
1. LINEAR EQUATIONS

A linear equation in n unknowns x1, x2, · · · , xn
is an equation of the form

a1x1 + a2x2 + · · ·+ anxn = b,

where a1, a2, . . . , an, b are given real numbers.

For example, with x and y instead of x1 and

x2, the linear equation 2x+ 3y = 6 describes

the line passing through the points (3, 0) and

(0, 2).

Similarly, with x, y and z instead of x1, x2 and

x3, the linear equation 2x+ 3y + 4z = 12

describes the plane passing through the

points (6, 0, 0), (0, 4, 0), (0, 0, 3).
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A system of m linear equations in n unknowns

x1, x2, · · · , xn is a family of linear equations

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

am1x1 + am2x2 + · · ·+ amnxn = bm.

We wish to determine if such a system has a

solution, that is to find out if there exist

numbers x1, x2, · · · , xn which satisfy each of

the equations simultaneously. We say that

the system is consistent if it has a solution.

Otherwise the system is called inconsistent.

Note that the above system can be written

concisely as

n∑
j=1

aijxj = bi, i = 1, 2, · · · ,m.
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The matrix 
a11 a12 · · · a1n
a21 a22 · · · a2n

... ...
am1 am2 · · · amn


is called the coefficient matrix of the system,

while the matrix
a11 a12 · · · a1n b1
a21 a22 · · · a2n b2

... ... ...
am1 am2 · · · amn bm


is called the augmented matrix of the system.

Geometrically, solving a system of linear

equations in two (or three) unknowns is

equivalent to determining whether or not a

family of lines (or planes) has a common

point of intersection.
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EXAMPLE. Solve the equation

2x+ 3y = 6.

SOLUTION. The equation 2x+ 3y = 6 is

equivalent to 2x = 6− 3y or x = 3− 3
2y, where

y is arbitrary. So there are infinitely many

solutions.

EXAMPLE. Solve the system

x+ y + z = 1

x− y + z = 0.

SOLUTION. We subtract the second

equation from the first, to get 2y = 1 and

y = 1
2. Then x = y − z = 1

2 − z, where z is

arbitrary. Again there are infinitely many

solutions.
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EXAMPLE. Find a polynomial of the form

y = a0 + a1x+ a2x
2 + a3x

3 whose graph

passes through the points

(−3, −2), (−1, 2), (1, 5), (2, 1).

SOLUTION. When x has the values

−3, −1, 1, 2, then y takes corresponding

values −2, 2, 5, 1 and we get four equations

in the unknowns a0, a1, a2, a3:

a0 − 3a1 + 9a2 − 27a3 = −2

a0 − a1 + a2 − a3 = 2

a0 + a1 + a2 + a3 = 5

a0 + 2a1 + 4a2 + 8a3 = 1.

This system has the unique solution

a0 = 93/20, a1 = 221/120, a2 = −23/20,

a3 = −41/120. So the required polynomial is

y =
93

20
+

221

120
x−

23

20
x2 −

41

120
x3.
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Solving a system consisting of a single linear

equation is easy. However if we are dealing

with two or more equations, it is desirable to

have a systematic method of determining if

the system is consistent and to find all

solutions.

Instead of restricting ourselves to linear

equations with rational or real coefficients,

our theory goes over to the more general case

where the coefficients belong to an arbitrary

field. A field F is a set F which possesses

operations of addition and multiplication

which satisfy the familiar rules of rational

arithmetic. The complex numbers C and Zp,

the congruence classes mod p, where p is a

prime, are useful fields.
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2. THE GAUSS JORDAN ALGORITHM

We show how to solve any system of linear

equations over an arbitrary field, using the

GAUSS–JORDAN algorithm. We first need

to define some terms.

DEFINITION. (Row–echelon form) A matrix

is in row–echelon form if

(i) all zero rows (if any) are at the bottom of

the matrix and

(ii) if two successive rows are non–zero, the

second row starts with more zeros than

the first (moving from left to right).
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For example, the matrix
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0


is in row–echelon form, whereas the matrix

0 1 0 0
0 1 0 0
0 0 0 0
0 0 0 0


is not in row–echelon form.

