1. Let $P_n[\mathbb{R}]$ denote the vector space of polynomials of degree not exceeding *n*. Let $c_1, c_2, \ldots, c_{n+1}$ be distinct real numbers and define $f(x) \cdot g(x)$ for $f(x), g(x) \in P_n[\mathbb{R}]$ by

$$f(x) \cdot g(x) = \sum_{i=1}^{n+1} f(c_i)g(c_i).$$

Show that this defines an inner product on $P_n[\mathbb{R}]$.

- 2. Let V be a real inner product space with inner product $u \cdot v$. If $T : V \to V$ is an isomorphism, prove that the function $f : V \times V \to \mathbb{R}$ defined by $f(u, v) = T(u) \cdot T(v)$ is an inner product on V.
- 3. Let v_1, \ldots, v_r be vectors in an inner product space V. Prove that the Gram matrix $G = [v_i \cdot v_j]$ is singular if and only if v_1, \ldots, v_r are linearly dependent.
- 4. If $X = (a_1, b_1, c_1)^t$ and $Y = (a_2, b_2, c_2)^t$, we define the cross-product $X \times Y = (a, b, c)^t$, where

$$a = \begin{vmatrix} b_1 & c_1 \\ b_2 & c_2 \end{vmatrix}, \quad b = -\begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix}, \quad c = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}.$$

- (i) Show that $X \cdot (X \times Y) = 0 = Y \cdot (X \times Y)$.
- (ii) Show that $X \times X = 0$.
- (iii) Show that $Y \times X = -(X \times Y)$.
- (iv) $X \times (Y + Z) = X \times Y + X \times Z$.
- (v) $(tX) \times Y = t(X \times Y).$
- (vi) (Scalar triple product formula) If $Z = (a_3, b_3, c_3)^t$, then

$$X \cdot (Y \times Z) = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = (X \times Y) \cdot Z;$$

(vii) $||X \times Y|| = \sqrt{||X||^2 ||Y||^2 - (X \cdot Y)^2}.$

- (viii) If X and Y are non-zero vectors, prove that $X \times Y = 0$ if and only if X and Y are linearly dependent.
- (ix) If X and Y are linearly independent, prove that Z is orthogonal to X and Y if and only if $Z = t(X \times Y)$ for some $t \in \mathbb{R}$.
- 5. V is a real inner product space and U is a subspace of V. Let U^{\perp} be the subset of V defined by

$$U^{\perp} = \{ v \in V | v \cdot u = 0, \forall u \in U \}$$

- (a) Show that U^{\perp} is a subspace of V.
- (b) If $U = \langle X, Y \rangle$, where X and Y are linearly independent vectors in \mathbb{R}^3 , prove that $U^{\perp} = \langle X \times Y \rangle$.

(c) Let u_1, \ldots, u_r and $u_1, \ldots, u_r, u_{r+1}, \ldots, u_n$ be orthonormal bases for U and V respectively. Prove that u_{r+1}, \ldots, u_n is an orthonormal basis for U^{\perp} , thereby proving that $V = U \oplus U^{\perp}$ and

$$\dim U^{\perp} + \dim U = \dim V.$$

- (d) If V is finite-dimensional and U is a subspace of V, prove that $(U^{\perp})^{\perp} = U$. (Hint: Use (c).)
- 6. Find an orthonormal basis for the subspace of \mathbb{R}^4 spanned by

$$u_1 = (1, 1, 1, 1)^t, u_2 = (0, 1, 1, 1)^t, u_3 = (0, 0, 1, 1)^t.$$

Extend this to an orthonormal basis for \mathbb{R}^4 .

7. Find an orthonormal basis for $P_2[\mathbb{R}]$ using the inner product

$$f(x) \cdot g(x) = \int_0^1 f(t)g(t) \, dt$$

by applying the Gram–Schmidt process to the basis 1, x, x^2 . [Answer: 1, $\sqrt{12}(x-\frac{1}{2})$, $\sqrt{180}(x^2-x+\frac{1}{6})$.]

8. Let

$$A = \left[\begin{array}{rrrr} 1 & -4 & 0 \\ -4 & 3 & -4 \\ 0 & -4 & 5 \end{array} \right].$$

Given that $ch_A(x) = (x - 9)(x - 3)(x + 3)$, find an orthogonal matrix P such that $P^tAP = \text{diag}(9, 3, -3)$.

9. Let

$$A = \begin{bmatrix} 5 & 2 & -2 \\ 2 & 5 & -2 \\ -2 & -2 & 5 \end{bmatrix}.$$

Given that $ch_A(x) = (x-3)^2(x-9)$, find an orthogonal matrix P such that $P^tAP = \text{diag}(3,3,9)$.

10. Let

$$A = \left[\begin{array}{rrr} 3 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 1 \end{array} \right]$$

Find $ch_A(x)$ and deduce that A is positive definite by showing that the eigenvalues are positive.