END OF SEMESTER EXAM, MP473, 1992 Time: Three hours Candidates should aim to complete **SIX** questions, but may attempt as many questions as they wish.

(In what follows, $\mathcal{A}(\sqrt{d})$ denotes the ring of integers in $\mathbb{Q}(\sqrt{d})$.)

1. (a) Define the term *algebraic integer* and prove that a complex number θ is an algebraic integer if and only if $\exists w_1, \ldots, w_n$, not all zero, such that for $1 \leq i \leq n$,

$$w_i\theta = \sum_{j=1}^n a_{ij}w_j,$$

where $a_{ij} \in \mathbb{Z}$ for $1 \leq i \leq n, 1 \leq j \leq n$.

- (b) If θ is an algebraic integer and is also a rational number, prove that θ is an integer.
- (c) Prove that the sum and product of two algebraic integers is also an algebraic integer.
- 2. (a) Prove that the ring $\mathbb{Z}[i]$ of Gaussian integers is Euclidean.
 - (b) Determine the units of $\mathbb{Z}[i]$.
 - (c) Describe the factorization of a prime p into irreducibles of $\mathbb{Z}[i]$.
 - (d) Determine the factorization of 6 + 7i into irreducibles of $\mathbb{Z}[i]$.
- 3. (a) If k is an odd rational integer, prove that

$$gcd(k+i, k-i) = 1+i.$$

(b) Show that the only solutions of the Diophantine equation

$$x^2 + 1 = 2y^3$$

are $x = \pm 1, y = 1$.

4. An integer $\alpha > 0$ of $\mathbb{Q}(\sqrt{d}), \ d > 0$, is called *primary* if

$$1 \le \left| \frac{\alpha}{\sigma(\alpha)} \right| < \eta^2,$$

where η is the fundamental unit of $\mathbb{Q}(\sqrt{d})$.

- (a) Prove that every non-zero integer of $\mathbb{Q}(\sqrt{d})$ is the associate of precisely one primary integer.
- (b) Prove that the primary integers α with $N(\alpha) = n$ satisfy

$$\alpha^2 - A\alpha + n = 0,$$

where $|A| < \sqrt{|n|}(1+\eta)$.

- (c) Find the primary integers of $\mathbb{Q}(\sqrt{2})$ with norm equal to 7 and hence find all solutions in integers of $x^2 2y^2 = 7$.
- 5. (a) If p is a prime of the form 3n + 1, use the fact that the integers of $\mathbb{Q}(\sqrt{-3})$ form a UFD to prove that $p = x^2 xy + y^2$ is soluble in integers x and y. How many solutions are there?
 - (b) If p is a prime of the form $8n \pm 1$, use the fact that the integers of $\mathbb{Q}(\sqrt{2})$ form a UFD to prove that $p = x^2 2y^2$ is soluble in integers x and y. (Hint: $\eta = 1 + \sqrt{2}$ is the fundamental unit and $N(\eta) = -1$.
- 6. (a) Prove Hurwitz' lemma: Let α , $\beta \in \mathcal{A}(\sqrt{d})$, $g|N(\alpha)$, $g|N(\beta)$, $g|(\alpha\sigma(\beta) + \beta\sigma(\alpha))$, where $\sigma(\alpha)$ is the conjugate of α . Prove that $g|\alpha\sigma(\beta)$. (HINT: $\xi = \alpha\sigma(\beta)$ satisfies the equation

$$\xi^2 - T(\xi)\xi + N(\xi) = 0.)$$

(b) Use Hurwitz' lemma to prove that if A is an ideal of $\mathcal{A}(\sqrt{d})$, then

$$A\sigma(A) = (g),$$

where $g \in \mathbb{N}$.

(c) Also prove that if A and C are ideals in $\mathcal{A}(\sqrt{d})$, then

$$A|C \Leftrightarrow A \supseteq C.$$

- 7. Let p be a prime, d a squarefree integer, $\omega = (1 + \sqrt{d})/2$ if $d \equiv 1 \pmod{4}$, but \sqrt{d} otherwise. Also let f be the defining polynomial of ω . Let $A = (p, a + \omega)$, where $a \in \mathbb{Z}$.
 - (a) Prove that A = (1) if $f(-a) \not\equiv 0 \pmod{p}$. (HINT: gcd(x + a, f) = 1 in $\mathbb{Z}_p[x]$.)

