1. (a) Explain what is meant by the statements: (i) K is an algebraic number field of degree n, (ii) $\omega_{1}, \ldots, \omega_{n}$ is an integral basis for K, (iii) U_{K} is the unit group of O_{K}, (iv) D_{K}, the discriminant of K, (v) $T_{K}(\alpha)$, the trace of α (vi) $N_{K}(\alpha)$, the norm of α.
(b) Write down integral bases and discriminants for $\mathbb{Q}(\sqrt{d})$, when $d=-5$ and $d=29$. Also describe explicitly the unit group U_{K} in each case.
(c) Give an example in $K=\mathbb{Q}(i)$, where α and β belong to O_{K}, $N_{K}(\alpha)$ divides $N_{K}(\beta)$ in \mathbb{Z}, but α does not divide β in O_{K}.
2. Let $f(x)=x^{4}+2 x^{2}-2 \in \mathbb{Q}[x]$..
(a) Prove that $f(x)=x^{4}+2 x^{2}-2$ is irreducible in $\mathbb{Q}[x]$.
(b) Let $\theta^{4}+2 \theta^{2}-2=0$ and let $K=\mathbb{Q}(\theta)$.
(i) Prove that $2 / \theta^{2} \in O_{K}$ and that $2 / \theta^{4} \in U_{K}$. Also prove that $2 / \theta^{4}=3+\theta^{2}$.
(ii) Verify that $3=\left(1+\theta^{2}\right)^{2}$ and explain what this tells us about D_{K}.
(iii) Given that $\Delta_{K}\left(1, \theta, \theta^{2}, \theta^{3}\right)=-2^{9} 3^{2}$, explain why $D_{K}=-2^{9} 3^{2}$.
3. (a) If I is an ideal of O_{K}, define $N(I)$, the norm of I.
(b) If A and B are ideals of O_{K} and $A+B=\{a+b \mid a \in A, b \in B\}$, prove that $A+B$ is an ideal and that $A+B=\operatorname{gcd}(A, B)$.
(c) If $K=\mathbb{Q}(\sqrt{-5})$ and $A=(2,1+\sqrt{-5})$, prove directly from the definition, without appealing to the Kummer-Dedekind theorem, that $N_{K}(A)=2$.
(d) Let I be an ideal of O_{K} and let $\alpha \in I$ satisfy

$$
N(I)=\left|N_{K}(\alpha)\right| .
$$

Prove that $I=(\alpha)$.
(e) Let K be a real quadratic field and suppose that the fundamental unit η of K satisfies $N_{K}(\eta)=1$. Let I be an ideal of O_{K} with the property that

$$
I^{2}=(\alpha),
$$

where $N_{K}(\alpha)<0$. Prove that I is not a principal ideal.
4. Let $K=\mathbb{Q}(\sqrt{-17})$.
(a) Show that 2 and 3 are the only primes which must be examined in order to determine the ideal class group I_{K}.
(b) Let $\omega=\sqrt{-17}$. Use the Kummer-Dedekind theorem to factorise (2) and (3): $(2)=Q^{2}, \quad(3)=P R$, where

$$
Q=(2,1+\omega), P=(3,1+\omega), R=(3,-1+\omega) .
$$

(c) Prove that $P^{2}=(9,1+\omega)$ and $P^{4}=(8-\omega)$.
(d) Verify that $(1-\omega) P^{2}=(9) Q$.
(e) Explain why P^{2} is not principal and I_{K} is cyclic of order 4.
5. (a) Define the term $U F D$ in the context of the integral domain O_{K}. If O_{K} is a UFD and α, β, γ are non-zero integers in O_{K} with $\operatorname{gcd}(\alpha, \beta)=1$ and satisfying

$$
\alpha \beta=\gamma^{2},
$$

what can be said of α and β ?
(b) Let x, y and z be rational integers satisfying $\operatorname{gcd}(x, y)=1$ and

$$
\begin{equation*}
x^{2}+y^{2}=z^{2} . \tag{1}
\end{equation*}
$$

(i) Prove that x and y cannot both be odd.
(ii) If x is odd and y is even, Prove that $\operatorname{gcd}(x+i y, x-i y)=1$ in $\mathbb{Z}[i]$.
(iii) By rewriting equation (1) as

$$
(x+i y)(x-i y)=z^{2},
$$

use (a) and (b)(ii) to deduce that $x=a^{2}-b^{2}, y=2 a b$, where a and b are relatively prime integers with one of a and b even, the other odd. (NB. The units of $\mathbb{Z}[i]$ are $\pm 1, \pm i$.)

