ASSIGNMENT 3, MP204/MP274, 1st Semester 1999

Please hand in this assignment either in the tutorial to the lecturer, or place in the box labelled MP204/274 ASSIGNMENT 3, outside Room 424 Priestley Building, by 9am Monday 17th May 1999.

1. Let
$$A = \begin{bmatrix} -2 & -4 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -2 & -4 & 0 & 0 \end{bmatrix}$$
.

- (a) Find $ch_A(x)$.
- (b) Prove that A is not diagonable.

2. Let
$$A = \begin{bmatrix} -1 & 1 & -1 \\ 0 & 1 & 0 \\ 2 & -1 & 2 \end{bmatrix} \in M_{3 \times 3}(\mathbb{R}).$$

- (a) Verify that $ch_A(x) = x(x-1)^2$.
- (b) Find $g_A(0)$ and $g_A(1)$ and prove that A is diagonizable over \mathbb{R} .
- (c) Find a non-singular matrix $P \in M_{3\times 3}(\mathbb{R})$ such that $P^{-1}AP = \text{diag}(0, 1, 1)$.
- 3. Let $A \in M_{2 \times 2}(\mathbb{R})$. Suppose $A^2 = 0, A \neq 0$.
 - (a) Prove that $AX \neq 0$ for some $X \in \mathbb{R}^2$.
 - (b) Let $AX_1 \neq 0$, where $X_1 \in \mathbb{R}^2$. Also Let $X_2 = AX_1$. Prove that X_1, X_2 are linearly independent.

Moreover if $P = [X_1|X_2]$, prove that $P^{-1}AP = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$.

- (c) Determine $ch_A(x)$.
- (d) Explain why A is not diagonable over \mathbb{R} .

4. Let $A = \begin{bmatrix} 4 & -1 \\ 4 & 8 \end{bmatrix}$. Verify that $(A - 6I_2)^2 = 0$ and use the previous question to find a non-singular $P \in M_{2 \times 2}(\mathbb{R})$ such that $P^{-1}AP = \begin{bmatrix} 6 & 0 \\ 1 & 6 \end{bmatrix}$.