(b) If $f(-a) \equiv 0 \pmod{p}$, prove directly that N(A) = p by showing that the integers $0, \ldots, p-1$ form a complete set of representatives (mod A).

(HINT: (1) Write $\omega = -a + (\omega + a)$; (2) Use the fact that f = (x + a)(x + b) in $\mathbb{Z}_p[x]$ for some $b \in \mathbb{Z}$ so that

$$(\omega + a)(\omega + b) \equiv 0 \pmod{p}.$$

(c) Suppose that f = (x + a)(x + b) in $\mathbb{Z}_p[x]$. Prove that

$$(p) = (p, a + \omega)(p, b + \omega).$$

(HINT: Use the fact that $N((p)) = p^2$.)

- (d) If f is irreducible in $\mathbb{Z}_p[x]$, prove that (p) is a prime ideal.
- (e) If d = -23, find the prime ideal decomposition of $(\omega 2)$. (HINT: Find $N(\omega - 2)$.)
- 8. (a) Define the Kronecker symbol $\left(\frac{\Delta}{k}\right)$, where Δ is a fundamental discriminant and $k \in \mathbb{N}$.
 - (b) Let $m \in \mathbb{N}$ and $gcd(\Delta, m) = 1$, where Δ is an odd fundamental discriminant. Prove that

$$\left(\frac{\Delta}{m}\right) = \left(\frac{m}{|\Delta|}\right),\,$$

where the right hand side is a Jacobi symbol. (HINT: write $m = 2^l w, w \text{ odd.}$)

(c) Let

$$G(\Delta) = \sum_{k=1}^{|\Delta|} \left(\frac{\Delta}{k}\right) e^{\frac{2\pi i k}{|\Delta|}},$$

- (i) Verify directly that $G(5) = \sqrt{5}$.
- (ii) Prove that if p is an odd prime and $p^* = (-1)^{\frac{p-1}{2}}$, then

$$G(p^*) = \sum_{k=0}^{p-1} e^{\frac{2\pi i k^2}{p}}$$

and deduce that

$$G^2(p^*) = p^*.$$

- 9. (a) Find the group structure of the multiplicative group of equivalence classes of ideals in $\mathcal{A}(\sqrt{-21})$.
 - (b) Let d > 0 and squarefree, $(\alpha) = A^2$, where A is an ideal in $A(\sqrt{d})$, $N(\alpha) < 0$ and $N(\eta) = 1$, where η is the fundamental unit. Prove that A is not principal.
 - (c) Consider the ideal $A = (3, 1 + \sqrt{34})$. Prove that $A^2 = (-5 + \sqrt{34})$ and hence prove that A is not principal, given that $35 + 6\sqrt{34}$ is the fundamental unit of $\mathbb{Q}(\sqrt{34})$.
- 10. Let m > 0 and squarefree.
 - (a) Prove that $\mathcal{A}(\sqrt{-m})$ is not a UFD if one of the following hold:
 - (i) $m \equiv 1 \pmod{4}, m > 1;$
 - (ii) $m \equiv 2 \pmod{4}, m > 2;$
 - (iii) $m \equiv 7 \pmod{8}, m > 7.$
 - (b) If $\mathcal{A}(\sqrt{-m})$ is a UFD and $m \equiv 3 \pmod{8}$, prove that m is a prime and that $x^2 + x + \frac{m+1}{4}$ assumes prime values for $x = 0, 1, \ldots, \frac{m-3}{4}$. (These are Euler's prime-producing polynomials.)
 - (c) Suppose that $m \equiv 3 \pmod{8}$, *m* is a prime and that $x^2 + x + \frac{m+1}{4}$ assumes prime values for $x = 0, 1, \ldots, \frac{m-3}{4}$. Prove that $\mathcal{A}(\sqrt{-m})$ is a UFD by showing that all ideals are principal.
- 11. Do one of the following only:
 - (a) Use the Gaussian sum identity $G(\Delta) = \sqrt{\Delta}$ to explicitly evaluate the series

$$\sum_{n=1}^{\infty} \left(\frac{\Delta}{n}\right) \frac{1}{n}.$$

(b) Sketch a proof of the formula $G(p^*) = \sqrt{p^*}$, where p is an odd prime and $p^* = (-1)^{\frac{p-1}{2}}p$.