4.2 Two Jordan Canonical Form Examples

4.2.1 Example (a):

Let
$$A = \begin{bmatrix} 4 & 0 & 1 & 0 \\ 2 & 2 & 3 & 0 \\ -1 & 0 & 2 & 0 \\ 4 & 0 & 1 & 2 \end{bmatrix} \in M_{4 \times 4}(\mathbb{Q}).$$

We find $ch_T = (x-2)^2(x-3)^2 = p_1^2 p_2^2$, where $p_1 = x - 2$, $p_2 = x - 3$.
CASE 1, $p_1 = x - 2$:

$$p_1(A) = A - 2I_4 = \begin{bmatrix} 2 & 0 & 1 & 0 \\ 2 & 0 & 3 & 0 \\ -1 & 0 & 0 & 0 \\ 4 & 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

so $\nu(p_1(A)) = \gamma_1 = 2$. Hence $b_1 = 1$ and the corresponding dot diagram has height 1, width 2, with associated Jordan blocks $J_1(2) \oplus J_1(2)$:

$$\begin{array}{c|c} \hline & & \\ \hline & & \\ \hline & \\ \end{array} \end{array} \overset{$ \hline $ \ \ $ \ \ $ \ \ $ \ \ $ \ \ $ \ \ $ \ \ $ \$$

Note that $C_{T_A, v_{11}}$ and $C_{T_A, v_{12}}$ have Jordan bases $\beta_{11} : v_{11}$ and $\beta_{12} : v_{12}$ respectively.

CASE 2,
$$p_2 = x - 3$$
:

$$p_2(A) = A - 3I_4 = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 2 & -1 & 3 & 0 \\ -1 & 0 & -1 & 0 \\ 4 & 0 & 1 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & -\frac{1}{3} \\ 0 & 1 & 0 & \frac{1}{3} \\ 0 & 0 & 1 & \frac{1}{3} \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

so $\nu(p_2(A)) = 1 = \gamma_2$; also $\nu(p_2^2(A)) = 2$. Hence $b_2 = 2$ and we get a corresponding dot diagram consisting of two vertical dots, with associated Jordan block $J_2(3)$:

$$\begin{array}{c} \cdot \\ \cdot \\ \cdot \\ \end{array} \begin{array}{c} N_{2,x-3} \\ N_{1,x-3} \end{array}$$

We have to find a basis of the form $p_2(T_A)(v_{21}) = (A-3I_4)v_{21}$ for Ker $p_2(T_A) = N(A-3I_4)$.

To find v_{21} we first get a basis for $N(A - 3I_4)^2$. We have

$$p_2^2(A) = (A - 3I_4)^2 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ -3 & 1 & -4 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 2 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -2 & -1 \\ 0 & 1 & -10 & -3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

and we find $X_1 = \begin{bmatrix} 2\\10\\1\\0 \end{bmatrix}$ and $X_2 = \begin{bmatrix} 1\\3\\0\\1 \end{bmatrix}$ is such a basis. Then we have

$$N_{2,p_2} = \langle p_2 X_1, p_2 X_2 \rangle$$

= $\langle p_2(A) X_1, p_2(A) X_2 \rangle = \langle (A - 3I_4) X_1, (A - 3I_4) X_2 \rangle$
= $\left\langle \begin{bmatrix} 3 \\ -3 \\ -3 \\ 9 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ -1 \\ 3 \end{bmatrix} \right\rangle = \left\langle \begin{bmatrix} 3 \\ -3 \\ -3 \\ 9 \end{bmatrix} \right\rangle.$

Hence we can take $v_{21} = X_1$. Then $m_{T_A, v_{21}} = (x-3)^2$. Also

Ker
$$p_2^{b_2}(T_A)$$
) = $N(p_2^2(A)) = N(A - 3I_4)^2 = C_{T_A, v_{21}}$.

Moreover $C_{T_A, v_{21}}$ has Jordan basis $\beta_{21} : v_{21}, (A - 3I_4)v_{21}$.