The zero matrix of any size is always in

row–echelon form.
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DEFINITION. (Reduced row–echelon form) A

matrix is in reduced row–echelon form if

1. it is in row–echelon form,

2. the leading (leftmost non–zero) entry in

each non–zero row is 1,

3. all other elements of the column in which

the leading entry 1 occurs are zeros.
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For example the matrices

[
1 0
0 1

]
and


0 1 2 0 0 2
0 0 0 1 0 3
0 0 0 0 1 4
0 0 0 0 0 0



are in reduced row–echelon form, whereas the

matrices 1 0 0
0 1 0
0 0 2

 and

 1 2 0
0 1 0
0 0 0



are not in reduced row–echelon form, but are

in row–echelon form.

The zero matrix of any size is always in

reduced row–echelon form.
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NOTATION. If a matrix A is in reduced

row–echelon form, it is useful to denote the

column numbers in which the leading entries

1 occur, by c1, c2, . . . , cr, with the remaining

column numbers being denoted by

cr+1, . . . , cn, where r is the number of

non–zero rows of A. For example, in the

4× 6 matrix above, we have r = 3, c1 =

2, c2 = 4, c3 = 5, c4 = 1, c5 = 3, c6 = 6.
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The following operations are the ones used
on systems of linear equations and do not
change the solution set.

DEFINITION. (Elementary row operations)
There are three types of elementary row
operations that can be performed on
matrices:

1. Interchanging rows i and j:

Ri ↔ Rj

2. Multiplying row i by a non–zero number t:

Ri → tRi

3. Adding t times row i to row j:

Rj → Rj + tRi

DEFINITION (Row equivalence) Matrix A is
row–equivalent to matrix B if B is obtained
from A by a sequence of elementary row
operations.
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EXAMPLE. Working from left to right,

A =

 1 2 0
2 1 1
1 −1 2

 R2 → R2 + 2R3

 1 2 0
4 −1 5
1 −1 2



R2 ↔ R3

 1 2 0
1 −1 2
4 −1 5

 R1 → 2R1 2 4 0
1 −1 2
4 −1 5

 = B.

Thus A is row–equivalent to B. Clearly B is

also row–equivalent to A, by performing the

inverse row–operations

R1 → 1
2R1, R2 ↔ R3, R2 → R2 − 2R3 on B.
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It is not difficult to prove that if A and B are

row–equivalent augmented matrices of two

systems of linear equations, then the two

systems have the same solution sets – a

solution of the one system is a solution of the

other. For example the systems whose

augmented matrices are A and B in the

above example are respectively


x+ 2y = 0
2x+ y = 1
x− y = 2

and


2x+ 4y = 0

x− y = 2
4x− y = 5

and these systems have precisely the same

solutions.
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THE GAUSS–JORDAN ALGORITHM.

This is a process which starts with a given

matrix A and produces a matrix B in reduced

row–echelon form, which is row–equivalent to

A. If A is the augmented matrix of a system

of linear equations, then B will be a much

simpler matrix than A from which the

consistency or inconsistency of the

corresponding system is immediately apparent

and in fact the complete solution of the

system can be read off.
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STEP 1.

Find the first non–zero column moving from

left to right, (column c1) and select a

non–zero entry from this column. By

interchanging rows, if necessary, ensure that

the first entry in this column is non–zero.

Multiply row 1 by the multiplicative inverse of

a1c1 thereby converting a1c1 to 1. For each

non–zero element aic1, i > 1, (if any) in

column c1, add −aic1 times row 1 to row i,

thereby ensuring that all elements in column

c1, apart from the first, are zero.
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STEP 2. If the matrix obtained at Step 1 has

its 2nd, . . . ,mth rows all zero, the matrix is in

reduced row–echelon form. Otherwise

suppose that the first column which has a

non–zero element in the rows below the first

is column c2. Then c1 < c2. By interchanging

rows below the first, if necessary, ensure that

a2c2 is non–zero. Then convert a2c2 to 1 and

by adding suitable multiples of row 2 to the

remaing rows, where necessary, ensure that

all remaining elements in column c2 are zero.

