We now present some interesting applications of the Jordan canonical form.

4.4 Non-derogatory matrices and transformations

If $ch_A = m_A$, we say that the matrix A is **non-derogatory**.

THEOREM 4.5

Suppose that ch_T splits completely in F[x]. Then $ch_T = m_T \Leftrightarrow \exists$ a basis β for V such that

$$[T]^{\beta}_{\beta} = J_{b_1}(c_1) \oplus \ldots \oplus J_{b_t}(c_t),$$

where c_1, \ldots, c_t are distinct elements of F.

PROOF.

⇐

$$ch_T = \prod_{i=1}^t ch_{J_{b_i}(c_i)} = \prod_{i=1}^t (x - c_i)^{b_i},$$

$$m_T = lcm((x - c_1)^{b_1}, \dots, (x - c_t)^{b_t}) = (x - c_1)^{b_1} \dots (x - c_t)^{b_t} = ch_T.$$

 \Rightarrow Suppose that $ch_T = m_T = (x - c_1)^{a_1} \cdots (x - c_t)^{a_t}$.

We deduce that the dot diagram for each $p_i = (x - c_i)$ consists of a single column of b_i dots, where $p_i^{b_i} || m_T$; that is,

$$\dim_F N_{h,p_i} = 1$$
 for $h = 1, 2, \dots, b_i$.

Then, for each i = 1, 2, ..., t we have the following sequence of positive integers:

$$1 \le \nu(p_i(T)) < \nu(p_i^2(T)) < \dots < \nu(p_i^{b_i}(T)) = a_i.$$

But $a_i = b_i$ here, as we are assuming that $ch_T = m_T$. In particular, it follows that $\nu(p_i^h(T)) = h$ for $h = 1, 2, ..., b_i$ and h = 1 gives

$$\nu(p_i(T)) = 1 = \gamma_i.$$

So the bottom row of the *i*-th dot diagram has only one element; it looks like this:

$$b_i \begin{cases} \frac{\cdot}{\vdots} \\ \frac{\cdot}{\cdot} \end{cases}$$

and we get the secondary decomposition

$$\operatorname{Ker} p_i^{b_i}(T) = C_{T,v_{i1}}.$$

Further, if $\beta = \beta_{11} \cup \cdots \cup \beta_{t1}$, where β_{i1} is the elementary Jordan basis for $C_{T,v_{i1}}$, then

$$[T]^{\beta}_{\beta} = \bigoplus_{i=1}^{t} \bigoplus_{j=1}^{\gamma_i} J_{e_{ij}}(c_i))$$
$$= \bigoplus_{i=1}^{t} J_{b_i}(c_i),$$

as required.

4.5 Calculating A^m , where $A \in M_{n \times n}(\mathbb{C})$.

THEOREM 4.6

Let $c \in F$.

(a)

$$J_n^m(c) = \begin{bmatrix} c^m & 0 & \cdots & \cdots & 0\\ \binom{m}{1}c^{m-1} & c^m & \cdots & \cdots & 0\\ \binom{m}{2}c^{m-2} & \binom{m}{1}c^{m-1} & \cdots & \cdots & 0\\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots\\ \binom{m}{m} & & \cdots & \cdots & 0\\ 0 & \binom{m}{m} & \cdots & \cdots & 0\\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots\\ 0 & \cdots & \binom{m}{m} & \cdots & \binom{m}{1}c^{m-1} & c^m \end{bmatrix}$$

if
$$1 \le m \le n-1$$
;

(b)

$$J_n^m(c) = \begin{bmatrix} c^m & 0 & \cdots & 0 & 0\\ \binom{m}{1}c^{m-1} & c^m & \cdots & 0 & 0\\ \binom{m}{2}c^{m-2} & \binom{m}{1}c^{m-1} & \cdots & 0 & 0\\ \vdots & \vdots & \vdots & \vdots & \vdots\\ \binom{m}{n-1}c^{m-n+1} & \binom{m}{n-2}c^{m-n+2} & \cdots & \binom{m}{1}c^{m-1} & c^m \end{bmatrix}$$

if $n-1 \leq m$, where $\binom{m}{k}$ is the binomial coefficient

$$\binom{m}{k} = \frac{m!}{k!(m-k)!} = \frac{m(m-1)\cdots(m-n+1)}{k!}$$

PROOF. $J_n(c) = cI_n + N$, where N has the special property that N^k has 1 on the k-th sub-diagonal and 0 elsewhere, for $0 \le k \le n-1$.

