$$\begin{aligned} &2. (i) \begin{bmatrix} 0 & 0 & 0 \\ 2 & 4 & 0 \end{bmatrix} R_1 \leftrightarrow R_2 \begin{bmatrix} 2 & 4 & 0 \\ 0 & 0 & 0 \end{bmatrix} R_1 \rightarrow \frac{1}{2}R_1 \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}; \\ &(ii) \begin{bmatrix} 0 & 1 & 3 \\ 1 & 2 & 4 \end{bmatrix} R_1 \leftrightarrow R_2 \begin{bmatrix} 1 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix} R_1 \rightarrow R_1 - 2R_2 \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 3 \end{bmatrix}; \\ &(iii) \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} R_2 \rightarrow R_2 - R_1 \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & -1 \end{bmatrix} \\ &R_1 \rightarrow R_1 + R_3 \\ R_3 \rightarrow -R_3 \\ R_2 \leftrightarrow R_3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix} R_2 \rightarrow R_2 + R_3 \\ &R_3 \rightarrow -R_3 \\ &R_3 \rightarrow -R_3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix} R_2 \rightarrow R_2 + R_3 \\ &R_3 \rightarrow -R_3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}; \\ &(iv) \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ -4 & 0 & 0 \end{bmatrix} R_3 \rightarrow R_3 + 2R_1 \\ &(iv) \begin{bmatrix} 1 & 1 & 1 & 2 \\ 2 & 3 & -1 & 8 \\ 1 & -1 & -1 & -8 \end{bmatrix} R_2 \rightarrow R_2 - 2R_1 \\ &R_3 \rightarrow R_3 - R_1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 1 & -3 & 4 \\ 0 & -2 & -2 & -10 \end{bmatrix} \\ &R_1 \rightarrow R_1 - R_2 \\ &R_3 \rightarrow R_3 + 2R_2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 4 & -2 \\ 0 & 1 & -3 & 4 \\ 0 & 0 & -8 & -2 \end{bmatrix} R_3 \rightarrow \frac{-1}{8}R_3 \begin{bmatrix} 1 & 0 & 4 & 2 \\ 0 & 1 & -3 & 4 \\ 0 & 0 & 1 & \frac{1}{4} \end{bmatrix} \\ &R_1 \rightarrow R_1 - R_2 \\ &R_1 \rightarrow R_1 - R_2 \\ &R_1 \rightarrow R_1 - R_2 \\ &R_1 \rightarrow R_1 - R_3 \\ &R_2 \rightarrow R_2 + 3R_3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -3 \\ 0 & 1 & 0 & \frac{19}{4} \\ 0 & 0 & 1 & \frac{19}{4} \end{bmatrix}. \end{aligned}$$

The augmented matrix has been converted to reduced row–echelon form and we read off the unique solution x = -3, $y = \frac{19}{4}$, $z = \frac{1}{4}$.

(b)
$$\begin{bmatrix} 1 & 1 & -1 & 2 & 10 \\ 3 & -1 & 7 & 4 & 1 \\ -5 & 3 & -15 & -6 & 9 \end{bmatrix} \begin{bmatrix} R_2 \to R_2 - 3R_1 \\ R_3 \to R_3 + 5R_1 \end{bmatrix} \begin{bmatrix} 1 & 1 & -1 & 2 & 10 \\ 0 & -4 & 10 & -2 & -29 \\ 0 & 8 & -20 & 4 & 59 \end{bmatrix}$$

 $R_3 \to R_3 + 2R_2 \begin{bmatrix} 1 & 1 & -1 & 2 & 10 \\ 0 & -4 & 10 & -2 & -29 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$

From the last matrix we see that the original system is inconsistent.

$$(c) \begin{bmatrix} 3 & -1 & 7 & 0 \\ 2 & -1 & 4 & \frac{1}{2} \\ 1 & -1 & 1 & 1 \\ 6 & -4 & 10 & 3 \end{bmatrix} R_1 \leftrightarrow R_3 \begin{bmatrix} 1 & -1 & 1 & 1 \\ 2 & -1 & 4 & \frac{1}{2} \\ 3 & -1 & 7 & 0 \\ 6 & -4 & 10 & 3 \end{bmatrix}$$
$$R_2 \rightarrow R_2 - 2R_1 \begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & 1 & 2 & \frac{-3}{2} \\ 0 & 2 & 4 & -3 \\ R_4 \rightarrow R_4 - 6R_1 \end{bmatrix} R_1 \rightarrow R_1 + R_2 \begin{bmatrix} 1 & 0 & 3 & \frac{-1}{2} \\ 0 & 1 & 2 & \frac{-3}{2} \\ R_4 \rightarrow R_4 - R_3 \\ R_3 \rightarrow R_3 - 2R_2 \end{bmatrix} R_1 \rightarrow R_1 + R_2 \begin{bmatrix} 1 & 0 & 3 & \frac{-1}{2} \\ 0 & 1 & 2 & \frac{-3}{2} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

