SOLUTION SHEET 1, MP204/274, SEMESTER 1, 1999
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The augmented matrix has been converted to reduced row—echelon form
and we read off the unique solution z = —3, yz%, z:i.
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From the last matrix we see that the original system is inconsistent.
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The augmented matrix has been converted to reduced row—echelon form
and we read off the complete solution z = —% -3z, y = —% — 2z, with z

arbitrary:.
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From the last matrix we see that the original system is inconsistent if

3b—2a+c# 0. If 3b — 2a + ¢ = 0, the system is consisten
is

(b+a) , 2 (2b—3a) , 19
T = —Z,y=——"+—=z
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where z is arbitrary.
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0}:

row equivalent to [ 01
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Hence we get the trivial solution x =0, y = 0.
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} and the solution is x = y, with y arbitrary.

with y arbitrary.
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Hence the solution of the original homogeneous system is

1 1
xry = —Zl’:a, To = —11’3 — T4,
with z3 and x4 arbitrary.
7. Method 1.
-3 1 1 1 R — Ry — Ry -4 0 0 4
1 -3 1 1 0 —4 0 4
RQ — R2 — R4
1 1 -3 1 R R R 0 0 —4 4
1 1 1 -3 3 3o 1 1 1 -3
1 0 0 -1 1 0 0 -1
01 0 -1 010 -1
o001 o1 | R Bs— M=ty gy
11 1 -3 000 0

Hence the given homogeneous system has complete solution
T1 = Ty, Tz = Ty, T3 = Ty,

with x4 arbitrary.

Method 2. Write the system as

1+ To+x3+24 = 4da4
T1+xot+ax3+x4 = 4y
T1+ o+ a3+ x4 = 4dag
1+ To+ax3+24 = 4dxy4.

Then it is immediate that any solution must satisfy x1 = z, = 3 = 4.
Conversely, if x1, x9, x3, x4 satisfy vy = o = x5 = x4, We get a solution.

8.

A= : : : : o
1 1 o 1—mn R, 1—R,1—R, 1 1 - 1-n
1 0 - —1 1 0 - —1
01 -~ -1 01 .. —1
- . . . RnHRn_Rn—l"'_Rl
11 - 1-n 00 --- 0

The last matrix is in reduced row—echelon form.
Consequently the homogeneous system with coefficient matrix A has the
solution
T1 =Ty, T3 =Tpy-.-yLpn_1 = Tp,

with z,, arbitrary.
Alternatively, writing the system in the form

T +---+x, = nx
1+ -+, = NI
T+ +xT, = nx,



shows that any solution must satisfy nx; = nxy = --- = nx,, so x| = 19 =
- = x,. Conversely if v1 = z,,..., 2,1 = x,, we see that x1,...,x, is a
solution.
9. (i) Suppose that A% = 0. Then if A~ exists, we deduce that A~'(AA) =
A~10, which gives A = 0 and this is a contradiction, as the zero matrix is
singular. We conclude that A does not have an inverse.
(ii). Suppose that A? = A and that A™! exists. Then

ATY(AA) = A4,

which gives A = I,,. Equivalently, if A2 = A and A # I,,, then A does not
have an inverse.
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12. If Ais m x m and is row—equivalent to a matrix having a zero row,
then rrref(A) will have its last row zero and hence the homogeneous system
AX = 0 will have a non—trivial solution. Consequently A cannot be non—
singular.
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Hence A1 exists and
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Hence A is singular by virtue of the zero row.
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Hence A™! exists and A~! = diag (1/2, —1/5, 1/7).
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Hence A1 exists and
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Hence A is singular by virtue of the zero row.

14. (i) Let A be mxn and B be n xm, where m > n. Then the homogeneous
system BX = 0 has a non—trivial solution Xy, as the number of unknowns
is greater than the number of equations. Then

(AB)Xy = A(BX,) = A0 =0

and the m x m matrix AB is therefore singular, as Xy # 0.

(ii) (a) Let B be a singular n xn matrix. Then BX = 0 for some non—zero
column vector X. Then (AB)X = A(BX) = A0 = 0 and hence AB is also
singular.

(b) Suppose A is a singular n x n matrix. Then A? is also singular and
hence by (i) so is B'A" = (AB)*. Consequently AB is also singular.

15. Let A be m X m. then

(i) Suppose AX =0 = X =0 for all X € R™. Then clearly rref(A) must
be I,, and hence A is non—singular.

(ii) Suppose B is m x m and BA = I,,,.

(iii) We first show that A is non-singular. Assume AX = 0. Then B(AX) =
B0=0,s0 (BA)X =0, I,,X =0 and hence X = 0.

Then from BA = I,, we deduce (BA)A™' = I,, A=! and hence B = A™!.
The equation AA™! = I, then gives AB = I,,,.

(iii) Suppose A is non-singular and let rref(A) = B. Then B cannot have
a zero row and this implies that B = [,,,.

16. Let A = I, — B, where B! = —B. To prove A is non-singular, it
suffices to show that AX = 0 implies X = 0. So assume AX = 0. Then
(I, — B)X =0,s0 X = BX. Hence X'X = X'BX.

Taking transposes of both sides gives

(X'BX) = (X'X)'
XtBt<Xt)t _ Xt<Xt)t
X'(-B)X = X'X

~X'BX = X'X =X'BX.

Hence X'X = —X'X and X'X = 0. But if X = [xq,...,2,]", then
X'X =23 +...+ 22 =0and hence z; =0,...,z, = 0.



