
PROBLEMS, Sheet 6, MP313, Semester 2, 1999.

1. If pn/qn is the n–th convergent to α, prove that qn ≥ Fn+1.

2. If xn denotes the n–th complete quotient to α, prove that

x0 =
pnxn+1 + pn−1

qnxn+1 + qn−1

, if n ≥ 0.

3. Find the simple continued fraction for α = 3+
√

7
2

.

4. If x = [a0, a1, . . . , ak, 2a0], where a1, . . . , ak is a symmetric string of
positive integers, prove that x2 is rational.

5. Prove that
√
d2 − 1 = [d− 1, 1, 2d− 2] if d > 1.

6. If d > 1 is an odd integer, prove that

√
d2 + 4 = [d; (d− 1)/2, 1, 1, (d− 1)/2, 2d].

7. Prove that the continued fraction of
√
d has period length 1 if and only

if d = a2 + 1, a ≥ 1.

8. Let d = a2 + b, where a, b ∈ N, b > 1 and b|2a. Prove that [
√
d] = a

and that
√
d has the continued fraction expansion

√
d = [a, 2a

b
, 2a].

Hence, or otherwise, derive the continued fraction expansion for
√
D2 −D,

when D > 2 is a positive integer.

Conversely, if the continued fraction expansion of
√
d has period length

2, show that d = a2 + b, where a, b ∈ N, b > 1 and b|2a.

9. (H.J.S. Smith 1877) Use the equation

xn+1 = −(pn−1 − xqn−1)/(pn − x0qn)

to prove that

x1 · · ·xn+1 =
(−1)n+1

pn − x0qn
. (1)

1



Deduce that if x0 = [
√
d] +

√
d and k + 1 is the period length of the

simple continued fraction for x0, then

x0 · · ·xk = pk + qk
√
d.

Illustrate with d = 7.

10. Let (x1, y1) and (x2, y2) be integer solutions of x2−dy2 = ±1 such that
1 < x1 + y1

√
d < x2 + y2

√
d. Prove that x1 < x2 and y1 < y2 either by

using the result that 1 < x+ y
√
d and x2− dy2 = ±1, x, y ∈ Z, implies

x > 0 and y > 0, or otherwise.

11. Use question 9 to show that if x0 = P0+
√
d

Q0
, then

Q0p
2
n − 2P0pnqn +

P 2
0 − d
Q0

q2
n = (−1)n+1Qn+1 (2)

for n ≥ 0 .

(Hint: Apply σ to both sides of equation (1).)

Remark: If x0 =
√
d, equation (2) reduces to p2

n− dq2
n = (−1)n+1Qn+1,

while if x0 =
√
d−1
2

and d ≡ 1 (mod 4), equation (2) reduces to

p2
n + pnqn +

1− d
4

q2
n = (−1)n+1Qn+1

2
.

12. Let d be a positive non–square integer, λ = b
√
dc and let

√
d = [λ, λ1, . . . , λk, 2λ]

have period k + 1. Writing xi = Pi+
√
d

Qi
, show that xk+1 is the first

complete quotient with Qi = 1.

(Hint: Use the fact that xi is reduced for i ≥ 1, to show that Qi = 1⇒
Pi = λ⇒ i ≡ 0 (mod k + 1).)

Illustrate with d = 47.

13. Let d > 1 be a positive non–square rational and λ = b
√
d−1
2
c.
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(a) Show that α = λ+ 1+
√
d

2
is reduced and that

√
d− 1

2
= [λ, λ1, . . . , λk, 2λ+ 1],

where the sequence λ1, . . . , λk is symmetric.

(b) Let d ∈ N, d ≡ 1 (mod 4). Writing xi = Pi+
√
d

Qi
, show that xk+1 is

the first complete quotient with Qi = 2.

(Hint: Use the fact that xi is reduced for i ≥ 1, to show that
Qi = 2⇒ Pi = 2λ+ 1⇒ i ≡ 0 (mod k + 1).)

Illustrate with d = 13 and 93.

Remark. If d > 1 is a squarefree positive integer, this algorithm
is used in CALC to find the fundamental unit η1 = pk + qkω, of

Q(
√
d) if d ≡ 1 (mod 4) and ω = 1+

√
d

2
.

η1 is the smallest unit > 1 in the ring Z[ω] of integers of the form
a+ bω, a, b ∈ Z. Here pk/qk satisfies

p2
k + pkqk +

1− d
4

q2
k = (−1)k+1.

and is the first convergent to
√
d−1
2

for which Qk+1 = 2. Equiv-
alently (x, y) = (2pk + qk, qk) is the solution in positive integers
x, y, with smallest x, of the Pell–like equation x2 − dy2 = ±4.

If d ≡ 2 (mod 4) or d ≡ 3 (mod 4), the relevant ring of integers is
Z[
√
d], the set of numbers a + b

√
d, a, b ∈ Z. The fundamental

unit η0 = pk + qk
√
d, where pk/qk satisfies p2

k− dq2
k = (−1)k+1 and

is the first convergent to
√
d for which Qk+1 = 1.

In both cases all units are given by ±ηn1 ,±ηn0 , n ∈ Z, respectively.
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