4.10.3 A real algorithm for finding the real Jordan form

Referring to the last example, if we write $Z = \begin{bmatrix} A & I_4 \\ -I_4 & A \end{bmatrix}$, then

$$Z\left[\frac{X_{11}}{Y_{11}}\right] = \left[\frac{X_{12}}{Y_{12}}\right],$$

$$Z\left[\frac{-Y_{11}}{X_{11}}\right] = \left[\frac{-Y_{12}}{X_{12}}\right],$$

$$Z\left[\frac{X_{12}}{Y_{12}}\right] = \left[\frac{0}{0}\right],$$

$$Z\left[\frac{-Y_{12}}{X_{12}}\right] = \left[\frac{0}{0}\right].$$

Then the vectors

$$\left[\frac{X_{11}}{Y_{11}}\right], \ \left[\frac{-Y_{11}}{X_{11}}\right], \ Z\left[\frac{X_{11}}{Y_{11}}\right], \ Z\left[\frac{-Y_{11}}{X_{11}}\right]$$

actually form an \mathbb{R} -basis for N(Z). This leads to a method for finding the real Jordan canonical form using real matrices. (I am indebted to Dr. B.D. Jones for introducing me to the Z matrix approach.)

More generally, we observe that a collection of equations of the form

$$AX_{ij1} = a_i X_{ij1} - b_i Y_{ij1} + X_{ij2}$$

$$AY_{ij1} = b_i X_{ij1} + a_i Y_{ij1} + Y_{ij2}$$

$$\vdots$$

$$AX_{ije_{ij}} = a_i X_{ije_{ij}} - b_i Y_{ije_{ij}}$$

$$AY_{ije_{ij}} = b_i X_{ije_{ij}} + a_i Y_{ije_{ij}}$$

can be written concisely in real matrix form, giving rise to an elementary Jordan basis corresponding to an elementary divisor $x^{e_{ij}}$ for the following real matrix: Let

$$Z_i = \left[\begin{array}{cc} A - a_i I_n & b_i I_n \\ -b_i I_n & A - a_i I_n \end{array} \right].$$

Then

$$Z_{i} \begin{bmatrix} X_{ij1} \\ Y_{ij1} \end{bmatrix} = \begin{bmatrix} X_{ij2} \\ Y_{ij2} \end{bmatrix}$$
$$\vdots$$
$$Z_{i} \begin{bmatrix} X_{ije_{ij}} \\ Y_{ije_{ij}} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

LEMMA 4.2

If V is a \mathbb{C} -vector space with basis v_1, \ldots, v_n , then V is also an \mathbb{R} -vector space with basis

$$v_1, iv_1, \ldots, v_n, iv_n$$

Hence

$$\dim_{\mathbb{R}} V = 2 \dim_{\mathbb{C}} V.$$

DEFINITION 4.8

Let $A \in M_{n \times n}(\mathbb{R})$ and c = a + ib be a complex eigenvalue of A with $b \neq 0$. Let $Z \in M_{2n \times 2n}(\mathbb{R})$ be defined by

$$Z = \begin{bmatrix} A - aI_n & bI_n \\ -bI_n & A - aI_n \end{bmatrix} = (A - aI_n) \otimes I_n - I_n \otimes (bJ).$$

Also let p = x - c.

LEMMA 4.3

Let $\Phi: V_{2n}(\mathbb{R}) \to V_n(\mathbb{C})$ be the mapping defined by

$$\Phi\left(\left[\frac{X}{Y}\right]\right) = X + iY, \quad X, Y \in V_n(\mathbb{R}).$$

Then

(i) Φ is an \mathbb{R} --isomorphism;

(ii)
$$\Phi\left(\left[\frac{-Y}{X}\right]\right) = i(X+iY);$$

(iii)
$$\Phi\left(Z^h\left[\frac{X}{Y}\right]\right) = p^h(A)(X+iY);$$

- $(iv) \ \Phi\left(Z^h\left[\frac{-Y}{X}\right]\right) = ip^h(A)(X+iY);$
- (v) Φ maps $N(Z^h)$ onto $N(p^h(A);$

COROLLARY 4.4

If

$$p^{e_1-1}(A)(X_1+iY_1),\ldots,p^{e_{\gamma}-1}(A)(X_{\gamma}+iY_{\gamma})$$

form a \mathbb{C} -basis for N(p(A)), then

$$Z^{e_1-1}\left[\frac{X_1}{Y_1}\right], Z^{e_1-1}\left[\frac{-Y_1}{X_1}\right], \dots, Z^{e_{\gamma}-1}\left[\frac{X_{\gamma}}{Y_{\gamma}}\right], Z^{e_{\gamma}-1}\left[\frac{-Y_{\gamma}}{X_{\gamma}}\right]$$

form an \mathbb{R} -basis for N(Z) and conversely.

Remark: Consequently the dot diagram for the eigenvalue 0 for the matrix Z has the same height as that for the eigenvalue c of A, with each row expanded to twice the length.

