TRANSPOSE OF A MATRIX

DEFINITION. (The transpose of a matrix) Let A be an $m \times n$ matrix. Then A^t , the *transpose* of A, is the matrix obtained by interchanging the rows and columns of A. In other words if $A = [a_{ij}]$, then $(A^t)_{ji} = a_{ij}$. Consequently A^t is $n \times m$. Here are some properties:

1.
$$(A^t)^t = A;$$

2. $(A \pm B)^t = A^t \pm B^t$ if A and B are $m \times n;$
3. $(sA)^t = sA^t$ if s is a scalar;
4. $(AB)^t = B^tA^t$ if A is $m \times n$ and B is $n \times p;$
5. If A is non-singular, then A^t is also
non-singular and
 $(A^t)^{-1} = (A^{-1})^t;$

6. $X^{t}X = x_{1}^{2} + \ldots + x_{n}^{2}$ if $X = [x_{1}, \ldots, x_{n}]^{t}$ is a column vector.

1

We prove only the fourth property. First check that both $(AB)^t$ and B^tA^t have the same size $(p \times m)$. Moreover, corresponding elements of both matrices are equal. For if $A = [a_{ij}]$ and $B = [b_{jk}]$, we have

$$((AB)^t)_{ki} = (AB)_{ik}$$

$$= \sum_{j=1}^n a_{ij}b_{jk}$$

$$= \sum_{j=1}^n (B^t)_{kj} (A^t)_{ji}$$

$$= (B^t A^t)_{ki}.$$

There are two important classes of matrices that can be defined concisely in terms of the transpose operation. DEFINITION. (Symmetric matrix) A real matrix A is called *symmetric* if $A^t = A$. In other words A is square $(n \times n \text{ say})$ and $a_{ji} = a_{ij}$ for all $1 \le i \le n, 1 \le j \le n$. Hence

$$A = \left[\begin{array}{cc} a & b \\ b & c \end{array} \right]$$

is a general 2×2 symmetric matrix.

DEFINITION. Skew-symmetric matrix) A real matrix A is called *skew-symmetric* if $A^t = -A$. In other words A is square $(n \times n$ say) and $a_{ji} = -a_{ij}$ for all $1 \le i \le n, 1 \le j \le n$.

REMARK. Taking i = j in the definition of skew-symmetric matrix gives $a_{ii} = -a_{ii}$ and so $a_{ii} = 0$. Hence

$$A = \left[\begin{array}{cc} 0 & b \\ -b & 0 \end{array} \right]$$

is a general 2×2 skew–symmetric matrix.