Then because cI_n and N commute, we can use the binomial theorem:

$$J_n^m(c) = (cI_n + N)^m$$

= $\sum_{k=0}^m {m \choose k} (cI_n)^{m-k} N^k$
= $\sum_{k=0}^m {m \choose k} c^{m-k} N^k.$

(a). Let $1 \le m \le n-1$. Then in the above summation, the variable k must satisfy $0 \le k \le n-1$. Hence $J_n^m(c)$ is an $n \times n$ matrix having $\binom{m}{k}c^{m-k}$ on the k-th sub-diagonal, $0 \le k \le m$ and 0 elsewhere. (b). Let $n-1 \le m$. Then

$$J_{n}^{m}(c) = \sum_{k=0}^{m} \binom{m}{k} c^{m-k} N^{k} = \sum_{k=0}^{n-1} \binom{m}{k} c^{m-k} N^{k},$$

as $N^k = 0$ if $n \le k$. Hence $J_n^m(c)$ is an $n \times n$ matrix having $\binom{m}{k}c^{m-k}$ on the k-th sub-diagonal, $0 \le k \le n-1$ and 0 elsewhere.

COROLLARY 4.1

Let $F = \mathbb{C}$. Then

$$\lim_{m \to \infty} J_n^m(c) = 0 \quad \text{if} \quad |c| < 1.$$

PROOF. Suppose that |c| < 1. Let $n - 1 \le m$. Then

$$J_{n}^{m}(c) = \sum_{k=0}^{n-1} \binom{m}{k} c^{m-k} N^{k}.$$

But for fixed k, $0 \le k \le n-1$, $c^{m-k} \to 0$ as $m \to \infty$. For

$$\binom{m}{k} = \frac{m(m-1)\cdots(m-k+1)}{k!}$$

is a polynomial in m of degree k and

$$|m^{j}c^{m-k}| = |m^{j}e^{(m-k)\log c}| = m^{j}e^{(m-k)\log|c|} \to 0 \text{ as } m \to \infty,$$

as $\log c = \log |c| + i \arg c$ and $\log |c| < 0$.

The last corollary gives a more general result:

COROLLARY 4.2

Let $A \in M_{n \times n}(\mathbb{C})$ and suppose that all the eigenvalues of A are less than 1 in absolute value. Then

$$\lim_{m \to \infty} A^m = 0.$$

PROOF. Suppose $ch_A = (x - c_1)^{a_1} \cdots (x - c_t)^{a_t}$, where c_1, \ldots, c_t are the distinct eigenvalues of A and $|c_1| < 1, \ldots, |c_t| < 1$.

Then if J is the Jordan canonical form of A, there exists a non-singular matrix $P \in M_{n \times n}(\mathbb{C})$, such that

$$P^{-1}AP = J = \bigoplus_{i=1}^{t} \bigoplus_{j=1}^{\gamma_i} J_{e_{ij}}(c_i).$$

Hence

$$P^{-1}A^{m}P = (P^{-1}AP)^{m} = J^{m} = \bigoplus_{i=1}^{t} \bigoplus_{j=1}^{\gamma_{i}} J^{m}_{e_{ij}}(c_{i}).$$

Hence $P^{-1}A^mP \to 0$ as $m \to \infty$, because $J^m_{e_{ij}}(c_i) \to 0$.