To find suitable vectors $X_1, Y_1, \ldots, X_{\gamma}, Y_{\gamma}$, we employ the usual algorithm for finding the Jordan blocks corresponding to the eigenvalue 0 of the matrix Z, with the extra proviso that we always ensure that the basis for $N_{h,x}$ is chosen to have the form

$$Z^{h-1}\left[\frac{X_1}{Y_1}\right], Z^{h-1}\left[\frac{-Y_1}{X_1}\right], \dots, Z^{h-1}\left[\frac{X_r}{Y_r}\right], Z^{h-1}\left[\frac{-Y_r}{X_r}\right],$$

where r = (nullity $Z^h -$ nullity $Z^{h-1})/2.$

This can be ensured by extending a spanning family for $N(Z^h)$:

$$\left[\frac{X_1}{Y_1}\right], \dots, \left[\frac{X_{\nu(Z^h)}}{Y_{\nu(Z^h)}}\right]$$

to the form

$$\left[\frac{X_1}{Y_1}\right], \left[\frac{-Y_1}{X_1}\right], \dots, \left[\frac{X_{\nu(Z^h)}}{Y_{\nu(Z^h)}}\right], \left[\frac{-Y_{\nu(Z^h)}}{X_{\nu(Z^h)}}\right].$$

EXAMPLE 4.8

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ -2 & 0 & 1 & 0 \\ 2 & 0 & 0 & 1 \\ -2 & -1 & -1 & -1 \end{bmatrix} \in M_{4 \times 4}(\mathbb{R}) \text{ has } m_A = (x^2 + 1)^2. \text{ Find a real}$$

non-singular matrix P such that $P^{-1}AP$ is in real Jordan form. Solution:

$$Z = \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ -2 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 2 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ -2 & -1 & -1 & -1 & 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 & -2 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 & 2 & 0 & 0 & 1 \\ 0 & 0 & 0 & -1 & -2 & -1 & -1 & -1 \end{bmatrix}$$

102

basis for
$$N(Z^2)$$
:
$$\begin{bmatrix} 1 & 1 & 1/2 & 1/2 \\ -2 & -1/2 & 0 & -1/2 \\ 2 & 1/2 & 1 & 3/2 \\ -2 & -3/2 & -2 & -3/2 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

blown–up basis for $N(Z^2)$:

Γ	1	-1	1	0	1/2	0	1/2	0]
-	-2	0	-1/2	-1	0	0	-1/2	0
	2	0	1/2	0	1	-1	3/2	0
-	-2	0	-3/2	0	-2	0	-3/2	-1
	1	1	0	1	0	1/2	0	1/2
	0	-2	1	-1/2	0	0	0	-1/2
	0	2	0	1/2	1	1	0	3/2
L	0	-2	0	-3/2	0	-2	1	-3/2

$$\rightarrow \text{ left-to-right basis for } N(Z^2): \begin{bmatrix} 1 & -1 & 1 & 0 \\ -2 & 0 & -1/2 & -1 \\ 2 & 0 & 1/2 & 0 \\ -2 & 0 & -3/2 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & -2 & 1 & -1/2 \\ 0 & 2 & 0 & 1/2 \\ 0 & -2 & 0 & -3/2 \end{bmatrix}$$

We then derive a spanning family for $N_{2,x}$:

$$Z \times \text{ basis matrix} = \begin{bmatrix} 0 & 0 & 1/2 & 0 \\ 0 & 0 & -1/2 & -1/2 \\ 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & -1/2 & -1/2 \\ 0 & 0 & 0 & 1/2 \\ 0 & 0 & 1/2 & -1/2 \\ 0 & 0 & -1/2 & 1/2 \\ 0 & 0 & 1/2 & -1/2 \end{bmatrix} \rightarrow \text{ basis for } N_{2,x}:$$

1/2	0
-1/2	-1/2
1/2	1/2
-1/2	-1/2
0	1/2
1/2	-1/2
-1/2	1/2
1/2	-1/2

 $\begin{bmatrix} 1/2 & 0 \\ -1/2 & -1/2 \\ 1/2 & 1/2 \\ -1/2 & -1/2 \\ 0 & 1/2 \\ 1/2 & -1/2 \\ 1/2 & -1/2 \\ 1/2 & -1/2 \\ 1/2 & -1/2 \end{bmatrix}$ Consequently we read off that $Z\left[\frac{X_{11}}{Y_{11}}\right] = \left[\frac{X_{12}}{Y_{12}}\right]$ is a basis for $N_{2,x} = N_{1,x} = N(Z)$. where

$$P = [X_{11}|Y_{11}|X_{12}|Y_{12}] = \begin{bmatrix} 1 & 0 & 1/2 & 0 \\ -1/2 & 1 & -1/2 & 1/2 \\ 1/2 & 0 & 1/2 & -1/2 \\ -3/2 & 0 & -1/2 & 1/2 \end{bmatrix}.$$

Then

$$P^{-1}AP = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & -1 & 0 \end{bmatrix},$$

which is in real Jordan form.