1. Let $m, k \in \mathbb{N}, m > 1$ and let i + 1 be the number of binary digits of k. Let $x_0 = 2^{1 + \lfloor i/m \rfloor}$. Prove

$$k^{1/m} < x_0 < 2k^{1/m}.$$

- 2. Evaluate the Legendre symbols $\left(\frac{2}{137}\right)$, $\left(\frac{3}{137}\right)$, $\left(\frac{53}{137}\right)$, $\left(\frac{111}{1151}\right)$.
- 3. (i) Prove that $\left(\frac{-2}{p}\right) = 1 \Leftrightarrow p \equiv 1 \text{ or } 3 \pmod{8};$ (ii) Prove that $\left(\frac{5}{p}\right) = 1 \Leftrightarrow p \equiv 1 \text{ or } 4 \pmod{5}.$
- 4. Apply Serret's algorithm to express primes 137 and $10^{50} + 577$ as sums of two squares.
- 5. If p is a prime and $p = x^2 + ny^2$, where $x, y, n \in \mathbb{Z}$, prove that gcd(x,y) = 1 and $\left(\frac{-n}{p}\right) = 1$.
- 6. (Wilson's theorem) Let p be a prime. By grouping integers x, y in the range $1 \le x < y \le p 1$ as products xy, where $xy \equiv 1 \pmod{p}$, prove that $(p-1)! \equiv -1 \pmod{p}$.
- 7. Let p be an odd prime not dividing b. Define a 1–1 mapping y = f(x) of $\{x \in \mathbb{N} \mid 1 \le x \le p-1\}$ onto itself, by $xy \equiv b \pmod{p}$.
 - (i) If $\left(\frac{b}{p}\right) = -1$, show that the mapping has no fixed points and deduce that

$$(p-1)! \equiv b^{\frac{p-1}{2}} \pmod{p}.$$

(ii) If $\left(\frac{b}{p}\right) = 1$, show that the mapping has two fixed points and deduce that

$$(p-1)! \equiv -b^{\frac{p-1}{2}} \pmod{p}.$$

(In view of Wilson's theorem, this gives another proof of Euler's criterion.)

8. If p is an odd prime, not dividing k, show that

$$\sum_{x=1}^{p-1} \left(\frac{x(x+k)}{p} \right) = -1.$$

(Hint: Define y by $xy \equiv 1 \pmod{p}$, $1 \le y \le p-1$ and write the sum as

$$\sum_{x=1}^{p-1} \left(\frac{xy(xy+ky)}{p} \right) .)$$

- 9. Show that 65 is a strong pseudoprime to the base 8 but not to the base 14.
- 10. Let N_p be the number of $(x, y), 1 \le x, y \le p 1$, satisfying $x^2 + y^2 \equiv 4 \pmod{p}$.
 - (i) Prove that $N_p \equiv 2 + 2\left(\frac{2}{p}\right) \pmod{8}$.
 - (ii) By writing $x \equiv (2 y)t \pmod{p}$, obtain the parametrisation

$$(x,y) \equiv \left(\frac{4t}{t^2+1}, \frac{2(t^2-1)}{t^2+1}\right) \pmod{p},$$

 $2\leq t\leq p-2,\quad t^2\not\equiv -1\pmod{p}.$

(iii) Deduce that $N_p = p - 3 - \{1 + \left(\frac{-1}{p}\right)\}$ and hence prove that

$$\left(\frac{2}{p}\right) = \begin{cases} 1 & \text{if } p \equiv 1,7 \pmod{8} \\ -1 & \text{if } p \equiv 3,5 \pmod{8}. \end{cases}$$