We now present some interesting applications of the Jordan canonical
form.

4.4 Non—derogatory matrices and transformations

If chy = ma, we say that the matrix A is non-derogatory.

THEOREM 4.5
Suppose that chp splits completely in Flzx]. Then chy =mr < 3 a
basis (8 for V such that

115 = Ty (c1) & ... & Ty, (1),
where c1,...,c; are distinct elements of F.

PROOF.

=
t

t
chyr = H Cthi(Ci) = H(I‘ - Ci)bia
1=1

i=1

by

mp = lem((x—c)?, ..., (z—c)")=(x—c))” ... (x—c)” = chy.

= Suppose that chy =mr = (z —c1)™ -+ (x — ¢)*.

We deduce that the dot diagram for each p; = (z — ¢;) consists of a
single column of b; dots, where pf"||mT; that is,

dimFNh,pqz =1 fOI‘th,Q,...,bi.

Then, for each i = 1,2, ..., ¢ we have the following sequence of positive
integers:

1< v(p(T)) <v(pi(T)) < - <v(p](T)) = ai.

But a; = b; here, as we are assuming that chy = myp. In particular,
it follows that v(pl(T)) = h for h =1,2,...,b; and h = 1 gives

v(pi(T)) = 1 = 7.

So the bottom row of the i-th dot diagram has only one element; it
looks like this: .

bZ-
H
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and we get the secondary decomposition
b;
Kerp/ (T) = Crp,, -

Further, if 6 = 811 U---U By, where §;1 is the elementary Jordan basis
for Cr,,, then

t v
15 = PEP e, ()

i=1 j=1
t
- @ Jbi (Ci)a
=1

as required.

4.5 Calculating A™, where A € M, ,,(C).

THEOREM 4.6
Letce F.

(a)

c™ 0 0
(Z) cm*; N cm : 0
( 2 )Cm_ ( 1 )Cm_ 0
TQ=| ;
0 () 0
0 (m) e (Pemt e |

ifl<m<n-—1;

(b)

cm 0 0 0

(”f) cn—1 cm 0O O

T () = (3)cm? (T)em=t - 0 0
| ()en T ()en it (menet om |
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if n —1 < m, where (') is the binomial coefficient

<m>_ ml_mm—1)(m-n+1)

k) Kl(m—k) k!

PROOF. J,(c) = cI,, + N, where N has the special property that N* has 1
on the k—th sub—diagonal and 0 elsewhere, for 0 < k <n — 1.
Then because cl,, and N commute, we can use the binomial theorem:

JMe) = (I +N)"

_ ki_o (Z’;) (cI,)™*N*

=y (Z‘) cm—k Nk,

k=0

(a). Let 1 <m < n—1. Then in the above summation, the variable k£ must
satisfy 0 < k <n — 1. Hence JJ'(c) is an n x n matrix having (7}')¢™ % on
the k—th sub-diagonal, 0 < k < m and 0 elsewhere.

(b). Let n — 1 < m. Then

n—1

J(e) = Z <ﬂ]§> RN = Z <n]§> mENE
k=0 k=0

as N* = 0if n < k. Hence J'(c) is an n X n matrix having (7}')¢™* on the
k—th sub—diagonal,0 < k < n — 1 and 0 elsewhere.

COROLLARY 4.1
Let F' = C. Then

lim J'(c) =0 if || <1

m—0Q
PROOF. Suppose that |¢| < 1. Let n — 1 < m. Then

n—1

JM(c) = ;;o <”k”‘> kN,

But for fixed k, 0 < k<n—1, ¢ % — 0 as m — co. For

<m>:an—n~«m—k+n

k k!
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is a polynomial in m of degree k and
|mjcm—k’ _ |mje(m—k) logc| _ mje(m—k) logle| _, 0 as m — oo,

as log c = log |c| + iargc and log |c| < 0.
The last corollary gives a more general result:

COROLLARY 4.2
Let A € M,,«,,(C) and suppose that all the eigenvalues of A are less than
1 in absolute value. Then
lim A™ =0.

m—00

PROOF. Suppose chy = (x — ¢1)™ -+ (z — ¢;)*, where ¢i,...,¢ are the
distinct eigenvalues of A and |e1| < 1,...,|e] < 1.

Then if J is the Jordan canonical form of A, there exists a non—singular
matrix P € M, x,(C), such that

t 7
PAP =T =P P Je,; ().

i=1 j=1
Hence
PIA™P = (Pt AP)™ @ e
=1 j=1

Hence P~1!A™P — (0 as m — 0o, because Jer (i) — 0.

4.6 Calculating e, where A € M, ., (C).

We first show that the matrix limit

M—o0

. L o L owm
exists. We denote this limit by e and write
AL r Ay la L gm _5 L
m=

To justify this definition, we let A™ = [ag-n)]. We have to show that

1 2, M 2 ey o)
(I”AWA 3 )i].— 9+ gyl + -+ 3708
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tends to a limit as M — oo; in other words, we have to show that the series

o

1
Z m) ij
m=0 :

converges. To do this, suppose that
lai| < p, Vi,
Then it is an easy induction to prove that
\az(»;n)| <n™pm i om > 1.
Then the above series converges by comparison with the series

[eS)
1 m—1_m
> Lamoigm

m=0

4.7 Properties of the exponential of a complex matrix
THEOREM 4.7
(i) € = Iy;
(ii) ediag .n) — diag (eM, ..., eM);
(iii) P AP = p~leAp;
(iv) @ d = @i e