The augmented matrix has been converted to reduced row–echelon form and we read off the complete solution $x = -\frac{1}{2} - 3z$, $y = -\frac{3}{2} - 2z$, with z arbitrary.

$$4. \begin{bmatrix} 2 & -1 & 3 & a \\ 3 & 1 & -5 & b \\ -5 & -5 & 21 & c \end{bmatrix} R_2 \to R_2 - R_1 \begin{bmatrix} 2 & -1 & 3 & a \\ 1 & 2 & -8 & b - a \\ -5 & -5 & 21 & c \end{bmatrix}$$
$$R_1 \leftrightarrow R_2 \begin{bmatrix} 1 & 2 & -8 & b - a \\ 2 & -1 & 3 & a \\ -5 & -5 & 21 & c \end{bmatrix} R_2 \to R_2 - 2R_1 \begin{bmatrix} 1 & 2 & -8 & b - a \\ 0 & -5 & 19 & -2b + 3a \\ 0 & 5 & -19 & 5b - 5a + c \end{bmatrix}$$
$$R_3 \to R_3 + R_2 \begin{bmatrix} 1 & 2 & -8 & b - a \\ 0 & 1 & \frac{-19}{5} & \frac{2b - 3a}{5} \\ 0 & 0 & 0 & 3b - 2a + c \end{bmatrix}$$
$$R_1 \to R_1 - 2R_2 \begin{bmatrix} 1 & 0 & \frac{-2}{5} & \frac{(b + a)}{5} \\ 0 & 1 & \frac{-19}{5} & \frac{2b - 3a}{5} \\ 0 & 0 & 0 & 3b - 2a + c \end{bmatrix}.$$

From the last matrix we see that the original system is inconsistent if $3b - 2a + c \neq 0$. If 3b - 2a + c = 0, the system is consistent and the solution is

$$x = \frac{(b+a)}{5} + \frac{2}{5}z, \ y = \frac{(2b-3a)}{5} + \frac{19}{5}z$$

where z is arbitrary.

5.

$$\begin{bmatrix} \lambda - 3 & 1 \\ 1 & \lambda - 3 \end{bmatrix} R_1 \leftrightarrow R_2 \begin{bmatrix} 1 & \lambda - 3 \\ \lambda - 3 & 1 \end{bmatrix}$$
$$R_2 \rightarrow R_2 - (\lambda - 3)R_1 \begin{bmatrix} 1 & \lambda - 3 \\ 0 & -\lambda^2 + 6\lambda - 8 \end{bmatrix} = B.$$

Case 1: $-\lambda^2 + 6\lambda - 8 \neq 0$. That is $-(\lambda - 2)(\lambda - 4) \neq 0$ or $\lambda \neq 2, 4$. Here *B* is row equivalent to $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$: $R_2 \rightarrow \frac{1}{-\lambda^2 + 6\lambda - 8} R_2 \begin{bmatrix} 1 & \lambda - 3 \\ 0 & 1 \end{bmatrix} R_1 \rightarrow R_1 - (\lambda - 3) R_2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

Hence we get the trivial solution x = 0, y = 0.

Case 2:
$$\lambda = 2$$
. Then $B = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$ and the solution is $x = y$, with y arbitrary.
Case 3: $\lambda = 4$. Then $B = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ and the solution is $x = -y$, with y arbitrary.

