NON-SINGULAR MATRICES

DEFINITION. (Non-singular matrix) An $n \times n$ A is called *non-singular* or *invertible* if there exists an $n \times n$ matrix B such that

$$AB = I_n = BA.$$

Any matrix B with the above property is called an *inverse* of A. If A does not have an inverse, A is called *singular*.

THEOREM. (Inverses are unique) If A has inverses B and C, then B = C.

If A has an inverse, it is denoted by A^{-1} . So

$$AA^{-1} = I_n = A^{-1}A.$$

Also if A is non-singular, then A^{-1} is also non-singular and

$$(A^{-1})^{-1} = A.$$

THEOREM. If A and B are non-singular matrices of the same size, then so is AB. Moreover

$$(AB)^{-1} = B^{-1}A^{-1}.$$

The above result generalizes to a product of m non-singular matrices: If A_1, \ldots, A_m are non-singular $n \times n$ matrices, then the product $A_1 \ldots A_m$ is also non-singular. Moreover

$$(A_1 \dots A_m)^{-1} = A_m^{-1} \dots A_1^{-1}.$$

(Thus the inverse of the product equals the product of the inverses *in the reverse order*.)

THEOREM. Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 and
 $\Delta = ad - bc \neq 0$. Then A is non-singular.
Also

$$A^{-1} = \Delta^{-1} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

REMARK. The expression ad - bc is called the *determinant* of A and is denoted by the symbols det A or $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$.

THEOREM. If the coefficient matrix A of a system of n equations in n unknowns is non-singular, then the system AX = B has the unique solution $X = A^{-1}B$.

Proof. Assume that A^{-1} exists.

(Uniqueness.) Assume that AX = B. Then

$$(A^{-1}A)X = A^{-1}B,$$
$$I_nX = A^{-1}B,$$
$$X = A^{-1}B.$$

(Existence.) Let $X = A^{-1}B$. Then

 $AX = A(A^{-1}B) = (AA^{-1})B = I_nB = B.$

COROLLARY. If A is an $n \times n$ non-singular matrix, then the homogeneous system AX = 0 has only the trivial solution X = 0. Hence if the system AX = 0 has a non-trivial solution, A is singular.

EXAMPLE.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 0 & 1 \\ 3 & 4 & 7 \end{bmatrix}$$

is singular. For it can be verified that A has reduced row–echelon form

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

and consequently AX = 0 has a non-trivial solution x = -1, y = -1, z = 1.

REMARK. More generally, if A is row-equivalent to a matrix containing a zero row, then A is singular. For then the homogeneous system AX = 0 has a non-trivial solution. THEOREM (Cramer's rule for 2 equations in 2 unknowns.) The system

$$ax + by = e$$

$$cx + dy = f$$
has a unique solution if $\Delta = \begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0$,
namely

$$x = \frac{\Delta_1}{\Delta}, \qquad y = \frac{\Delta_2}{\Delta},$$

where

$$\Delta_1 = \begin{vmatrix} e & b \\ f & d \end{vmatrix}$$
 and $\Delta_2 = \begin{vmatrix} a & e \\ c & f \end{vmatrix}$.

PROOF. Suppose $\Delta \neq 0$. Then $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ has inverse

$$A^{-1} = \Delta^{-1} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

and we know that the system

$$A\left[\begin{array}{c} x\\ y\end{array}\right] = \left[\begin{array}{c} e\\ f\end{array}\right]$$

has the unique solution

$$\begin{bmatrix} x \\ y \end{bmatrix} = A^{-1} \begin{bmatrix} e \\ f \end{bmatrix} = \frac{1}{\Delta} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \begin{bmatrix} e \\ f \end{bmatrix}$$
$$= \frac{1}{\Delta} \begin{bmatrix} de - bf \\ -ce + af \end{bmatrix}$$
$$= \frac{1}{\Delta} \begin{bmatrix} \Delta_1 \\ \Delta_2 \end{bmatrix}$$
$$= \begin{bmatrix} \Delta_1 / \Delta \\ \Delta_2 / \Delta \end{bmatrix}.$$

Hence $x = \Delta_1 / \Delta$, $y = \Delta_2 / \Delta$.

COROLLARY. The homogeneous system

$$ax + by = 0$$

$$cx + dy = 0$$

has only the trivial solution if $\Delta = \begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0.$

EXAMPLE. The system

$$7x + 8y = 100$$
$$2x - 9y = 10$$

has the unique solution $x = \Delta_1 / \Delta, \ y = \Delta_2 / \Delta$, where

$$\Delta = \begin{vmatrix} 7 & 8 \\ 2 & -9 \end{vmatrix} = -79,$$

$$\Delta_1 = \begin{vmatrix} 100 & 8 \\ 10 & -9 \end{vmatrix} = -980,$$

$$\Delta_2 = \begin{vmatrix} 7 & 100 \\ 2 & 10 \end{vmatrix} = -130.$$

So $x = \frac{980}{79}$ and $y = \frac{130}{79}.$

ELEMENTARY ROW MATRICES.

An important class of non-singular matrices is that of the *elementary row matrices*.

DEFINITION. (Elementary row matrices) There are three types, E_{ij} , $E_i(t)$, $E_{ij}(t)$.

 E_{ij} , $(i \neq j)$ is obtained from the identity matrix I_n by interchanging rows i and j.

 $E_i(t)$, $(t \neq 0)$ is obtained by multiplying the *i*-th row of I_n by t.

 $E_{ij}(t)$, $(i \neq j)$ is obtained from I_n by adding t times the j-th row of I_n to the i-th row.

