ASSIGNMENT 2, MP204/MP274, 1st Semester 1999

Please hand in this assignment either in the tutorial to the lecturer, or place in the box labelled MP204/274 ASSIGNMENT 2, outside Room 424 Priestley Building, by 5pm Friday 16th April 1999.

1. Vectors $v_1 = (1,2,3)^t$, $v_2 = (2,5,3)^t$, $v_3 = (1,0,10)^t$ form a basis for \mathbb{R}^3 . If $T: \mathbb{R}^3 \to \mathbb{R}^2$ is the linear transformation defined by

$$T(v_1) = (1,0)^t, \ T(v_2) = (1,0)^t, \ T(v_3) = (0,1)^t,$$

find T(v), where $v = (1, 1, 1)^t$.

2. Let $V = M_{2\times 2}(\mathbb{R})$ and let $T: V \to \mathbb{R}$ be the mapping defined by

$$T(A) = a_{11} + a_{22}$$
, where $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$.

- (i) Prove that T is a linear transformation.
- (ii) Find a basis for $\operatorname{Ker} T$.
- (iii) Determine rank T and nullity T.
- 3. Let $T: V \to V$ be a linear transformation. A fixed point of T is a vector v in V such that T(v) = v.
 - (i) Prove that the set S of fixed points of T is a subspace of V.

(ii) If
$$V = \mathbb{R}^2$$
 and $T = T_A$, where $A = \begin{bmatrix} \frac{4}{5} & \frac{3}{5} \\ \frac{3}{5} & -\frac{4}{5} \end{bmatrix}$, find a basis for S .

4. Let V be a vector space, dim V = 3 and let $\beta : v_1, v_2, v_3$ be a basis of V. If $T: V \to V$ is the linear transformation determined by

$$T(v_1) = v_1 + v_2 + v_3, \ T(v_2) = v_1 - v_2 + v_3, \ T(v_3) = v_1 + 3v_2 + v_3,$$

find $[T]^{\beta}_{\beta}$ and hence, or otherwise, find bases for Ker T and Im T. Also determine rank T and nullity T.

- 5. (Compulsory question for MP274 students) Do one of (a) and (b):
 - (a) \mathcal{L} is the line ax + by = 0. P = (x, y) is an arbitrary point of the (x, y) plane. If $Q = (x_1, y_1)$ is the foot of the perpendicular from P to \mathcal{L} , find a 2×2 matrix A such that

$$\left[\begin{array}{c} x_1\\ y_1 \end{array}\right] = A \left[\begin{array}{c} x\\ y \end{array}\right].$$

(b) If $A \in M_{m \times n}(\mathbb{R})$, prove that $N(A^t A) = N(A)$ and deduce that rank $(A^t A) =$ rank A. (Hint: If $Y = (y_1, \ldots, y_n)^t$, then $Y^t Y = y_1^2 + \cdots + y_n^2$.)