6.

$$\begin{bmatrix} 3 & 1 & 1 & 1 \\ 5 & -1 & 1 & -1 \end{bmatrix} R_1 \rightarrow \frac{1}{3}R_1 \begin{bmatrix} 1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 5 & -1 & 1 & -1 \end{bmatrix}$$
$$R_2 \rightarrow R_2 - 5R_1 \begin{bmatrix} 1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & -\frac{8}{3} & -\frac{2}{3} & -\frac{8}{3} \end{bmatrix}$$
$$R_2 \rightarrow \frac{-3}{8}R_2 \begin{bmatrix} 1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 1 & \frac{1}{4} & 1 \end{bmatrix}$$
$$R_1 \rightarrow R_1 - \frac{1}{3}R_2 \begin{bmatrix} 1 & 0 & \frac{1}{4} & 0 \\ 0 & 1 & \frac{1}{4} & 1 \end{bmatrix}.$$

Hence the solution of the original homogeneous system is

$$x_1 = -\frac{1}{4}x_3, \ x_2 = -\frac{1}{4}x_3 - x_4,$$

with x_3 and x_4 arbitrary.

7. Method 1.

$$\begin{bmatrix}
-3 & 1 & 1 & 1 \\
1 & -3 & 1 & 1 \\
1 & 1 & -3 & 1 \\
1 & 1 & 1 & -3
\end{bmatrix} \begin{array}{c}
R_1 \to R_1 - R_4 \\
R_2 \to R_2 - R_4 \\
R_3 \to R_3 - R_4
\end{bmatrix} \begin{bmatrix}
-4 & 0 & 0 & 4 \\
0 & -4 & 0 & 4 \\
0 & 0 & -4 & 4 \\
1 & 1 & 1 & -3
\end{bmatrix}$$

$$\rightarrow \begin{bmatrix}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1 \\
1 & 1 & 1 & -3
\end{bmatrix} \begin{array}{c}
R_4 \to R_4 - R_3 - R_2 - R_1 \\
\begin{bmatrix}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{bmatrix}.$$

Hence the given homogeneous system has complete solution

$$x_1 = x_4, \ x_2 = x_4, \ x_3 = x_4,$$

with x_4 arbitrary.

<u>Method 2</u>. Write the system as

$$\begin{aligned} x_1 + x_2 + x_3 + x_4 &= 4x_1 \\ x_1 + x_2 + x_3 + x_4 &= 4x_2 \\ x_1 + x_2 + x_3 + x_4 &= 4x_3 \\ x_1 + x_2 + x_3 + x_4 &= 4x_4 \end{aligned}$$

Then it is immediate that any solution must satisfy $x_1 = x_2 = x_3 = x_4$. Conversely, if x_1 , x_2 , x_3 , x_4 satisfy $x_1 = x_2 = x_3 = x_4$, we get a solution. 8.

$$A = \begin{bmatrix} 1-n & 1 & \cdots & 1 \\ 1 & 1-n & \cdots & 1 \\ \vdots & \vdots & \cdots & \vdots \\ 1 & 1 & \cdots & 1-n \end{bmatrix} \begin{bmatrix} R_1 \to R_1 - R_n \\ R_2 \to R_2 - R_n \\ \vdots \\ R_{n-1} \to R_{n-1} - R_n \end{bmatrix} \begin{bmatrix} -n & 0 & \cdots & n \\ 0 & -n & \cdots & n \\ \vdots & \vdots & \cdots & \vdots \\ 1 & 1 & \cdots & 1-n \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 0 & \cdots & -1 \\ 0 & 1 & \cdots & -1 \\ \vdots & \vdots & \cdots & \vdots \\ 1 & 1 & \cdots & 1-n \end{bmatrix} R_n \to R_n - R_{n-1} \cdots - R_1 \begin{bmatrix} 1 & 0 & \cdots & -1 \\ 0 & 1 & \cdots & -1 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}.$$

The last matrix is in reduced row–echelon form.

Consequently the homogeneous system with coefficient matrix ${\cal A}$ has the solution

 $x_1 = x_n, \ x_2 = x_n, \dots, x_{n-1} = x_n,$

with x_n arbitrary.

Alternatively, writing the system in the form

$$x_1 + \dots + x_n = nx_1$$

$$x_1 + \dots + x_n = nx_2$$

$$\vdots$$

$$x_1 + \dots + x_n = nx_n$$

shows that any solution must satisfy $nx_1 = nx_2 = \cdots = nx_n$, so $x_1 = x_2 = \cdots = x_n$. Conversely if $x_1 = x_n, \ldots, x_{n-1} = x_n$, we see that x_1, \ldots, x_n is a solution.