EXAMPLE.
$$(n = 3.)$$

 $E_{23} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, E_2(-1) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix},$
 $E_{23}(-1) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}.$

The elementary row matrices have the following distinguishing property:

THEOREM. If a matrix A is pre–multiplied by an elementary row–matrix, the resulting matrix is the one obtained by performing the corresponding elementary row–operation on A.

EXAMPLE.

$$E_{23}\begin{bmatrix}a&b\\c&d\\e&f\end{bmatrix} = \begin{bmatrix}1&0&0\\0&0&1\\0&1&0\end{bmatrix}\begin{bmatrix}a&b\\c&d\\e&f\end{bmatrix} = \begin{bmatrix}a&b\\e&f\\c&d\end{bmatrix}$$

THEOREM. The three types of elementary row-matrices are non-singular. In fact

$$E_{ij}E_{ij} = I_n$$

$$E_i(t)E_i(t^{-1}) = I_n = E_i(t^{-1})E_i(t) \text{ if } t \neq 0$$

$$E_{ij}(t)E_{ij}(-t) = I_n = E_{ij}(-t)E_{ij}(t).$$

EXAMPLE. Find the 3×3 matrix $A = E_3(5)E_{23}(2)E_{12}$ explicitly. Also find A^{-1} . SOLUTION.

$$A = E_3(5)E_{23}(2) \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= E_3(5) \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 2 \\ 0 & 0 & 5 \end{bmatrix}.$$

To find A^{-1} , we have

$$A^{-1} = (E_3(5)E_{23}(2)E_{12})^{-1}$$

= $E_{12}^{-1}(E_{23}(2))^{-1}(E_3(5))^{-1}$
= $E_{12}E_{23}(-2)E_3(5^{-1})$
= $E_{12}E_{23}(-2)\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{5} \end{bmatrix}$
= $E_{12}\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -\frac{2}{5} \\ 0 & 0 & \frac{1}{5} \end{bmatrix} = \begin{bmatrix} 0 & 1 & -\frac{2}{5} \\ 1 & 0 & 0 \\ 0 & 0 & \frac{1}{5} \end{bmatrix}.$

THEOREM. Let A be $n \times n$ and suppose that A is row-equivalent to I_n . Then A is non-singular and A^{-1} can be found by performing the same sequence of elementary row operations on I_n as were used to convert A to I_n .

PROOF. Suppose that $E_r \dots E_1 A = I_n$. In other words $BA = I_n$, where $B = E_r \dots E_1$ is non-singular. Then $B^{-1}(BA) = B^{-1}I_n$ and so $A = B^{-1}$, which is non-singular.

Also

 $A^{-1} = (B^{-1})^{-1} = B = E_r ((\dots (E_1 I_n) \dots)),$ which shows that A^{-1} is obtained from I_n by performing the same sequence of elementary row operations as were used to convert A to I_n . EXAMPLE. Show that $A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$ is

non-singular, find A^{-1} and express A as a product of elementary row matrices. SOLUTION. We form the *partitioned* matrix $[A|I_2]$ which consists of A followed by I_2 . Then any sequence of elementary row operations which reduces A to I_2 will reduce I_2 to A^{-1} . Here

$$[A|I_2] = \begin{bmatrix} 1 & 2 & | & 1 & 0 \\ 1 & 1 & | & 0 & 1 \end{bmatrix}$$
$$R_2 \to R_2 - R_1 \begin{bmatrix} 1 & 2 & | & 1 & 0 \\ 0 & -1 & | & -1 & 1 \end{bmatrix}$$
$$R_2 \to (-1)R_2 \begin{bmatrix} 1 & 2 & | & 1 & 0 \\ 0 & 1 & | & 1 & -1 \end{bmatrix}$$
$$R_1 \to R_1 - 2R_2 \begin{bmatrix} 1 & 0 & | & -1 & 2 \\ 0 & 1 & | & 1 & -1 \end{bmatrix}.$$

Hence A is row–equivalent to I_2 and A is non–singular. Also

$$A^{-1} = \left[\begin{array}{cc} -1 & 2\\ 1 & -1 \end{array} \right].$$

We also observe that

$$E_{12}(-2)E_2(-1)E_{21}(-1)A = I_2.$$

Hence

$$A^{-1} = E_{12}(-2)E_2(-1)E_{21}(-1)$$

$$A = E_{21}(1)E_2(-1)E_{12}(2).$$

The next result is occasionally useful for proving the non-singularity of certain types of matrices.

THEOREM. Let A be an $n \times n$ matrix with the property that the homogeneous system AX = 0 has only the trivial solution. Then A is non-singular. Equivalently, if A is singular, then the homogeneous system AX = 0 has a non-trivial solution.

PROOF. If A is $n \times n$ and the homogeneous system AX = 0 has only the trivial solution, then it follows that the reduced row-echelon form B of A cannot have zero rows and must therefore be I_n . Hence A is non-singular. COROLLARY. Suppose that A and B are $n \times n$ and $AB = I_n$. Then $BA = I_n$.

PROOF. Let $AB = I_n$, where A and B are $n \times n$. We first show that B is non-singular. Assume BX = 0. Then A(BX) = A0 = 0, so (AB)X = 0, $I_nX = 0$ and hence X = 0.

Then from $AB = I_n$ we deduce $(AB)B^{-1} = I_nB^{-1}$ and hence $A = B^{-1}$.

The equation $BB^{-1} = I_n$ then gives $BA = I_n$.