END OF SEMESTER EXAM, MP473, 1992

Time: Three hours
Candidates should aim to complete SIX questions, but may attempt as many questions as they wish.

(In what follows, $A(\sqrt{d})$ denotes the ring of integers in $\mathbb{Q}(\sqrt{d})$.)

1. (a) Define the term algebraic integer and prove that a complex number θ is an algebraic integer if and only if $\exists w_1, \ldots, w_n$, not all zero, such that for $1 \leq i \leq n,$

$$w_i \theta = \sum_{j=1}^{n} a_{ij} w_j,$$

where $a_{ij} \in \mathbb{Z}$ for $1 \leq i \leq n, 1 \leq j \leq n.$

(b) If θ is an algebraic integer and is also a rational number, prove that θ is an integer.

(c) Prove that the sum and product of two algebraic integers is also an algebraic integer.

2. (a) Prove that the ring $\mathbb{Z}[i]$ of Gaussian integers is Euclidean.

(b) Determine the units of $\mathbb{Z}[i].$

(c) Describe the factorization of a prime p into irreducibles of $\mathbb{Z}[i].$

(d) Determine the factorization of $6 + 7i$ into irreducibles of $\mathbb{Z}[i].$

3. (a) If k is an odd rational integer, prove that

$$\gcd (k + i, k - i) = 1 + i.$$

(b) Show that the only solutions of the Diophantine equation

$$x^2 + 1 = 2y^3$$

are $x = \pm 1, y = 1.$

4. An integer $\alpha > 0$ of $\mathbb{Q}(\sqrt{d}),$ $d > 0,$ is called primary if

$$1 \leq \left| \frac{\alpha}{\sigma(\alpha)} \right| < \eta^2,$$

where η is the fundamental unit of $\mathbb{Q}(\sqrt{d})$.

1
(a) Prove that every non-zero integer of \(\mathbb{Q}(\sqrt{d}) \) is the associate of precisely one primary integer.

(b) Prove that the primary integers \(\alpha \) with \(N(\alpha) = n \) satisfy

\[
\alpha^2 - A\alpha + n = 0,
\]

where \(|A| < \sqrt{|n|}(1 + \eta) \).

(c) Find the primary integers of \(\mathbb{Q}(\sqrt{2}) \) with norm equal to 7 and hence find all solutions in integers of \(x^2 - 2y^2 = 7 \).

5. (a) If \(p \) is a prime of the form \(3n + 1 \), use the fact that the integers of \(\mathbb{Q}(\sqrt{-3}) \) form a UFD to prove that \(p = x^2 - xy + y^2 \) is soluble in integers \(x \) and \(y \). How many solutions are there?

(b) If \(p \) is a prime of the form \(8n \pm 1 \), use the fact that the integers of \(\mathbb{Q}(\sqrt{2}) \) form a UFD to prove that \(p = x^2 - 2y^2 \) is soluble in integers \(x \) and \(y \). (Hint: \(\eta = 1 + \sqrt{2} \) is the fundamental unit and \(N(\eta) = -1 \).

6. (a) Prove Hurwitz’ lemma: Let \(\alpha, \beta \in A(\sqrt{d}) \), \(g|N(\alpha) \), \(g|N(\beta) \), \(g|(\alpha\sigma(\beta) + \beta\sigma(\alpha)) \), where \(\sigma(\alpha) \) is the conjugate of \(\alpha \). Prove that \(g|\alpha\sigma(\beta) \).

(HINT: \(\xi = \alpha\sigma(\beta) \) satisfies the equation

\[
\xi^2 - T(\xi)\xi + N(\xi) = 0.
\]

(b) Use Hurwitz’ lemma to prove that if \(A \) is an ideal of \(A(\sqrt{d}) \), then

\[
A\sigma(A) = (g),
\]

where \(g \in \mathbb{N} \).

(c) Also prove that if \(A \) and \(C \) are ideals in \(A(\sqrt{d}) \), then

\[
A|C \iff A \supseteq C.
\]

7. Let \(p \) be a prime, \(d \) a squarefree integer, \(\omega = (1 + \sqrt{d})/2 \) if \(d \equiv 1 \) (mod 4), but \(\sqrt{d} \) otherwise. Also let \(f \) be the defining polynomial of \(\omega \). Let \(A = (p, a + \omega) \), where \(a \in \mathbb{Z} \).

(a) Prove that \(A = (1) \) if \(f(-a) \not\equiv 0 \) (mod \(p \)).

