THE UNIVERSITY OF QUEENSLAND

Second Semester Examination, November, 1999.

MP313

NUMBER THEORY III

(UNIT COURSES)

Time:THREE HOURS for working

Ten minutes for perusal before examination begins.

Attempt **SIX** questions only.

All questions carry the same number of marks.

1. (a) Define Euler's function $\phi(n)$ and prove that

$$\sum_{d|n} \phi(d) = n$$

- (b) Determine the positive integers n for which $\phi(n) = 2^k$ for some $k \ge 1$.
- (c) Explain how the Chinese remainder theorem enables us to deduce that $\phi(mn) = \phi(m)\phi(n)$ if gcd (m, n) = 1.
- (d) If $\sigma(n)$ denotes the sum of the positive divisors of n, prove that

$$\sum_{k=1}^n \sigma(k) = \sum_{j=1}^n j \left\lfloor \frac{n}{j} \right\rfloor,$$

where $\lfloor x \rfloor$ denotes the integer part symbol.

- 2. (a) Define the Möbius function $\mu(n)$ and prove that
 - (i) ∑_{d|n} μ(d) = 0 if n > 1.
 (ii) ∑_{d|n} |μ(d)| = 2^{ω(n)} if n > 1, where ω(n) is the number of distinct prime factors of n.
 - (b) State the Möbius inversion formula.
 - (c) Let $z, n \in \mathbb{N}$ and T(z, n) be the number of integers x satisfying $1 \le x \le z$ and gcd(x, n) = 1.
 - (i) Prove that $T(z,n) = \sum_{d|n} \mu(d) \left\lfloor \frac{z}{d} \right\rfloor$.
 - (ii) Deduce that that $T(z,n) = \frac{z}{n}\phi(n) + U(z,n)$, where $|U(z,n)| \le d(n)$, where d(n) is the divisor function.

Questions 3–6 on next page

COPYRIGHT RESERVED

TURN OVER

Second Semester – MP313 – Number Theory III–continued.

- 3. (a) Define the term primitive root (mod n).
 - (b) Given that 2 is a primitive root (mod 29), solve the congruence

$$x^{21} \equiv 2^{14} \pmod{29}.$$

- (c) Let p = 4n + 1 be a prime. If g is a primitive root (mod p), prove that -g is also a primitive root (mod p).
- (d) If p is a prime, prove that the number of primitive roots (mod p) in the range $1 \le x \le p-1$ is $\phi(p-1)$.
- 4. (a) Define $\operatorname{ord}_m n$ if $\operatorname{gcd}(m, n) = 1$.
 - (b) If gcd(m, n) = 1 and gcd(a, mn) = 1, prove that

$$\operatorname{ord}_{mn}a = \operatorname{lcm}(\operatorname{ord}_m a, \operatorname{ord}_n a).$$

- (c) If p is an odd prime dividing $x^3 + 1$ but not x + 1, prove that $p \equiv 1 \pmod{6}$ by considering $\operatorname{ord}_p x$.
- (d) Let p be an odd prime. If $p-1 = 2^{s}t$, where t is odd, prove that the number of integers x in $1 \le x \le p-1$, for which $\operatorname{ord}_{p}x$ is even, is equal to $(p-1)(1-1/2^{s})$.
- 5. (a) Define the term quadratic residue (mod p), Legendre symbol $\left(\frac{a}{p}\right)$, where p is an odd prime.
 - (b) Let a be an integer not divisible by the odd prime p. Prove that a is a quadratic residue (mod p) if and only if $a^{\frac{p-1}{2}} \equiv 1 \pmod{p}$. (Hint: In one direction, use the existence of a primitive root (mod p).)
 - (c) Show that the congruence $x^2 + 37x + 48 \equiv 0 \pmod{109}$ is solvable by completing the square. Also find the solutions (mod 109) using peralta in CALC.
 - (d) Prove that $\left(\frac{-3}{p}\right) = 1$ if and only if $p \equiv 1 \pmod{3}$.
 - (e) Let p = 2q + 1 be a prime, where q is a prime. If $\left(\frac{a}{p}\right) = -1$ and a is not congruent to $-1 \pmod{p}$, prove that a is a primitive root (mod p).
- 6. (a) Define the term *reduced quadratic irrational* and prove that $\alpha = \lfloor \sqrt{d} \rfloor + \sqrt{d}$ is a reduced quadratic irrational, if d is a non-square positive integer.
 - (b) Determine the quadratic irrational defined by $\alpha = [\overline{1, 2, 1}]$ and check your answer using surd in CALC.
 - (c) Derive the continued fraction expansion of $\sqrt{41}$ and hence determine the solutions in least positive integers x and y of $x^2 41y^2 = -1$ (if a solution exists) and also of $x^2 41y^2 = 1$.

Questions 7 on next page

COPYRIGHT RESERVED

TURN TO PAGE 3

Second Semester – MP313 – Number Theory III–continued.

- 7. (a) Define the terms *p*-adic integer, *p*-adic number, *p*-adic unit.
 - (b) Which rational numbers are (a) p-adic integers, (b) p-adic units?
 - (c) Find the 5-adic canonical expansion of $\frac{17}{12}$.
 - (d) Find the rational number r defined by the periodic 5-adic series

$$r = 4 + 2 \cdot 5 + 4 \cdot 5^2 + 2 \cdot 5^3 + \cdots$$

(e) Find the digits a_1 and a_2 of the canonical expansion $\sqrt{7} = 1 + a_1 + a_2 + a_2 + \cdots$ in $\hat{\mathbb{Z}}_3$.