9. (i) Suppose that $A^2 = 0$. Then if A^{-1} exists, we deduce that $A^{-1}(AA) = A^{-1}0$, which gives A = 0 and this is a contradiction, as the zero matrix is singular. We conclude that A does not have an inverse.

(ii). Suppose that $A^2 = A$ and that A^{-1} exists. Then

$$A^{-1}(AA) = A^{-1}A,$$

which gives $A = I_n$. Equivalently, if $A^2 = A$ and $A \neq I_n$, then A does not have an inverse.

11.

$$A = E_{3}(2)E_{14}E_{42}(3) = E_{3}(2)E_{14} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 3 & 0 & 1 \end{bmatrix}$$
$$= E_{3}(2) \begin{bmatrix} 0 & 3 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 3 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}.$$

Also

$$A^{-1} = (E_3(2)E_{14}E_{42}(3))^{-1}$$

= $(E_{42}(3))^{-1}E_{14}^{-1}(E_3(2))^{-1}$
= $E_{42}(-3)E_{14}E_3(1/2)$
= $E_{42}(-3)E_{14}\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/2 & 0 \\ 0 & 0 & 1/2 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$
= $\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$
= $\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & -3 & 0 & 0 \end{bmatrix}$.

12. If A is $m \times m$ and is row-equivalent to a matrix having a zero row, then $\operatorname{rrref}(A)$ will have its last row zero and hence the homogeneous system AX = 0 will have a non-trivial solution. Consequently A cannot be non-singular.

13.

(a)
$$\begin{bmatrix} 1 & 1 & 1 & | & 1 & 0 & 0 \\ -1 & 1 & 0 & | & 0 & 1 & 0 \\ 2 & 0 & 0 & | & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_3 \to \frac{1}{2}R_3} \begin{bmatrix} 1 & 0 & 0 & | & 0 & 0 & 1/2 \\ R_1 \to R_1 - R_3 & [& 1 & 0 & | & 0 & 1 & 1/2 \\ 0 & 1 & 0 & | & 0 & 1 & 1/2 \\ 0 & 1 & 1 & | & 1 & 0 & -1/2 \end{bmatrix}$$

$$R_3 \to R_3 - R_2 \begin{bmatrix} 1 & 0 & 0 & 0 & 1/2 \\ 0 & 1 & 0 & 0 & 1 & 1/2 \\ 0 & 0 & 1 & 1 & -1 & -1 \end{bmatrix}.$$

Hence A^{-1} exists and

$$A^{-1} = \begin{bmatrix} 0 & 0 & 1/2 \\ 0 & 1 & 1/2 \\ 1 & -1 & -1 \end{bmatrix}.$$

Hence A^{-1} exists and

$$A^{-1} = \begin{bmatrix} -1/2 & 2 & 1\\ 0 & 0 & 1\\ 1/2 & -1 & -1 \end{bmatrix}.$$

(c)
$$\begin{bmatrix} 4 & 6 & -3 \\ 0 & 0 & 7 \\ 0 & 0 & 5 \end{bmatrix} \begin{array}{c} R_2 \to \frac{1}{7}R_2 \\ R_3 \to \frac{1}{5}R_3 \\ R_3 \to \frac{1}{5}R_3 \\ \end{bmatrix} \begin{array}{c} 4 & 6 & -3 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ \end{bmatrix} R_3 \to R_3 - R_2 \begin{bmatrix} 4 & 6 & -3 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ \end{bmatrix}.$$

Hence A is singular by virtue of the zero row.

(d)
$$\begin{bmatrix} 2 & 0 & 0 & | & 1 & 0 & 0 \\ 0 & -5 & 0 & | & 0 & 1 & 0 \\ 0 & 0 & 7 & | & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} R_1 \to \frac{1}{2}R_1 \\ R_2 \to \frac{-1}{5}R_2 \\ R_3 \to \frac{1}{7}R_3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & | & 1/2 & 0 & 0 \\ 0 & 1 & 0 & | & 0 & -1/5 & 0 \\ 0 & 0 & 1 & | & 0 & 0 & 1/7 \end{bmatrix}.$$