4.6 Calculating e^A , where $A \in M_{n \times n}(\mathbb{C})$.

We first show that the matrix limit

$$\lim_{M \to \infty} \left(I_n + A + \frac{1}{2!}A^2 + \dots + \frac{1}{M!}A^M \right)$$

exists. We denote this limit by e^A and write

$$e^{A} = I_{n} + A + \frac{1}{2!}A^{2} + \dots + \frac{1}{m!}A^{m} + \dots = \sum_{m=0}^{\infty} \frac{1}{m!}A^{m}.$$

To justify this definition, we let $A^m = [a_{ij}^{(m)}]$. We have to show that

$$\left(I_n + A + \frac{1}{2!}A^2 + \dots + \frac{1}{M!}A^M\right)_{ij} = a_{ij}^{(0)} + \frac{1}{1!}a_{ij}^{(1)} + \dots + \frac{1}{M!}a_{ij}^{(M)}$$

tends to a limit as $M \to \infty$; in other words, we have to show that the series

$$\sum_{m=0}^{\infty} \frac{1}{m!} a_{ij}^{(m)}$$

converges. To do this, suppose that

$$|a_{ij}| \leq \rho, \quad \forall i, j.$$

Then it is an easy induction to prove that

$$|a_{ij}^{(m)}| \le n^{m-1} \rho^m \text{ if } m \ge 1.$$

Then the above series converges by comparison with the series

$$\sum_{m=0}^{\infty} \frac{1}{m!} n^{m-1} \rho^m.$$

4.7 Properties of the exponential of a complex matrix THEOREM 4.7

(i)
$$e^0 = I_n;$$

(ii) $e^{\operatorname{diag}(\lambda_1,\dots,\lambda_n)} = \operatorname{diag}(e^{\lambda_1},\dots,e^{\lambda_n});$
(iii) $e^{P^{-1}AP} = P^{-1}e^AP;$

(iv)
$$e^{\bigoplus_{i=1}^{t} A_i} = \bigoplus_{i=1}^{t} e^{A_i};$$

(v) if A is diagonable and has principal idempotent (spectral) decomposition:

$$A = c_1 E_1 + \dots + c_t E_t,$$

then

$$e^A = e^{c_1} E_1 + \dots + e^{c_t} E_t;$$

(vi)

$$\frac{d}{dt}e^{tA} = Ae^{tA},$$

if A is a constant matrix;

(vii) $e^A = p(A)$, where $p \in \mathbb{C}[x]$;

(viii) e^A is non-singular and

$$(e^A)^{-1} = e^{-A};$$

(ix)
$$e^A e^B = e^{A+B}$$
 if $AB = BA$;

(x)

$$e^{J_n(c)} = \begin{bmatrix} e^c & 0 & 0 & \cdots & 0\\ e^c/1! & e^c & 0 & \cdots & 0\\ e^c/2! & e^c/1! & e^c & \cdots & 0\\ \vdots & \ddots & \ddots & \ddots & \vdots\\ e^c/(n-2)! & & \ddots & e^c/1! & e^c & 0\\ e^c/(n-1)! & e^c/(n-2)! & \cdots & e^c/2! & e^c/1! & e^c \end{bmatrix}.$$

(xi)

$$e^{tJ_n(c)} = \begin{bmatrix} e^{tc} & 0 & 0 & \cdots & 0\\ te^{tc}/1! & e^{tc} & 0 & \cdots & 0\\ t^2 e^{tc}/2! & e^{tc}/1! & e^{tc} & \cdots & 0\\ \vdots & \ddots & \ddots & \ddots & \vdots\\ t^{n-2} e^{tc}/(n-2)! & & \cdot te^{tc}/1! & e^{tc} & 0\\ t^{n-1} e^{tc}/(n-1)! & t^{n-2} e^{tc}/(n-2)! & \cdots & t^2 e^{tc}/2! & te^{tc}/1! & e^c \end{bmatrix}.$$

(xii) If

$$P^{-1}AP = J = \bigoplus_{i=1}^{t} \bigoplus_{j=1}^{\gamma_i} J_{e_{ij}}(c_i).$$

then

$$P^{-1}e^{A}P = J = \bigoplus_{i=1}^{t} \bigoplus_{j=1}^{\gamma_i} e^{J_{e_{ij}}(c_i)}.$$

PROOF.

