MP473 Examination, November 2000 Time: 3 hours Answer all questions

- (a) Explain what is meant by the statements: (i) K is an algebraic number field of degree n, (ii) ω₁,..., ω_n is an integral basis for K, (iii) U_K is the unit group of O_K, (iv) D_K, the discriminant of K, (v) T_K(α), the trace of α (vi) N_K(α), the norm of α.
 - (b) Write down integral bases and discriminants for $\mathbb{Q}(\sqrt{d})$, when d = -5 and d = 29. Also describe explicitly the unit group U_K in each case.
 - (c) Give an example in $K = \mathbb{Q}(i)$, where α and β belong to O_K , $N_K(\alpha)$ divides $N_K(\beta)$ in \mathbb{Z} , but α does not divide β in O_K .
- 2. Let $f(x) = x^4 + 2x^2 2 \in \mathbb{Q}[x]$..
 - (a) Prove that $f(x) = x^4 + 2x^2 2$ is irreducible in $\mathbb{Q}[x]$.
 - (b) Let $\theta^4 + 2\theta^2 2 = 0$ and let $K = \mathbb{Q}(\theta)$.
 - (i) Prove that $2/\theta^2 \in O_K$ and that $2/\theta^4 \in U_K$. Also prove that $2/\theta^4 = 3 + \theta^2$.
 - (ii) Verify that $3 = (1 + \theta^2)^2$ and explain what this tells us about D_K .
 - (iii) Given that $\Delta_K(1, \theta, \theta^2, \theta^3) = -2^9 3^2$, explain why $D_K = -2^9 3^2$.
- 3. (a) If I is an ideal of O_K , define N(I), the norm of I.
 - (b) If A and B are ideals of O_K and $A + B = \{a + b | a \in A, b \in B\}$, prove that A + B is an ideal and that A + B = gcd(A, B).
 - (c) If $K = \mathbb{Q}(\sqrt{-5})$ and $A = (2, 1 + \sqrt{-5})$, prove directly from the definition, without appealing to the Kummer–Dedekind theorem, that $N_K(A) = 2$.
 - (d) Let I be an ideal of O_K and let $\alpha \in I$ satisfy

$$N(I) = |N_K(\alpha)|.$$

Prove that $I = (\alpha)$.

(e) Let K be a real quadratic field and suppose that the fundamental unit η of K satisfies $N_K(\eta) = 1$. Let I be an ideal of O_K with the property that

$$I^2 = (\alpha)$$

where $N_K(\alpha) < 0$. Prove that I is not a principal ideal.

- 4. Let $K = \mathbb{Q}(\sqrt{-17})$.
 - (a) Show that 2 and 3 are the only primes which must be examined in order to determine the ideal class group I_K .
 - (b) Let $\omega = \sqrt{-17}$. Use the Kummer–Dedekind theorem to factorise (2) and (3): (2) = Q^2 , (3) = PR, where $Q = (2, 1 + \omega), P = (3, 1 + \omega), R = (3, -1 + \omega).$

- (c) Prove that $P^2 = (9, 1 + \omega)$ and $P^4 = (8 \omega)$.
- (d) Verify that $(1 \omega)P^2 = (9)Q$.
- (e) Explain why P^2 is not principal and I_K is cyclic of order 4.
- 5. (a) Define the term *UFD* in the context of the integral domain O_K . If O_K is a UFD and α, β, γ are non-zero integers in O_K with $gcd(\alpha, \beta) = 1$ and satisfying

$$\alpha\beta = \gamma^2,$$

what can be said of α and β ?

(b) Let x, y and z be rational integers satisfying gcd(x, y) = 1 and

$$x^2 + y^2 = z^2. (1)$$

- (i) Prove that x and y cannot both be odd.
- (ii) If x is odd and y is even, Prove that gcd(x + iy, x iy) = 1in $\mathbb{Z}[i]$.
- (iii) By rewriting equation (1) as

$$(x+iy)(x-iy) = z^2,$$

use (a) and (b)(ii) to deduce that $x = a^2 - b^2$, y = 2ab, where a and b are relatively prime integers with one of a and b even, the other odd. (NB. The units of $\mathbb{Z}[i]$ are $\pm 1, \pm i$.)