- 1. Let $T: U \to V$ and $S: V \to W$ be linear transformations. Prove that
 - (a) rank $ST \leq \operatorname{rank} S$. (Hint: Prove that $\operatorname{Im} ST \subseteq \operatorname{Im} S$.)
 - (b) rank $ST \leq \operatorname{rank} T$. (Hint: Prove that $\operatorname{Ker} T \subseteq \operatorname{Ker} ST$.)
 - (c) If T is surjective then rank $ST = \operatorname{rank} S$.
 - (d) If S is injective then rank $ST = \operatorname{rank} T$.
 - (e) State corresponding results for matrices.
- 2. $T: U \to V$ is defined by $T(u_1) = v_1 + 2v_2 + v_3$, $T(u_2) = v_1 + v_2$, where u_1, u_2 and v_1, v_2, v_3 form bases for U and V, respectively. Prove that T is injective but not surjective.
- 3. $T: V \to V$ is defined by $T(v_1) = v_1 + v_2 + v_3$, $T(v_2) = 2v_1 + v_2 v_3$, $T(v_3) = v_1 2v_3$, where v_1, v_2, v_3 form a basis for V. Prove that T is not injective and not surjective.
- 4. $T: U \to V$ is defined by $T(u_1) = v_1 + v_2, T(u_2) = 2v_1 + v_2, T(u_3) = v_1 v_2$, where u_1, u_2, u_3 and v_1, v_2 are bases for U and V, respectively. Prove that T is surjective but not injective.
- 5. $T: V \to V$ is defined by $T(v_1) = 2v_1 + v_2$, $T(v_2) = v_1 v_2$, where v_1, v_2 form a basis for V. Prove that T is an isomorphism and calculate $T^{-1}(2v_1 3v_2)$.
- 6. Let dim V = 2 and $T: V \to V$ be a linear transformation such that $T^2 = I_V$.
 - (a) If $v \in \operatorname{Im} \frac{1}{2}(I_V + T)$, show that T(v) = v;
 - (b) If $v \in \operatorname{Im} \frac{1}{2}(I_V T)$, show that T(v) = -v;
 - (c) If $T \neq \pm I_V$, show that there are non-zero vectors v_1 and v_2 , such that $T(v_1) = v_1$ and $T(v_2) = -v_2$. Show that these vectors are linearly independent;
 - (d) If A is a 2 × 2 matrix and $A^2 = I_2$ and $A \neq \pm I_2$, show that A is similar to $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.
 - (e) Let $A = \begin{bmatrix} 3 & -4 \\ 2 & -3 \end{bmatrix}$. Verify that $A^2 = I_2$ and find a non-singular matrix P such that $P^{-1}AP = \text{diag}(1, -1)$.

7. Let $A = \begin{bmatrix} 4 & -3 \\ 1 & 0 \end{bmatrix}$. Verify that $P = \begin{bmatrix} 3 & 1 \\ 1 & 1 \end{bmatrix}$ satisfies $P^{-1}AP =$ diag (3, 1) and hence prove that

$$A^{n} = \frac{3^{n} - 1}{2}A + \frac{3 - 3^{n}}{2}I_{2}, \quad n \ge 0.$$

8. Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Prove that $A^2 - (a+d)A + (ad-bc)I_2 = 0$.

9. Express the determinant of the matrix

$$B = \begin{bmatrix} 1 & 1 & 2 & 1 \\ 1 & 2 & 3 & 4 \\ 2 & 4 & 7 & 2t+6 \\ 2 & 2 & 6-t & t \end{bmatrix}$$

as as polynomial in t and hence determine the real values of t for which B^{-1} exists.

[Answer: det $B = (t - 2)(2t - 1); t \neq 2$ and $t \neq \frac{1}{2}$.]

10. Prove that

$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ r & 1 & 1 & 1 \\ r & r & 1 & 1 \\ r & r & r & 1 \end{vmatrix} = (1-r)^3.$$

11. Prove that

$$\begin{vmatrix} 1+u_1 & u_1 & u_1 \\ u_2 & 1+u_2 & u_2 & u_2 \\ u_3 & u_3 & 1+u_3 & u_3 \\ u_4 & u_4 & u_4 & 1+u_4 \end{vmatrix} = 1+u_1+u_2+u_3+u_4.$$