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1. (a) Define the terms null–space N(A) of A, column–space C(A) of A, rankA,
nullity A, where A ∈Mm×n(R).

(b) For the following matrix A, find the reduced row–echelon form of A, a
basis for N(A) and rankA and nullityA:

A =

 1 −1 2 0
2 −2 1 3
−2 2 −7 3

 .
Also explain why (1, 5, 1)t and (0, 3, 3)t form a basis for C(A).

2. (a) Let v1, . . . , vn belong to a vector space V . Explain what is meant by the
statements (i) v1, . . . , vn are linearly dependent, (ii) v1, . . . , vn form a basis
for V , dimV = n.

(b) Let A =


1 1 k
1 2 1
2 2 0
1 1 0

. Find all k ∈ R for which the columns of A are

linearly dependent.

(c) State the subspace axioms for a subset W of a vector space V and show
that N(A) is a subspace of Rn if A ∈Mm×n(R).

(d) Show that the set W = {(x1, x2, x3, x4)t | x2 = x4 and x1 = x3} forms a
subspace of R4. Find dimW .

Questions 3–6 on next page
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First Semester Examination – MP204/MP274 – Linear Algebra II/IIH (Unit
Courses) – continued.

3. (a) Let U and V be vector spaces and T : U → V be a linear transformation.
Define the terms KerT, ImT, rankT, nullityT and state a connection be-
tween rankT and nullityT .

(b) Let V = M2×2(R) and let T : V → R be the mapping defined by

T (A) = a11 + a22, where A =

[
a11 a12

a21 a22

]
.

(i) Prove that T is a linear transformation.

(ii) Find a basis for KerT .

(iii) Determine rankT and nullityT .

4. (a) Define the terms eigenvalue, eigenvector, eigenspace, geometric multiplic-
ity, algebraic multiplicity.

(b) Let A =

 9 4 −3
−2 0 6
−1 −4 11

 ∈M3×3(R).

(i) Verify that chA(x) = (x− 8)2(x− 4).

(ii) Prove that A is diagonisable over R.

(iii) Find a non–singular matrix P ∈M3×3(R) such that P−1AP = diag (4, 8, 8).

5. (a) Let A =

 0 4 −3
−1 −5 3
−1 −4 2

 ∈M3×3(R).

(i) Given that chA(x) = (x + 1)3, prove that A is not diagonizable over
R.

(ii) Find a 3 × 3 non–singular matrix P and a block upper triangular
matrix B over R, such that P−1AP = B. (Note: (A+ I3)2 = 0.)

(b) Also find the Jordan canonical form JA, together with a non–singular
matrix P such that P−1AP = JA.

6. A mapping T : P2[R]→ R
3 is defined by

T (a+ bx+ cx2) =

 a+ b+ c
a

a− b+ c

 ,
where P2[R] is the vector space of polynomials a+ bx+ cx2.

(a) Prove that T is a linear transformation.

(b) Prove that T is an isomorphism between P2[R] and R3.

(c) If S : R3 → P2[R] is the inverse linear transformation, find a formula for
S(X), when X = [a, b, c]t.

Question 7–8 on next page
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First Semester Examination – MP204/MP274 – Linear Algebra II/IIH (Unit
Courses) – continued.

7. (a) If u and v are non–zero orthogonal vectors in a real inner product space
V , prove that u and v are linearly independent.

(b) Find an orthonormal basis for the subspace of R4 spanned by the vectors
u1 = (1, 1, 0, 1)t, (3, 1, 1,−1)t, (0, 1,−1, 1)t.

8. (Compulsory question for MP274 students, but may be attempted by MP204
students)

(a) Let A,P,Q be matrices of sizes, m× n,m×m and n× n, where P and Q
are non–singular. Let B = PAQ.

(i) If Y = Q−1X and X ∈ N(A), show that Y ∈ N(B).

(ii) Let T : N(A) → N(B) be the linear mapping defined by T (X) =
Q−1X. Prove that T is an isomorphism between N(A) and N(B) and
deduce that rankA = rankB.

(b) If λ1, λ2 are distinct eigenvalues of a matrixA andX1, X2 are corresponding
eigenvectors, prove that X1 and X2 are linearly independent.
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