(A † indicates a challenging question.)

In the following $P_n[\mathbb{R}]$ denotes the vetor space consisting of all polynomials of the form $a_0 + a_1x + \cdots + a_nx^n$, where $a_0, \ldots, a_n \in \mathbb{R}$.

1. Suppose $V = M_{2\times 2}(\mathbb{R})$ and $\beta : E_{11}, E_{12}, E_{21}, E_{22}$ is the standard basis for V. Mappings $S, T : V \to V$ are defined by

$$T(A) = \frac{1}{2}(A - A^t), \ S(A) = \frac{1}{2}(A + A^t).$$

- (i) Prove that S and T are linear.
- (ii) Find $[S]^{\beta}_{\beta}$ and $[T]^{\beta}_{\beta}$.
- (iii) Find bases for $\operatorname{Ker} S$ and $\operatorname{Im} S$, $\operatorname{Ker} T$ and $\operatorname{Im} T$.
- (iv) Prove that $S^2 = S$, $T^2 = T$.
- (v) Prove that ST = 0, TS = 0.
- (vi) Prove that $S + T = I_V$.
- 2. Let $\gamma : E_1, E_2, E_3$ be the usual basis of unit vectors for $V = \mathbb{R}^3$ and let $\beta : v_1, v_2, v_3$ be the basis of \mathbb{R}^3 given by

$$v_1 = [1, 1, -1]^t, v_2 = [2, 1, 3]^t, v_3 = [0, 1, 1]^t.$$

Find (i) $[I_V]^{\gamma}_{\beta}$ and (ii) $[I_V]^{\beta}_{\gamma}$. [Ans: (i) $\begin{bmatrix} 1 & 2 & 0 \\ 1 & 1 & 1 \\ -1 & 3 & 1 \end{bmatrix}$, (ii) $\begin{bmatrix} 1/3 & 1/3 & -1/3 \\ 1/3 & -1/6 & 1/6 \\ -2/3 & 5/6 & 1/6 \end{bmatrix}$.]

- 3. Let A and B be non-singular $n \times n$ matrices over \mathbb{R} and let $V = M_{n \times n}(\mathbb{R})$. Show that the mapping $T: V \to V$ defined by T(X) = AXB has the property that Ker $T = \{0\}$ and Im T = V.
- 4. A mapping $T: P_2[\mathbb{R}] \to \mathbb{R}^3$ is defined by

$$T(f(x)) = \begin{bmatrix} f(1) \\ f(0) \\ f(-1) \end{bmatrix}$$

- (a) Prove that T is a linear transformation.
- (b) If $S : \mathbb{R}^3 \to P_2[\mathbb{R}]$ is the linear transformation defined by

$$S\left(\left[\begin{array}{c}a\\b\\c\end{array}\right]\right) = b + \frac{a-c}{2}x + \frac{a-2b+c}{2}x^2,$$

verify that $ST = I_{P_2[\mathbb{R}]}$ and $TS = I_{\mathbb{R}^3}$.

5. Let $V = P_3[\mathbb{R}]$ denote the vector space of all polynomials of the form $a + bx + cx^2 + dx^3$. Show that the rule

$$T(f(x)) = \frac{1}{x} \int_0^x f(t)dt - f(x)$$

defines a linear mapping $T: V \in V$. Find the matrix of T with respect to the standard basis $1, x, x^2, x^3$. Also find bases for Im T and Ker T.

6. Let $T : P_2[\mathbb{R}] \to P_2[\mathbb{R}]$ be given by T(f(x)) = f'(x)g(x) + 2f(x), where g(x) = 3 + x and f'(x) is the formal derivative of f (i.e. if $f = a_0 + a_1x + a_2x^2$, then $f'(x) = a_1 + 2a_2x$, where $a, b, c \in \mathbb{R}$). Also let $S : P_2[\mathbb{R}] \to \mathbb{R}^3$ be defined by $S(a+bx+cx^2) = [a+b, c, a-b]^t$, where $a, b, c \in \mathbb{R}$. Let $\beta : 1, x, x^2$ and $\gamma : e_1, e_2, e_3$ be the usual bases for $P_2[\mathbb{R}]$ and \mathbb{R}^3 , respectively.

Find $[S]^{\gamma}_{\beta}, [T]^{\beta}_{\beta}$ and $[ST]^{\gamma}_{\beta}$.

7. Let $T: P_4[\mathbb{R}] \to P_4[\mathbb{R}]$ be the linear transformation defined by

$$T(f(x)) = \frac{1}{2}(f(x) + f(-x))$$

- (i) Prove that $T^2 = T$.
- (ii) For the basis $\beta : 1, x^2, x^4, x, x^3$ of $P_4[\mathbb{R}]$, find $[T]^{\beta}_{\beta}$.
- 8. Let $T: U \to V$ and $S: V \to W$ be linear transformations.
 - (a) If Ker $ST = \langle u_1, \ldots, u_n \rangle$, prove that

$$\operatorname{Im} T \cap \operatorname{Ker} S = \langle T(u_1), \dots, T(u_n) \rangle.$$

(b) (†) Let L be the restriction of T to Ker ST, that is L(u) = T(u) if $u \in \text{Ker } ST$. (Note: $L : \text{Ker } ST \to V$ is a linear transformation.) Prove that $\text{Im } L = \text{Im } T \cap \text{Ker } S$ and Ker L = Ker T and deduce that

 $\dim (\operatorname{Im} T \cap \operatorname{Ker} S) = \operatorname{nullity} ST - \operatorname{nullity} T.$

(c) From (b) deduce that

nullity $ST \leq$ nullity S + nullity T, rank $ST \geq$ rank S + rank $T - \dim V$.

(d) Use (c) to prove that if $A \in M_{m \times n}(\mathbb{R})$ and $B \in M_{n \times p}(\mathbb{R})$, then

nullity $AB \leq$ nullity A + nullity B, rank $AB \geq$ rank A + rank B - n.

- 9. If A is $n \times n$ and $A^k = 0$, use a generalisation of part (d) of the previous question to prove rank $A \le n(1 \frac{1}{k})$.
- 10. Let $T: V \to V$ have the property that T(T(v)) = T(v) for all $v \in V$. Prove that
 - (a) Ker $T \cap \text{Im } T = \{0\}$.
 - (b) $V = \operatorname{Ker} T + \operatorname{Im} T$.
 - (c) Prove that if u_1, \ldots, u_r forms a basis for Im T and u_{r+1}, \ldots, u_n forms a basis for Ker T, then u_1, \ldots, u_n forms a basis β for V and that

$$[T]^{\beta}_{\beta} = \operatorname{diag}\left(\underbrace{1,\ldots,1}_{r},\underbrace{0,\ldots,0}_{n-r}\right)$$

- 11. Let $T: U \to V$ and $S: V \to W$ be linear transformations. Prove that
 - (a) rank $ST \leq \operatorname{rank} S$. (Hint: Prove that $\operatorname{Im} ST \subseteq \operatorname{Im} S$.)
 - (b) rank $ST \leq \operatorname{rank} T$. (Hint: Prove that $\operatorname{Ker} T \subseteq \operatorname{Ker} ST$.)
 - (c) If T is surjective then rank $ST = \operatorname{rank} S$.
 - (d) If S is injective then rank $ST = \operatorname{rank} T$.
 - (e) State corresponding results for matrices.