
END OF SEMESTER EXAM, MP473, 1992
Time: Three hours

Candidates should aim to complete SIX questions,
but may attempt as many questions as they wish.

(In what follows, A(
√
d) denotes the ring of integers in Q(

√
d).)

1. (a) Define the term algebraic integer and prove that a complex number
θ is an algebraic integer if and only if ∃w1, . . . , wn, not all zero,
such that for 1 ≤ i ≤ n,

wiθ =
n∑
j=1

aijwj,

where aij ∈ Z for 1 ≤ i ≤ n, 1 ≤ j ≤ n.

(b) If θ is an algebraic integer and is also a rational number, prove
that θ is an integer.

(c) Prove that the sum and product of two algebraic integers is also
an algebraic integer.

2. (a) Prove that the ring Z[i] of Gaussian integers is Euclidean.

(b) Determine the units of Z[i].

(c) Describe the factorization of a prime p into irreducibles of Z[i].

(d) Determine the factorization of 6 + 7i into irreducibles of Z[i].

3. (a) If k is an odd rational integer, prove that

gcd (k + i, k − i) = 1 + i.

(b) Show that the only solutions of the Diophantine equation

x2 + 1 = 2y3

are x = ±1, y = 1.

4. An integer α > 0 of Q(
√
d), d > 0, is called primary if

1 ≤
∣∣∣∣ α

σ(α)

∣∣∣∣ < η2,

where η is the fundamental unit of Q(
√
d).

1



(a) Prove that every non–zero integer of Q(
√
d) is the associate of

precisely one primary integer.

(b) Prove that the primary integers α with N(α) = n satisfy

α2 − Aα + n = 0,

where |A| <
√
|n|(1 + η).

(c) Find the primary integers of Q(
√

2) with norm equal to 7 and
hence find all solutions in integers of x2 − 2y2 = 7.

5. (a) If p is a prime of the form 3n+ 1, use the fact that the integers of
Q(
√
−3) form a UFD to prove that p = x2 − xy + y2 is soluble in

integers x and y. How many solutions are there?

(b) If p is a prime of the form 8n ± 1, use the fact that the integers
of Q(

√
2) form a UFD to prove that p = x2 − 2y2 is soluble in

integers x and y. (Hint: η = 1 +
√

2 is the fundamental unit and
N(η) = −1.

6. (a) Prove Hurwitz’ lemma: Let α, β ∈ A(
√
d), g|N(α), g|N(β), g|(ασ(β)+

βσ(α)), where σ(α) is the conjugate of α. Prove that g|ασ(β).
(HINT: ξ = ασ(β) satisfies the equation

ξ2 − T (ξ)ξ +N(ξ) = 0.)

(b) Use Hurwitz’ lemma to prove that if A is an ideal of A(
√
d), then

Aσ(A) = (g),

where g ∈ N.

(c) Also prove that if A and C are ideals in A(
√
d), then

A|C ⇔ A ⊇ C.

7. Let p be a prime, d a squarefree integer, ω = (1 +
√
d)/2 if d ≡ 1

(mod 4), but
√
d otherwise. Also let f be the defining polynomial of

ω. Let A = (p, a+ ω), where a ∈ Z.

(a) Prove that A = (1) if f(−a) 6≡ 0 (mod p).

(HINT: gcd (x+ a, f) = 1 in Zp[x].)
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(b) If f(−a) ≡ 0 (mod p), prove directly that N(A) = p by showing
that the integers 0, . . . , p−1 form a complete set of representatives
(mod A).

(HINT: (1) Write ω = −a + (ω + a); (2) Use the fact that f =
(x+ a)(x+ b) in Zp[x] for some b ∈ Z so that

(ω + a)(ω + b) ≡ 0 (mod p).)

(c) Suppose that f = (x+ a)(x+ b) in Zp[x]. Prove that

(p) = (p, a+ ω)(p, b+ ω).

(HINT: Use the fact that N((p)) = p2.)

(d) If f is irreducible in Zp[x], prove that (p) is a prime ideal.

(e) If d = −23, find the prime ideal decomposition of (ω − 2).

(HINT: Find N(ω − 2).)

8. (a) Define the Kronecker symbol
(

∆
k

)
, where ∆ is a fundamental dis-

criminant and k ∈ N.

(b) Let m ∈ N and gcd (∆, m) = 1, where ∆ is an odd fundamental
discriminant. Prove that(

∆

m

)
=

(
m

|∆|

)
,

where the right hand side is a Jacobi symbol. (HINT: write m =
2lw, w odd.)

(c) Let

G(∆) =

|∆|∑
k=1

(
∆

k

)
e

2πik
|∆| ,

(i) Verify directly that G(5) =
√

5.

(ii) Prove that if p is an odd prime and p∗ = (−1)
p−1

2 , then

G(p∗) =

p−1∑
k=0

e
2πik2

p

and deduce that
G2(p∗) = p∗.
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9. (a) Find the group structure of the multiplicative group of equivalence
classes of ideals in A(

√
−21).

(b) Let d > 0 and squarefree, (α) = A2, where A is an ideal in A(
√
d),

N(α) < 0 and N(η) = 1, where η is the fundamental unit. Prove
that A is not principal.

(c) Consider the ideal A = (3, 1+
√

34). Prove that A2 = (−5+
√

34)
and hence prove that A is not principal, given that 35 + 6

√
34 is

the fundamental unit of Q(
√

34).

10. Let m > 0 and squarefree.

(a) Prove that A(
√
−m) is not a UFD if one of the following hold:

(i) m ≡ 1 (mod 4), m > 1;

(ii) m ≡ 2 (mod 4), m > 2;

(iii) m ≡ 7 (mod 8), m > 7.

(b) If A(
√
−m) is a UFD and m ≡ 3 (mod 8), prove that m is

a prime and that x2 + x + m+1
4

assumes prime values for x =
0, 1, . . . , m−3

4
. (These are Euler’s prime–producing polynomials.)

(c) Suppose that m ≡ 3 (mod 8), m is a prime and that x2+x+m+1
4

assumes prime values for x = 0, 1, . . . , m−3
4

. Prove that A(
√
−m)

is a UFD by showing that all ideals are principal.

11. Do one of the following only:

(a) Use the Gaussian sum identity G(∆) =
√

∆ to explicitly evaluate
the series

∞∑
n=1

(
∆

n

)
1

n
.

(b) Sketch a proof of the formula G(p∗) =
√
p∗, where p is an odd

prime and p∗ = (−1)
p−1

2 p.
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