
4.10 The Real Jordan Form

4.10.1 Motivation

If A is a real n×n matrix, the characteristic polynomial of A will in general
have real roots and complex roots, the latter occurring in complex pairs.
In this section we show how to derive a canonical form B for A which has
real entries. It turns out that there is a simple formula for eB and this is
useful in solving Ẋ = AX, as it allows one to directly express the complete
solution of the system of differential equations in terms of real exponentials
and sines and cosines.

We first introduce a real analogue of Jn(a+ib). It’s the matrixKn(a, b) ∈
M2n×2n(R) defined as follows:

Let D =
[

a b
−b a

]
= aI2 + bJ where J2 = −I2 (J is a matrix version

of i =
√
−1, while D corresponds to the complex number a+ ib) then

eD = eaI2+bJ

= eaI2ebJ

= eaI2

[
I2 +

bJ

1!
+

(bJ)2

2!
+ · · ·

]
= ea

[{
I2 −

b2

2!
I2 +

b4

4!
I2 + · · ·

}
+
{
b

1!
J − b3

3!
J + · · ·

}]
= ea [(cos b)I2 + (sin b)J ]

= ea
[

cos b sin b
− sin b cos b

]
.

Replacing a and b by ta and tb, where t ∈ R, gives

etD = eat
[

cos bt sin bt
− sin bt cos bt

]
.

DEFINITION 4.7
Let a and b be real numbers and Kn(a, b) ∈M2n×2n(R) be defined by

Kn(a, b) =


D 0 . . .
I2 D
0 I2

. . .

D
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where D =
[

a b
−b a

]
. Then it is easy to prove that

eKn(a, b) =



eD 0 . . .

eD/1! eD

eD/2! eD/1!
. . .

...
. . .

. . .

eD/(n− 1) ! · · · · · · eD/1! eD


.

EXAMPLE 4.6

K2(0, 1) =


0 1 0 0
−1 0 0 0

1 0 0 1
0 1 −1 0


and

etK2(0, 1) =


cos t sin t 0 0
− sin t cos t 0 0
t cos t t sin t cos t sin t
−t sin t t cos t − sin t cos t

 .
4.10.2 Determining the real Jordan form

If A = [aij ] is a complex matrix, let A = [aij ]. Then

1.

A±B = A±B, cA = cA c ∈ C, AB = A ·B.

2. If A ∈Mn×n(R) and a0, . . . , ar ∈ C, then

a0In + · · · arAr = a0In + · · ·+ arA
r.

3. If W is a subspace of Vn(C), then so is W = {w|w ∈W}.
Moreover if W = 〈w1, . . . , wr〉, then

W = 〈w1, . . . , wr〉.

4. If w1, . . . , wr are linearly independent vectors in Vn(C), then so are
w1, . . . , wr. Hence if w1, . . . , wr form a basis for a subspace W , then
w1, . . . , wr form a basis for W .
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5. Let A be a real n× n matrix and c ∈ C. Then

(a)

W = N((A− cIn)h)⇒W = N((A− cIn)h).

(b)

W = W1 ⊕ · · · ⊕Wr ⇒W = W 1 ⊕ · · · ⊕W r.

(c)

W = CTA, v ⇒W = CTA, v.

(d)

W =
r⊕
i=1

CTA, vi ⇒W =
r⊕
i=1

CTA, vi .

(e)

mTA, v = (x− c)e ⇒ mTA, v = (x− c)e.

Let A ∈Mn×n(R). Then mA ∈ R[x] and so any complex roots will occur in
conjugate pairs.

Suppose that c1, . . . , cr are the distinct real eigenvalues and cr+1, . . . , cr+s,
c̄r+1, . . . , c̄r+s are the distinct non-real roots and

mA = (x− c1)b1 . . . (x− cr)br(x− cr+1)br+1 . . . (x− cr+s)br+s

×(x− c̄r+1)br+1 . . . (x− c̄r+s)br+s .

For each complex eigenvalue ci, r+1 ≤ i ≤ r+s, there exists a secondary
decomposition

N(A− ciIn)bi =
γi⊕
j=1

CTA,vij , mTA, vij = (x− ci)eij

Hence we have a corresponding secondary decomposition for the eigenvalue
c̄i:

N(A− c̄iIn)bi =
γi⊕
j=1

CTA,v̄ij , mTA, v̄ij = (x− c̄i)eij .
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For brevity, let c = ci, v = vij , e = eij . Let

P1 = v, P2 = (A− cIn)P1, . . . , Pe = (A− cIn)Pe−1

and

P1 = X1 + iY1, P2 = X2 + iY2, . . . , Pe = Xe + iYe; c = a+ ib.

Then we have the following equations, posed in two different ways:

AP1 = cP1 + P2 AX1 = aX1 − bY1 +X2

AY1 = bX1 + aY1 + Y2
...

...
APe = cPe AXe = aXe − bYe

AYe = bXe + aYe.

In matrix terms we have

A[X1|Y1|X2|Y2| · · · |Xe|Ye] =

[X1|Y1|X2|Y2| · · · |Xe|Ye]



a b
−b a · · ·

1 0 a b
0 1 −b a
...

. . .
a b

0 −b a


.

The large “real jordan form” matrix is the 2e× 2e matrix Ke(a, b).
Note: If e = 1, no I2 block is present in this matrix.

The spaces CTA, v and CTA, v̄ are independent and have bases P1, . . . , Pe
and P̄1, . . . , P̄e, respectively.

Consequently the vectors

P1, . . . , Pe, P̄1, . . . , P̄e

form a basis for CTA, v+CTA, v̄. It is then an easy exercise to deduce that the
real vectors X1, Y1, . . . , Xe, Ye form a basis β for the T–invariant subspace

W = CTA, v + CTA, v̄.

Writing T = TA for brevity, the above right hand batch of equations tells
us that [TW ]ββ = Ke(a, b). There will be s such real bases corresponding to
each of the complex eigenvalues cr+1 . . . , cr+s.
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Joining together these bases with the real elementary Jordan bases aris-
ing from any real eigenvalues c1, . . . , cr gives a basis β for Vn(C) such that
if P is the non–singular real matrix formed by these basis vectors, then

P−1AP = [TA]ββ = J ⊕K,

where

J =
r⊕
i=1

γi⊕
j=1

Jeij (ci), K =
r+s⊕
i=r+1

γi⊕
j=1

Keij (ai, bi),

where ci = ai + ibi for r + 1 ≤ i ≤ r + s.

The matrix J ⊕K is said to be in real Jordan canonical form.

EXAMPLE 4.7

A =


1 1 0 0
−2 0 1 0

2 0 0 1
−2 −1 −1 −1

 so mA = (x2 + 1)2

= (x− i)2(x+ i)2.

Thus with p1 = x− i, we have the dot diagram

· N2,p1

· N1,p1 = N(A− iI4).

Thus we find an elementary Jordan basis for N1,p1 :

X11 + iY11, (A− iI4)(X11 + iY11) = X12 + iY12

yielding

AX11 = −Y11 +X12

AY11 = X11 + Y12.
(22)

Now we know

mTA,X11+iY11 = (x− i)2

⇒ (A− iI4)2(X11 + iY11) = 0
⇒ (A− iI4)(X12 + iY12) = 0
⇒ AX12 = −Y12

AY12 = X12.
(23)
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Writing the four real equations (22) and (23) in matrix form, with

P = [X11|Y11|X12|Y12],

then P is non-singular and

P−1AP =


0 1 0 0
−1 0 0 0

1 0 0 1
0 1 −1 0

 .
The numerical determination of P is left as a tutorial problem.
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