- (* indicates a challenging question.)
 - 1. Find the coordinate vector of $v = (7, 4)^t$ relative to the basis $(3, 2)^t$, $(1, 1)^t$ of \mathbb{R}^2 . (Ans: $(3, -2)^t$.)
 - 2. $v_1 = (1,1,1)^t, v_2 = (2,3,2)^t, v_3 = (1,5,4)^t$ form a basis β for \mathbb{R}^3 . Vectors $u_1 = (1,1,0)^t, u_2 = (1,2,0)^t, u_3 = (1,2,1)^t$ form a basis γ for \mathbb{R}^3 . Find $[3v_1 + 2v_2 - v_3]_{\gamma}$. (Ans: $(8,-5,3)^t$.)
 - 3. Find bases for R(A), C(A) and N(A), when

(a)
$$A = \begin{bmatrix} 2 & 4 & 6 \\ -2 & -4 & -6 \\ 2 & 4 & 5 \end{bmatrix}$$
; (b) $A = \begin{bmatrix} 1 & 2 & 4 & 6 \\ 2 & 4 & 5 & -6 \end{bmatrix}$.

4. The *Lucas* numbers L_n are defined by

$$L_1 = 1, \ L_2 = 3, \ L_{n+2} = L_{n+1} + L_n, \ n \ge 1.$$

- (a) Prove that $L_n = \alpha^n + \beta^n$, where $\alpha = (1 + \sqrt{5})/2$, $\beta = (1 \sqrt{5})/2$.
- (b) Prove that $L_n = F_{n-1} + F_{n+1}$ where $F_0 = 0$. (Just observe that the RHS is a sequence $\{a_n\}$ which satisfies the Fibonacci law and that $a_n = L_n$ when n = 1 and n = 2.)
- 5. A sequence of real numbers $\{a_n\}$ is defined by

$$a_1 = 1, a_2 = 3, a_{n+2} = 2a_{n+1} + a_n, n \ge 1.$$

Use the idea developed in lectures in the context of Fibonacci sequences to prove that

$$a_n = \frac{(1+\sqrt{2})^n + (1-\sqrt{2})^n}{2}$$

6. Let V be the vector space over \mathbb{R} consisting of all sequences $\{a_n\}$ of real numbers satisfying

$$a_{n+2} = 2\alpha a_{n+1} - \alpha^2 a_n, \quad n \ge 1.$$

Prove that the sequences $\{\alpha^{n-1}\}\$ and $\{n\alpha^{n-1}\}\$ belong to V and are linearly independent and determine down an explicit formula for a_n .

- 7. Let α, β, γ be distinct real numbers. Prove that the vectors $(1, \alpha, \alpha^2)$, $(1, \beta, \beta^2)$, $(1, \gamma, \gamma^2)$ are linearly independent. (Hint: show that the matrix whose rows are these vectors is non-singular.)
- 8. Let $U = \langle u_1, u_2 \rangle$ and $V = \langle v_1, v_2 \rangle$ be subspaces of W. If u_1, u_2, v_1 are linearly independent and $v_2 = au_1 + bu_2 + cv_1$, prove that

$$U \cap W = \langle au_1 + bu_2 \rangle.$$

9. Let u_1, \ldots, u_n be a linearly independent family of vectors in V and let vectors $v_1, \ldots, v_m \in V$ be defined by

$$v_i = \sum_{j=1}^n a_{ij} u_j, \quad 1 \le i \le m.$$

Prove that v_1, \ldots, v_m are linearly independent if and only if the rows of the matrix $A = [a_{ij}]$ are linearly independent.

10. U and V are subspaces of $V_5(\mathbb{R})$ defined by $U = \langle u_1, u_2, u_3 \rangle$, $V = \langle v_1, v_2, v_3 \rangle$, where $u_1, u_2, u_3, v_1, v_2, v_3$ are the respective columns of the matrix A:

$$A = \begin{bmatrix} 1 & 1 & 2 & 1 & 2 & 1 \\ 3 & 4 & 9 & 6 & 8 & 3 \\ -3 & -1 & 0 & 2 & -1 & -1 \\ -1 & -2 & -5 & -2 & -6 & -5 \\ -4 & -2 & -2 & 3 & -5 & -6 \end{bmatrix}$$

(a) Assuming that A has reduced row–echelon form

find bases for each of the subspaces U, V, U + V.

- (b) Find a basis for $U \cap V$. (Hint: Use *B* to find vectors in $U \cap V$ and use the dim (U + V) + dim $(U \cap V)$ theorem for subspaces.)
- 11. (a) If a_1, \ldots, a_n are not all zero, prove that the set

$$U = \{ (x_1, \dots, x_n)^t | a_1 x_1 + \dots + a_n x_n = 0 \}$$
(1)

is a subspace of \mathbb{R}^n with dimension equal to n-1.

- (b) (*) Prove conversely that any subspace U of \mathbb{R}^n having dimension equal to n-1 must have the form (1).
- 12. (*) Let $A \in M_{m \times n}(\mathbb{R}), B \in M_{p \times n}(\mathbb{R})$. Prove that
 - (a) $R(B) \subseteq R(A) \Leftrightarrow \operatorname{rank}\left[\frac{A}{B}\right] = \operatorname{rank} A;$
 - (b) $N(A) \subseteq N(B) \Rightarrow R(B) \subseteq R(A)$. (Hint: Use the rank + nullity theorem.)