(HINT: \(\gcd(x + a, f) = 1 \) in \(\mathbb{Z}_p[x] \).)
(b) If \(f(-a) \equiv 0 \pmod{p} \), prove directly that \(N(A) = p \) by showing that the integers \(0, \ldots, p-1 \) form a complete set of representatives \((\text{mod } A)\).
(HINT: (1) Write \(\omega = -a + (\omega + a) \); (2) Use the fact that \(f = (x + a)(x + b) \) in \(\mathbb{Z}_p[x] \) for some \(b \in \mathbb{Z} \) so that \((\omega + a)(\omega + b) \equiv 0 \pmod{p} \).

(c) Suppose that \(f = (x + a)(x + b) \) in \(\mathbb{Z}_p[x] \). Prove that
\((p) = (p, a + \omega)(p, b + \omega) \).
(HINT: Use the fact that \(N((p)) = p^2 \)).

(d) If \(f \) is irreducible in \(\mathbb{Z}_p[x] \), prove that \((p) \) is a prime ideal.

(e) If \(d = -23 \), find the prime ideal decomposition of \((\omega - 2)\).
(HINT: Find \(N(\omega - 2)\)).

8. (a) Define the Kronecker symbol \((\frac{\Delta}{k})\), where \(\Delta \) is a fundamental discriminant and \(k \in \mathbb{N} \).

(b) Let \(m \in \mathbb{N} \) and \(\gcd(\Delta, m) = 1 \), where \(\Delta \) is an odd fundamental discriminant. Prove that
\[\left(\frac{\Delta}{m} \right) = \left(\frac{m}{|\Delta|} \right) \, , \]
where the right hand side is a Jacobi symbol. (HINT: write \(m = 2^l w \), \(w \) odd.)

(c) Let
\[G(\Delta) = \sum_{k=1}^{|\Delta|} \left(\frac{\Delta}{k} \right) e^{2\pi i k / |\Delta|} \, , \]

(i) Verify directly that \(G(5) = \sqrt{5} \).
(ii) Prove that if \(p \) is an odd prime and \(p^* = (-1)^{\frac{p-1}{2}} \), then
\[G(p^*) = \sum_{k=0}^{p-1} e^{2\pi i k^2 / p} \, , \]
and deduce that
\[G^2(p^*) = p^* \, . \]
9. (a) Find the group structure of the multiplicative group of equivalence classes of ideals in \(A(\sqrt{-21}) \).

(b) Let \(d > 0 \) and squarefree, \((\alpha) = A^2\), where \(A \) is an ideal in \(A(\sqrt{d})\), \(N(\alpha) < 0 \) and \(N(\eta) = 1 \), where \(\eta \) is the fundamental unit. Prove that \(A \) is not principal.

(c) Consider the ideal \(A = (3, 1 + \sqrt{34}) \). Prove that \(A^2 = (-5 + \sqrt{34}) \) and hence prove that \(A \) is not principal, given that \(35 + 6\sqrt{34} \) is the fundamental unit of \(\mathbb{Q}(\sqrt{34}) \).

10. Let \(m > 0 \) and squarefree.

(a) Prove that \(A(\sqrt{-m}) \) is not a UFD if one of the following hold:
 (i) \(m \equiv 1 \pmod{4}, m > 1 \);
 (ii) \(m \equiv 2 \pmod{4}, m > 2 \);
 (iii) \(m \equiv 7 \pmod{8}, m > 7 \).

(b) If \(A(\sqrt{-m}) \) is a UFD and \(m \equiv 3 \pmod{8} \), prove that \(m \) is a prime and that \(x^2 + x + \frac{m+1}{4} \) assumes prime values for \(x = 0, 1, \ldots, \frac{m-3}{4} \). (These are Euler’s prime–producing polynomials.)

(c) Suppose that \(m \equiv 3 \pmod{8} \), \(m \) is a prime and that \(x^2 + x + \frac{m+1}{4} \) assumes prime values for \(x = 0, 1, \ldots, \frac{m-3}{4} \). Prove that \(A(\sqrt{-m}) \) is a UFD by showing that all ideals are principal.

11. Do one of the following only:

(a) Use the Gaussian sum identity \(G(\Delta) = \sqrt{\Delta} \) to explicitly evaluate the series
\[
\sum_{n=1}^{\infty} \left(\frac{\Delta}{n} \right) \frac{1}{n}.
\]

(b) Sketch a proof of the formula \(G(p^*) = \sqrt{p^*} \), where \(p \) is an odd prime and \(p^* = (-1)^{\frac{p-1}{2}} p \).