^{2}\left(p^{*}\right)=p^{*}
$$

9. (a) Find the group structure of the multiplicative group of equivalence classes of ideals in $\mathcal{A}(\sqrt{-21})$.
(b) Let $d>0$ and squarefree, $(\alpha)=A^{2}$, where A is an ideal in $A(\sqrt{d})$, $N(\alpha)<0$ and $N(\eta)=1$, where η is the fundamental unit. Prove that A is not principal.
(c) Consider the ideal $A=(3,1+\sqrt{34})$. Prove that $A^{2}=(-5+\sqrt{34})$ and hence prove that A is not principal, given that $35+6 \sqrt{34}$ is the fundamental unit of $\mathbb{Q}(\sqrt{34})$.
10. Let $m>0$ and squarefree.
(a) Prove that $\mathcal{A}(\sqrt{-m})$ is not a UFD if one of the following hold:
(i) $m \equiv 1 \quad(\bmod 4), m>1$;
(ii) $m \equiv 2(\bmod 4), m>2$;
(iii) $m \equiv 7 \quad(\bmod 8), m>7$.
(b) If $\mathcal{A}(\sqrt{-m})$ is a UFD and $m \equiv 3(\bmod 8)$, prove that m is a prime and that $x^{2}+x+\frac{m+1}{4}$ assumes prime values for $x=$ $0,1, \ldots, \frac{m-3}{4}$. (These are Euler's prime-producing polynomials.)
(c) Suppose that $m \equiv 3(\bmod 8), m$ is a prime and that $x^{2}+x+\frac{m+1}{4}$ assumes prime values for $x=0,1, \ldots, \frac{m-3}{4}$. Prove that $\mathcal{A}(\sqrt{-m})$ is a UFD by showing that all ideals are principal.
11. Do one of the following only:
(a) Use the Gaussian sum identity $G(\Delta)=\sqrt{\Delta}$ to explicitly evaluate the series

$$
\sum_{n=1}^{\infty}\left(\frac{\Delta}{n}\right) \frac{1}{n} .
$$

(b) Sketch a proof of the formula $G\left(p^{*}\right)=\sqrt{p^{*}}$, where p is an odd prime and $p^{*}=(-1)^{\frac{p-1}{2}} p$.