Hence A^{-1} exists and $A^{-1} = \text{diag} (1/2, -1/5, 1/7).$

$$(e) \begin{bmatrix} 1 & 2 & 4 & 6 & | & 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 & | & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 & | & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 & | & 0 & 0 & 0 & 1 \end{bmatrix} R_1 \rightarrow R_1 - 2R_2 \begin{bmatrix} 1 & 0 & 0 & 6 & | & 1 & -2 & 0 & 0 \\ 0 & 1 & 2 & 0 & | & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 & | & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 & | & 0 & 0 & 0 & 1 \end{bmatrix}$$
$$R_2 \rightarrow R_2 - 2R_3 \begin{bmatrix} 1 & 0 & 0 & 6 & | & 1 & -2 & 0 & 0 \\ 0 & 1 & 0 & -4 & | & 0 & 1 & -2 & 0 \\ 0 & 0 & 1 & 2 & | & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 & | & 0 & 0 & 0 & 1 \end{bmatrix}$$
$$R_1 \rightarrow R_1 - 3R_4 \\ R_2 \rightarrow R_2 + 2R_4 \\ R_3 \rightarrow R_3 - R_4 \\ R_4 \rightarrow \frac{1}{2}R_4 \begin{bmatrix} 1 & 0 & 0 & | & 1 & -2 & 0 & -3 \\ 0 & 1 & 0 & | & 0 & 0 & 1 & -2 & 2 \\ 0 & 0 & 1 & 0 & | & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 & | & 0 & 0 & 0 & 1/2 \end{bmatrix}.$$

Hence A^{-1} exists and

$$A^{-1} = \begin{bmatrix} 1 & -2 & 0 & -3 \\ 0 & 1 & -2 & 2 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1/2 \end{bmatrix}.$$

(f)

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 5 & 7 & 9 \end{bmatrix} \begin{array}{c} R_2 \to R_2 - 4R_1 \\ R_3 \to R_3 - 5R_1 \end{array} \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & -3 & -6 \end{bmatrix} \begin{array}{c} R_3 \to R_3 - R_2 \end{array} \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & 0 & 0 \end{bmatrix}.$$

Hence A is singular by virtue of the zero row.

14. (i) Let A be $m \times n$ and B be $n \times m$, where m > n. Then the homogeneous system BX = 0 has a non-trivial solution X_0 , as the number of unknowns is greater than the number of equations. Then

$$(AB)X_0 = A(BX_0) = A0 = 0$$

and the $m \times m$ matrix AB is therefore singular, as $X_0 \neq 0$.

(ii) (a) Let B be a singular $n \times n$ matrix. Then BX = 0 for some non-zero column vector X. Then (AB)X = A(BX) = A0 = 0 and hence AB is also singular.

(b) Suppose A is a singular $n \times n$ matrix. Then A^t is also singular and hence by (i) so is $B^t A^t = (AB)^t$. Consequently AB is also singular.

15. Let A be $m \times m$. then

- (i) Suppose $AX = 0 \Rightarrow X = 0$ for all $X \in \mathbb{R}^m$. Then clearly $\operatorname{rref}(A)$ must be I_m and hence A is non-singular.
- (ii) Suppose B is $m \times m$ and $BA = I_m$.
- (iii) We first show that A is non-singular. Assume AX = 0. Then B(AX) = B0 = 0, so (BA)X = 0, $I_mX = 0$ and hence X = 0. Then from $BA = I_n$ we deduce $(BA)A^{-1} = I_mA^{-1}$ and hence $B = A^{-1}$.

The equation $AA^{-1} = I_m$ then gives $AB = I_m$. (iii) Suppose A is non-singular and let rref(A) = B. Then B cannot have

(iii) Suppose A is non-singular and let $\operatorname{Hel}(A) = D$. Then D cannot have a zero row and this implies that $B = I_m$.

16. Let $A = I_n - B$, where $B^t = -B$. To prove A is non-singular, it suffices to show that AX = 0 implies X = 0. So assume AX = 0. Then $(I_n - B)X = 0$, so X = BX. Hence $X^tX = X^tBX$.

Taking transposes of both sides gives

$$(X^{t}BX)^{t} = (X^{t}X)^{t}$$
$$X^{t}B^{t}(X^{t})^{t} = X^{t}(X^{t})^{t}$$
$$X^{t}(-B)X = X^{t}X$$
$$-X^{t}BX = X^{t}X = X^{t}BX$$

Hence $X^{t}X = -X^{t}X$ and $X^{t}X = 0$. But if $X = [x_{1}, ..., x_{n}]^{t}$, then $X^{t}X = x_{1}^{2} + ... + x_{n}^{2} = 0$ and hence $x_{1} = 0, ..., x_{n} = 0$.