(i)

$$e^0 = \sum_{m=0}^{\infty} \frac{1}{m!} 0^k = I_n;$$

(ii) Let $A = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$. Then

$$A^{m} = \operatorname{diag} \left(\lambda_{1}^{m}, \dots, \lambda_{n}^{m}\right)$$
$$\sum_{m=0}^{\infty} \frac{1}{m!} A^{m} = \operatorname{diag} \left(\sum_{m=0}^{\infty} \frac{\lambda_{1}^{m}}{m!}, \dots, \sum_{m=0}^{\infty} \frac{\lambda_{n}^{m}}{m!}\right)$$
$$= \operatorname{diag} \left(e^{\lambda_{1}}, \dots, e^{\lambda_{n}}\right).$$

(iii)

$$e^{P^{-1}AP} = \sum_{m=0}^{\infty} \frac{1}{m!} (P^{-1}AP)^m$$
$$= \sum_{m=0}^{\infty} \frac{1}{m!} (P^{-1}A^m P)$$
$$= P^{-1} \left(\sum_{m=0}^{\infty} \frac{1}{m!} A^m\right) P$$
$$= P^{-1}e^A P.$$

(iv) and (v) are left as exercises.

(vi) Using the earlier notation, $A^m = [a_{ij}^{(m)}]$, we have

$$e^{tA} = \sum_{m=0}^{\infty} \frac{1}{m!} (tA)^m$$
$$= \sum_{m=0}^{\infty} \frac{t^m}{m!} A^m$$
$$= \left[\sum_{m=0}^{\infty} \frac{t^m a_{ij}^{(m)}}{m!} \right]$$
$$\frac{d}{dt} e^{tA} = \left[\frac{d}{dt} \sum_{m=0}^{\infty} \frac{t^m a_{ij}^{(m)}}{m!} \right]$$
$$= \left[\sum_{m=1}^{\infty} \frac{t^m a_{ij}^{(m+1)}}{(m-1)!} \right]$$
$$= \left[\sum_{m=0}^{\infty} \frac{t^m a_{ij}^{(m+1)}}{(m)!} \right]$$

84

$$= \sum_{m=0}^{\infty} \frac{t^m}{m!} A^{m+1}$$
$$= A e^{tA}.$$

(vii) Let deg $m_A = r$. Then the matrices I_n, A, \ldots, A^{r-1} are linearly independent over \mathbb{C} , as if

$$m_A = x^r - a_{r-1}x^{r-1} - \dots - a_0,$$

then

$$m_A(A) = 0 \Rightarrow A^r = a_0 I_n + a_1 A + \dots + a_{r-1} A^{r-1}$$

Consequently for each $m \ge 1$, we can express A^m as a linear combination over \mathbb{C} of I_n, A, \ldots, A^{r-1} :

$$A^{m} = a_{0}^{(m)}I_{n} + a_{1}^{(m)}A + \dots + a_{r-1}^{(m)}A^{r-1}$$

and hence

$$\sum_{m=0}^{M} \frac{1}{m!} A^{m} = \sum_{m=0}^{M} \frac{a_{0}^{(m)}}{m!} I_{n} + \sum_{m=0}^{M} \frac{a_{1}^{(m)}}{m!} A + \dots + \sum_{m=0}^{M} \frac{a_{r-1}^{(m)}}{m!} A^{r-1},$$

or

$$[t_{ij}^{(M)}] = s_{0M}I_n + s_{1M}A + \dots + s_{r-1M}A^{r-1},$$

say.

Now $[t_{ij}^{(M)}] \to e^A$ as $M \to \infty$.

Also the above matrix equation can be regarded as n^2 equations in

$$s_{0M}, s_{1M}, \ldots, s_{r-1, M}.$$

Also the linear independence of I_n, A, \ldots, A^{r-1} implies that this system has a unique solution. Consequently we can express $s_{0M}, s_{1M}, \ldots, s_{r-1,M}$ as linear combinations with coefficients independent of M of the sequences $t_{ij}^{(M)}$. Hence, because each of the latter sequences converges, it follows that each of the sequences $s_{0M}, s_{1M}, \ldots, s_{r-1,M}$ converges to $s_0, s_1, \ldots, s_{r-1}$, respectively. Consequently

$$\sum_{k=0}^{r-1} s_{kM} A^k \to \sum_{k=0}^{r-1} s_k A^k$$

and

$$e^A = s_0 I_n + s_1 A + \dots + s_{r-1} A^{r-1},$$

a polynomial in A.

