I am using the following lemma:
Lemma 1. Suppose $u_{j} \leq v_{j}$ for $j=1, \ldots, n$ and that for some J, we have $u_{J}<v_{J}$. Then

$$
\sum_{j=1}^{n} u_{j}<\sum_{j=1}^{n} v_{j} .
$$

In our case, the $a_{k j}$ are positive. So if we had $\left|x_{J}\right|<\left|x_{k}\right|$ for some J, then taking $u_{j}=a_{k j}\left|x_{j}\right|$ and $v_{j}=a_{k j}\left|x_{k}\right|$, we have $u_{j} \leq v_{j}$ for $j=1, \ldots, n$ and

$$
u_{J}=a_{k J}\left|x_{J}\right|<v_{J}=a_{k J}\left|x_{k}\right|,
$$

and we would have, by the Lemma, a stronger inequality than (17), namely

$$
\left|x_{k}\right| \leq \sum_{j=1}^{n} a_{k j}\left|x_{j}\right|<\sum_{j=1}^{n} a_{k j}\left|x_{k}\right|=\left|x_{k}\right|,
$$

which gives the contradiction $\left|x_{k}\right|<\left|x_{k}\right|$.