The process is repeated and will eventually

stop after r steps, either because we run out

of rows, or because we run out of non–zero

columns. In general, the final matrix will be

in reduced row–echelon form and will have r

non–zero rows, with leading entries 1 in

columns c1, . . . , cr, respectively.
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EXAMPLE

 0 0 4 0
2 2 −2 5
5 5 −1 5

 R1 ↔ R2

 2 2 −2 5
0 0 4 0
5 5 −1 5



R1 → 1
2R1

 1 1 −1 5
2

0 0 4 0
5 5 −1 5



R3 → R3 − 5R1

 1 1 −1 5
2

0 0 4 0
0 0 4 −15

2



R2 → 1
4R2

 1 1 −1 5
2

0 0 1 0
0 0 4 −15

2


{
R1 → R1 +R2
R3 → R3 − 4R2

 1 1 0 5
2

0 0 1 0
0 0 0 −15

2


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R3 → −2
15R3

 1 1 0 5
2

0 0 1 0
0 0 0 1



R1 → R1 − 5
2R3

 1 1 0 0
0 0 1 0
0 0 0 1


The last matrix is in reduced row–echelon

form.

REMARK. It is possible to show that a given

matrix over an arbitrary field is

row–equivalent to precisely one matrix which

is in reduced row–echelon form.
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3. SYSTEMATIC SOLUTION OF

LINEAR SYSTEMS

Suppose a system of m linear equations in n

unknowns x1, · · · , xn has augmented matrix A

and that A is row–equivalent to a matrix B

which is in reduced row–echelon form, via the

Gauss–Jordan algorithm. Then A and B are

m× (n+ 1). Suppose that B has r non–zero

rows and that the leading entry 1 in row i

occurs in column number ci, for 1 ≤ i ≤ r.
Then

1 ≤ c1 < c2 < · · · , < cr ≤ n+ 1.

Also assume that the remaining column

numbers are cr+1, · · · , cn+1, where

1 ≤ cr+1 < cr+2 < · · · < cn ≤ n+ 1.
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Case 1: cr = n+ 1. The system is
inconsistent. For the last non–zero row of B
is [0, 0, · · · , 1] and the corresponding equation
is

0x1 + 0x2 + · · ·+ 0xn = 1,

which has no solutions. Consequently the
original system has no solutions.

Case 2: cr ≤ n. The system of equations
corresponding to the non–zero rows of B is
consistent. First notice that r ≤ n here.

If r = n, then c1 = 1, c2 = 2, · · · , cn = n and

B =



1 0 · · · 0 d1
0 1 · · · 0 d2
... ...
0 0 · · · 1 dn
0 0 · · · 0 0
... ...
0 0 · · · 0 0


.

There is a unique solution
x1 = d1, x2 = d2, · · · , xn = dn.
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If r < n, there will be more than one solution

(infinitely many if the field is infinite). For all

solutions are obtained by taking the

unknowns xc1, · · · , xcr as dependent unknowns

and using the r equations corresponding to

the non–zero rows of B to express these

unknowns in terms of the remaining

independent unknowns xcr+1, . . . , xcn, which

can take on arbitrary values:

xc1 = b1n+1 − b1cr+1
xcr+1 − · · · − b1cnxcn

...

xcr = br n+1 − brcr+1xcr+1 − · · · − brcnxcn.

In particular, taking xcr+1 = 0, . . . , xcn−1 = 0

and xcn = 0, 1 respectively, produces at least

two solutions.
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EXAMPLE. Solve the system

x+ y = 0

x− y = 1

4x+ 2y = 1.