(viii) – (ix) Suppose that AB = BA. Then e^{tB} is a polynomial in B and hence A commutes with e^{tB} . Similarly, A and B commute with e^{A+B} . Now let

$$C(t) = e^{t(A+B)}e^{-tB}e^{-tA}, t \in \mathbb{R}.$$

Then $C(0) = I_n$. Also

$$C'(t) = (A+B)e^{t(A+B)}e^{-tB}e^{-tA} + e^{t(A+B)}(-B)e^{-tB}e^{-tA} + e^{t(A+B)}e^{-tB}(-A)e^{-tA} = 0.$$

Hence C(t) is a constant matrix and C(0) = C(1). That is

$$I_n = e^{A+B} e^{-B} e^{-A}, (12)$$

for any matrices A and B which commute.

The special case B = -A then gives

$$I_n = e^0 e^A e^{-A} = e^A e^{-A},$$

thereby proving that e^A is non-singular and $(e^A)^{-1} = e^{-A}$.

Then multiplying both sides of equation (12) on the left by $e^A e^B$ gives the equation $e^A e^B = e^{A+B}$.

In $\S4.8$ we give an application to the solution of a system of differential equations.

(x) Let $J_n(c) = cI_n + N$, where $N = J_n(0)$. Then

$$e^{J_n(c)} = e^{cI_n + N} = e^{cI_n} e^N$$
$$= (e^c I_n) \sum_{m=0}^{\infty} \frac{1}{m!} N^m$$
$$= \sum_{m=0}^{n-1} \frac{e^c}{m!} N^m.$$

(xi) Similar to above.

4.8 Systems of differential equations

THEOREM 4.8

If X = X(t) satisfies the system of differential equations

$$\dot{X} = AX,$$

for $t \ge t_0$, where A is a constant matrix, then

$$X = e^{(t-t_0)A} X(t_0).$$

PROOF. Suppose $\dot{X} = AX$ for $t \ge t_0$. Then

$$\frac{d}{dt}(e^{-tA}X) = (-Ae^{-tA})X + e^{-tA}\dot{X} = (-Ae^{-tA})X + e^{-tA}(AX) = (-Ae^{-tA})X + (Ae^{-tA})X = (-Ae^{-tA} + Ae^{-tA})X = 0X = 0.$$

Hence the vector $e^{-tA}X$ is constant for $t \ge t_0$. Thus

$$e^{-tA}X = e^{-t_0A}X(t_0)$$

and

$$X = e^{tA} e^{-t_0 A} X(t_0) = e^{(t-t_0)A} X(t_0).$$

EXAMPLE 4.3

Solve $\dot{X} = AX$, where

$$A = \begin{bmatrix} 0 & 4 & -2 \\ -1 & -5 & 3 \\ -1 & -4 & 2 \end{bmatrix}.$$

Solution: $\exists P \text{ with}$

$$P^{-1}AP = J_2(-1) \oplus J_1(-1)$$
$$= \begin{bmatrix} -1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

and

$$P^{-1}(tA)P = \begin{bmatrix} -t & 0 & 0\\ t & -t & 0\\ 0 & 0 & -t \end{bmatrix}.$$

Thus

$$P^{-1}e^{tA}P = e^{tJ_2(-1)} \oplus J_1(-1)$$

= $e^{tJ_2(-1)} \oplus e^{tJ_1(-1)}$
= $\begin{bmatrix} e^{-t} & 0 & 0\\ te^{-t} & e^{-t} & 0\\ \hline 0 & 0 & e^{-t} \end{bmatrix} = K(t), \text{ say.}$

So $e^{tA} = PK(t)P^{-1}$. Now

$$X = e^{tA}X_0 = e^{-t}P\begin{bmatrix} 1 & 0 & 0 \\ t & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$
$$= e^{-t}P\begin{bmatrix} a \\ at+b \\ c \end{bmatrix},$$

where for brevity we have set
$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = P^{-1}X_0.$$