(An * indicates a challenging question.)

- 1. A is a 3×3 matrix such that $A^2 = 0$ and $A \neq 0$. Prove that
 - (a) $C(A) \subseteq N(A)$. (Hint: Let $X \in C(A)$. Then X = AY for some $Y \in \mathbb{R}^n$.)
 - (b) rank A = 1. (Hint: Use the rank + nullity theorem.)
 - (c) Exhibit a nonzero 3×3 matrix A such that $A^2 = 0$.
- 2. $T : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation which maps $(1,2)^t$ to $(-2,3)^t$ and $(1,-1)^t$ to $(5,2)^t$. Find T(v) when $v = (7,5)^t$. (Ans: 7,18)^t.)
- 3. Let $T: U \to V$ be a linear transformation. Using the rank + nullity theorem, prove that
 - (a) rank $T \leq \dim U$.
 - (b) Ker $T = \{0\} \Rightarrow \dim U \le \dim V$.
- 4. Let U be a vector space with basis u_1, u_2, u_3 . $T: U \to U$ is the linear transformation defined by

$$T(u_1) = u_3, T(u_2) = -u_3, T(u_3) = u_1 + u_2.$$

Find bases for $\operatorname{Ker} T$, $\operatorname{Im} T$. Also find rank T and nullity T.

5. Let U be a vector space with basis u_1, u_2, u_3 . $T: U \to U$ is the linear transformation defined by

$$T(u_1) = u_1 + u_2 + u_3$$

$$T(u_2) = u_1 - u_2 + u_3$$

$$T(u_3) = 2u_1 + 2u_3.$$

Find bases for $\operatorname{Ker} T$, $\operatorname{Im} T$. Also find rank T and nullity T.

6. Let $A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$ and let $T : M_{2 \times 2}(\mathbb{R}) \to M_{2 \times 2}(\mathbb{R})$ be the linear transformation defined by T(X) = AX - XA. Prove that

Im
$$T = \left\langle \begin{bmatrix} -1 & -2 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 0 \\ 2 & -2 \end{bmatrix} \right\rangle$$
, Ker $T = \langle I_2, A \rangle$.

[Hint: Use the standard basis $E_{11}, E_{12}, E_{21}, E_{22}$ for $M_{2\times 2}(\mathbb{R})$.]

7. (*) Let u_1, u_2, u_3 be a basis for \mathbb{R}^3 and v_1, v_2, v_3 be any vectors in \mathbb{R}^3 . If T is the linear transformation such that $T(u_i) = v_i$ for i = 1, 2, 3, show that $T = T_A$, where A is the 3×3 matrix

$$A = [v_1 | v_2 | v_3] [u_1 | u_2 | u_3]^{-1}.$$

8. If $T: U \to V$ is a linear transformation, prove that $\operatorname{Im} T$ is a subspace of V.

- 9. Let $T: U \to U$ be a linear transformation. If Ker $T = \{0\}$, deduce that Im T = U.
- 10. Let $A \in M_{n \times n}(\mathbb{R})$ and let $T: M_{n \times n}(\mathbb{R}) \to M_{n \times n}(\mathbb{R})$ be defined by

$$T(X) = AX.$$

- (a) Prove that X belongs to Ker T if and only if each column of X belongs to N(A).
- (b) Prove that nullity $T = n \cdot \text{nullity } A$.
- (c) Prove that rank $T = n \cdot \operatorname{rank} A$.
- 11. (*) (An alternative proof of the "rank + nullity" theorem)

Let $T: U \to V$ be a linear transformation over \mathbb{R} . Suppose that u_1, \ldots, u_n form a basis for U, that $T(u_1), \ldots, T(u_r)$ are linearly independent and that for $i = 1, \ldots, n - r$ we have

$$T(u_{r+i}) = a_{i1}T(u_1) + \dots + a_{ir}T(u_r),$$

where $a_{ij} \in \mathbb{R}$ for j = 1, ..., r. Prove that the vectors

$$w_i = u_{r+i} - a_{i1}u_1 - \dots - a_{ir}u_r, \quad 1 \le i \le n - r,$$

form a basis for $\operatorname{Ker} T$.

12. (*) Let $A \in M_{m \times n}(\mathbb{R})$. Prove that

(a)
$$N(A^t) \cap C(A) = \{0\}$$

and deduce that

(b)
$$N(A^t) + C(A) = \mathbb{R}^m$$
.

[Hint: For (a), $Y \in C(A) \Rightarrow Y = AX, X \in \mathbb{R}^n$; $Y^tY = y_1^2 + \cdots + y_m^2$, if $Y = [y_1, \ldots, y_m]^t$.] (c) Hence deduce that the equation $A^tAX = A^tB$ is always soluble for $X \in \mathbb{R}^n$ if $B \in \mathbb{R}^m$. [Hint: Write B = Y + Z, where $Y \in N(A^t)$ and $Z \in C(A)$.]