(v) if A is diagonable and has principal idempotent (spectral) decomposi-
tion:
A261E1+"'+CtEt,

then

et = eVEL + -+ e By

(vi)
d

—-— €

tA — AetA
dt ’

if A is a constant matrix;

(vii) e? = p(A), where p € C[z];
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(viii) e? is non-singular and
(eA)—l _ C_A;

(ix) edeP = eAtB if AB = BA;
(x)

e 0 0 0 1
ec/1! e’ 0 0
€/2! ¢/1! ¢ 0
wo_ | ¢ ¢/ ‘
e : .
e‘/(n—2)! ooef/1 e 0
| ef/(n—=1)! e/(n—=2)! --- /2! e°/1! e© |
(xi)
[ et 0 0 0
tetc/1! ete 0 e 0
t2 te /91 te /11 tc . 0
etJn(c) — c / ¢ / c
t"2et¢/(n — 2)! L tet/1! ele 0
|t le/(n— 1)1 "2t/ (n—2)! - tPe/20 tele/1l e
(xii) If
[
PAP =T =P P e, ().
i=1 j=1
then
t v
PleAP =T =P
i=1 j=1
PROOF.




(ii) Let A= diag(A1,...,An). Then

A™ = diag (A", ... A
00 1 ©  \m 0o NG
m o __ 1 n
Z %A = dlag <Z - y Z W)
m=0 m=0 m=0
= dlag (8)\17 ? e)\")
(iii)
pP-tAp  _ o 1 -1 m
e = E:OE(P AP)
[e%¢) 1 .
= Y —(P'A™P)
= m)!
= p! iiAm P
N Om!
= PP

(iv) and (v) are left as exercises.

(vi) Using the earlier notation, A™ = [a(-m

i )], we have

6tA _ Z i(tA)m




tm
_ Z WAerl

m=0
= A4
(vii) Let degm = r. Then the matrices I,,, A4,..., A""! are linearly inde-
pendent over C, as if
ma=1"—a,_12" " — - — aq,

then
mA(A) =0=> A" =apl, +a1A+ -+ ar_lAril.

Consequently for each m > 1, we can express A™ as a linear combina-
tion over C of I,, A, ..., A"

A" = a(()m)In + agm)A + it a(m%APl

r—

and hence
M M (m) M (m) (m)
- Qg I a, A a._1 Ar—l
PP D D Ui D D
m=0 m=0 m=0 m=0
or u
[t,(j ] = sonln + st A+ 4 s AT
say.

Now [tEJM)] — et as M — oo.

Also the above matrix equation can be regarded as n? equations in
SOM s S1M -+ Sr—1, M-

Also the linear independence of I,,, A, ..., A"~! implies that this sytem
has a unique solution. Consequently we can express soar, S1a5-- -, Sr—1, M
as linear combinations with coefficients independent of M of the se-
quences tz(-?/[). Hence, because each of the latter sequences converges,

it follows that each of the sequences sors, S1as,- -+, Sp—1, M cOnverges
to sg, $1,...,8-—1, respectively. Consequently

r—1 r—1
Z SkMAk — Z SkAk
k=0 k=0

and
e = sol, + 51 A+ s, AT

a polynomial in A.
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(viii) — (ix) Suppose that AB = BA. Then e'? is a polynomial in B and
hence A commutes with e*B. Similarly, A and B commute with e4*5.
Now let

C(t) = AP tBe—tA 4 c R,

Then C(0) = I,,. Also

C/(t) _ (A + B)et(A—‘rB)e—tBe—tA
4 MA+B) (L BytBtA
+ et(A—l-B)e—tB(_A)e—tA

= 0.

Hence C(t) is a constant matrix and C'(0) = C(1). That is

I, = e Be B4, (12)

for any matrices A and B which commute.

The special case B = —A then gives

thereby proving that e is non-singular and (e4)™! = e=4.

Then multiplying both sides of equation (12) on the left by e4e? gives
the equation e?ef = eAtB,

In §4.8 we give an application to the solution of a system of differential
equations.

(x) Let Jp(c) =cl,, + N, where N = J,(0). Then

eJn(c) — fntN _

C - 1 m
= (eIn) Y —N
m=0 ’

ecln €N

(xi) Similar to above.
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4.8 Systems of differential equations

THEOREM 4.8
If X = X (t) satisfies the system of differential equations

X = AX,
for t > tg, where A is a constant matrix, then
X = 04X (1).

PROOF. Suppose X = AX for t > t;. Then

SEix) =

g AeMX 4 eAX

Ae ™M X + e (AX)
AeTMX + (A7 X
= Ae M 4+ Ae7tM X

= 0X =0.

(—
(_
= (_
(—
Hence the vector e 4 X is constant for ¢ > to. Thus

e X = e 10X (1)

and
X = ete 04X (tg) = e TAX (1),

EXAMPLE 4.3
Solve X = AX, where

0 4 -2
A=| -1 -5 3
-1 -4 2

Solution: 3P with

PT'AP = Jy(-1)@ Ji(—1)

-1 0 0
= 1 -1 0
0 0 -1
and )
-t 0 0
PltAP=| t —t 0
0 0 -t



Thus

P*letAP _ etJQ(—].)@Jl(—].)

So e!4 = PK(t)P~'. Now

X = et X,

where for brevity we have set

et 0 0
tet et 0
0 0 |e?
1 0
= etP|t 1
1 0 0
[ a
= e 'P| at+b
| c
a
b :PilX().
c
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