PROBLEMS, SHEET 1, MP313, Semester 2, 1999.

- 1. Use Euclid's division algorithm to calculate d = gcd(314, 217) and find integers x, y such that d = 314x + 217y.
- 2. Prove that gcd(a, b) = 1 and a|c and $b|c \Rightarrow ab|c$.
- 3. If gcd(a, c) = 1, prove that gcd(a, bc) = gcd(a, b).
- 4. If gcd(b, c) = 1, prove that

$$gcd(a, bc) = gcd(a, b) gcd(a, c).$$

Show that this also holds under the weaker assumption gcd(a, b, c) = 1.

5. Let $n \ge 1, a \ge 2$. If $a^n + 1$ is prime, deduce that $n = 2^m$. (Hint:

$$b^{2d+1} + 1 = (b+1) \sum_{k=0}^{2d} (-1)^k b^k.$$

- 6. Let $n > 1, a \ge 2$. If $a^n 1$ is prime, deduce that a = 2 and n is prime.
- 7. If $a \ge 1, b \ge 1$, prove that $gcd(2^a 1, 2^b 1) = 2^{gcd(a,b)} 1$. (Hint: Assume d = gcd(a, b) = ax by, where x and y are positive integers.)
- 8. (a) If $a, b_1, \ldots, b_n \in \mathbb{Z}$ and $gcd(a, b_i) = 1$, for $i = 1, \ldots, n$, prove that $gcd(a, b_1b_2 \cdots b_n) = 1$.
 - (b) If $a, b \in \mathbb{Z}$ and gcd(a, b) = 1, use (a) to deduce that prove that $gcd(a^n, b^n) = 1$.
 - (c) If $a, b \in \mathbb{Z}$, gcd(a, b) = 1 and a|b, prove that $a = \pm 1$.
 - (d) Use part (c) to prove that if a and b are integers such that $a^n|b^n$, then a|b. (Hint: Write a = dA, b = dB, where $d = \gcd(a, b)$.)
- 9. Prove that if m > n, then $a^{2^n} + 1$ divides $a^{2^m} 1$. Also show that if a, m, n are positive integers with m > n, then

$$gcd(a^{2^m} + 1, a^{2^n} + 1) = \begin{cases} 1 & \text{if } a \text{ is even,} \\ 2 & \text{if } a \text{ is odd.} \end{cases}$$

10. If gcd(a, b) = 1 and p is an odd prime, show that

$$gcd\left(a+b, \ \frac{a^p+b^p}{a+b}\right) = 1 \text{ or } p.$$

(Hint: Let t = a + b and substitute a = t - b in $a^p + b^p$).

11. If n is composite, prove that $\phi(n) \leq n - \sqrt{n}$.

(Method (a). Let n = uv, 1 < u, 1 < v, $v \le u$. Then $u \ge \sqrt{n}$. Also the integers $v, 2v \ldots, uv$ are each not relatively prime to n. Method (b). Let $p \mid n, p$ a prime, $p \le \sqrt{n}$. Then $n = p^a v, p \not| v, a \ge 1$. Also $\phi(v) \le v$.)

12. Let m > 1, n > 1. Prove that

$$\phi(mn) = \frac{\phi(m)\phi(n)\gcd(m,n)}{\phi(\gcd(m,n))}$$

(Hint: Let $gcd(m, n) = p_1^{a_1} \cdots p_t^{a_t}, a_1 > 0, \dots, a_t > 0$. Then

$$m = p_1^{b_1} \cdots p_t^{b_t} M$$
 and $n = p_1^{c_1} \cdots p_t^{c_t} N$,

where (M, N) = 1 and p_1, \ldots, p_t do not divide MN.

13. If m|n, show that $\phi(m)|\phi(n)$.

(Hint: Write $m = p_1^{b_1} \cdots p_t^{b_t}$ and $n = p_1^{c_1} \cdots p_t^{c_t} M$, where M is not divisible by any of p_1, \ldots, p_t and $b_1 \leq c_1, \ldots, b_t \leq c_t$.)

- 14. Prove that $\phi(n)$ has the form 4k+2 if and only if $n = p^a$ or $2p^a$, where p is a prime of the from 4m+3.
- 15. If n > 1, prove that sum of the integers x satisfying $1 \le x \le n$ and gcd(x,n) = 1 is $n\phi(n)/2$. (Hint: If x satisfies the conditions, so does n x.)