Finally we have $V_4(\mathbb{Q}) = C_{T_A, v_{11}} \oplus C_{T_A, v_{12}} \oplus C_{T_A, v_{21}}$ and $\beta = \beta_{11} \cup \beta_{12} \cup \beta_{21}$ is a basis for $V_4(\mathbb{Q})$. Then with

$$P = [v_{11}|v_{12}|v_{21}|(A-3I_4)v_{21}] = \begin{bmatrix} 0 & 0 & 2 & 3\\ 1 & 0 & 10 & -3\\ 0 & 0 & 1 & -3\\ 0 & 1 & 0 & 9 \end{bmatrix}$$

we have

$$P^{-1}AP = [T_A]^{\beta}_{\beta} = J_1(2) \oplus J_1(2) \oplus J_2(3) = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

4.2.2 Example (b):

Let $A \in M_{6 \times 6}(F)$ have the property that $ch_A = x^6$, $m_A = x^3$ and

$$\nu(A) = 3, \ \nu(A^2) = 5, \ (\nu(A^3) = 6).$$

Next, with $\nu_{h,x} = \dim_F N_{h,x}$ we have

$$\nu_{1,x} = \nu(A) = 3 = \gamma_1;$$

$$\nu_{2,x} = \nu(A^2) - \nu(A) = 5 - 3 = 2;$$

$$\nu_{3,x} = \nu(A^3) - \nu(A^2) = 6 - 5 = 1.$$

Hence the dot diagram corresponding to the (only) monic irreducible factor x of m_A is

$$\begin{array}{c|c} \cdot & N_{3,x} \\ \hline \cdot & \cdot & N_{2,x} \\ \hline \cdot & \cdot & \cdot & N_{1,x} \end{array}$$

Hence we read off that \exists a non-singular $P \in M_{6\times 6}(F)$ such that $P^{-1}AP = J_3(0) \oplus J_2(0) \oplus J_1(0)$. To find such a matrix P we proceed as follows:

(i) First find a basis for $N_{3,x}$. We do this by first finding a basis for $N(A^3)$: $X_1, X_2, X_3, X_4, X_5, X_6$. Then

$$N_{3,x} = \langle A^2 X_1, A^2 X_2, A^2 X_3, A^2 X_4, A^2 X_5, A^2 X_6 \rangle.$$

We now apply the LRA (left-to-right algorithm) to the above spanning family to get a basis A^2v_{11} for $N_{3,x}$, where A^2v_{11} is the first non-zero vector in the spanning family.

(ii) Now extend the linearly independent family A^2v_{11} to a basis for $N_{2,x}$. We do this by first finding a basis Y_1 , Y_2 , Y_3 , Y_4 , Y_5 for $N(A^2)$. Then

$$N_{2,x} = \langle AY_1, AY_2, AY_3, AY_4, AY_5 \rangle.$$

We now attach $A^2 v_{11}$ to the head of this spanning family:

$$N_{2,x} = \langle A^2 v_{11}, AY_1, AY_2, AY_3, AY_4, AY_5 \rangle$$

and apply the LRA to find a basis for $N_{2,x}$ which includes A^2X_1 . This will have the form A^2v_{11} , Av_{12} , where Av_{12} is the first vector in the list AY_1, \ldots, AY_5 which is not a linear combination of A^2v_{11} .

(iii) Now extend the linearly independent family A^2v_{11} , Av_{12} to a basis for $N_{1,x} = N(A)$. We do this by first finding a basis Z_1, Z_2, Z_3 for N(A). Then place the linearly independent family A^2v_{11} , Av_{12} at the head of this spanning family:

$$N_{1,x} = \langle A^2 v_{11}, A v_{12}, Z_1, Z_2, Z_3 \rangle.$$

The LRA is then applies to the above spanning family selects a basis of the form A^2v_{11} , Av_{12} , v_{13} , where v_{13} is the first vector among Z_1 , Z_2 , Z_3 which is not a linear combination of A^2v_{11} and Av_{12} . Then $m_{T_A,v_{11}} = x^3$, $m_{T_A,v_{12}} = x^2$, $m_{T_A,v_{13}} = x$. Also

$$\operatorname{Ker} p_1^{b_1}(T_A) = N(A^3) = C_{T_A, v_{11}} \oplus C_{T_A, v_{12}} \oplus C_{T_A, v_{13}}.$$

Finally, if we take Jordan bases

$$\begin{array}{rcl} \beta_{11} & : & v_{11}, \, Av_{11}, \, A^2v_{11}; \\ \beta_{12} & : & v_{12}, \, Av_{12}; \\ \beta_{13} & : & v_{13} \end{array}$$

for the three T–cyclic subspaces $C_{T_A, v_{11}}, C_{T_A, v_{12}}, C_{T_A, v_{13}}$, respectively, we then get the basis

$$\begin{array}{rcl} \beta & = & \beta_{11} \cup \beta_{12} \cup \beta_{13} \\ & = & v_{11}, \, Av_{11}, \, A^2 v_{11}; \, v_{12}, \, Av_{12}; \, v_{13} \end{array}$$

for $V_6(F)$. Then if

$$P = [v_{11}|Av_{11}|A^2v_{11}|v_{12}|Av_{12}|v_{13}]$$

we have