SOLUTION. The augmented matrix of the
system is

A =

 1 1 0
1 −1 1
4 2 1


which is row equivalent to

B =

 1 0 1
2

0 1 −1
2

0 0 0

 .

We read off the unique solution
x = 1

2, y = −1
2.

(Here n = 2, r = 2, c1 = 1, c2 = 2. Also
cr = c2 = 2 < 3 = n+ 1 and r = n.)
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EXAMPLE. Solve the system

2x1 + 2x2 − 2x3 = 5
7x1 + 7x2 + x3 = 10
5x1 + 5x2 − x3 = 5.

SOLUTION. The augmented matrix is

A =

 2 2 −2 5
7 7 1 10
5 5 −1 5



which is row equivalent to

B =

 1 1 0 0
0 0 1 0
0 0 0 1

 .

We read off inconsistency for the original

system.

(Here n = 3, r = 3, c1 = 1, c2 = 3. Also

cr = c3 = 4 = n+ 1.)
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EXAMPLE, Solve the system

x1 − x2 + x3 = 1

x1 + x2 − x3 = 2.

Solution. The augmented matrix is

A =

[
1 −1 1 1
1 1 −1 2

]

which is row equivalent to

B =

[
1 0 0 3

2
0 1 −1 1

2

]
.

The complete solution is x1 = 3
2, x2 = 1

2 + x3,

with x3 arbitrary.

(Here n = 3, r = 2, c1 = 1, c2 = 2. Also

cr = c2 = 2 < 4 = n+ 1 and r < n.)
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EXAMPLE. Solve the system

6x3 + 2x4 − 4x5 − 8x6 = 8

3x3 + x4 − 2x5 − 4x6 = 4

2x1 − 3x2 + x3 + 4x4 − 7x5 + x6 = 2

6x1 − 9x2 + 11x4 − 19x5 + 3x6 = 1.

SOLUTION. The augmented matrix is

A =


0 0 6 2 −4 −8 8
0 0 3 1 −2 −4 4
2 −3 1 4 −7 1 2
6 −9 0 11 −19 3 1



which is row equivalent to

B =


1 −3

2 0 11
6 −19

6 0 1
24

0 0 1 1
3 −2

3 0 5
3

0 0 0 0 0 1 1
4

0 0 0 0 0 0 0

 .
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The complete solution is

x1 = 1
24 + 3

2x2 − 11
6 x4 + 19

6 x5,

x3 = 5
3 −

1
3x4 + 2

3x5,

x6 = 1
4,

with x2, x4, x5 arbitrary.

(Here n = 6, r = 3, c1 = 1, c2 = 3, c3 = 6;

cr = c3 = 6 < 7 = n+ 1; r < n.)
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4. HOMOGENEOUS SYSTEMS

A system of homogeneous linear equations is
a system of the form

a11x1 + a12x2 + · · ·+ a1nxn = 0

a21x1 + a22x2 + · · ·+ a2nxn = 0
...

am1x1 + am2x2 + · · ·+ amnxn = 0.

Such a system is always consistent as
x1 = 0, · · · , xn = 0 is a solution. This solution
is called the trivial solution. Any other
solution is called a non–trivial solution.

For example the homogeneous system

x− y = 0

x+ y = 0

has only the trivial solution, whereas the
homogeneous system

x− y + z = 0

x+ y + z = 0
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has the complete solution x = −z, y = 0, z

arbitrary. In particular, taking z = 1 gives the

non–trivial solution x = −1, y = 0, z = 1.

There is a simple but fundamental theorem

concerning homogeneous systems.

THEOREM. A homogeneous system of m

linear equations in n unknowns always has a

non–trivial solution if m < n.

PROOF. Suppose that m < n and that the

coefficient matrix of the system is

row–equivalent to B, a matrix in reduced

row–echelon form. Let r be the number of

non–zero rows in B. Then r ≤ m < n and

hence n− r > 0 and so the number n− r of

arbitrary unknowns is in fact positive. Taking

one of these unknowns to be 1 gives a

non–trivial solution.
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