THE UNIVERSITY OF QUEENSLAND

First Semester Examination, June 1999.

MP204/MP274 LINEAR ALGEBRA II/IIH

(UNIT COURSES)

Time: TWO HOURS for working Ten minutes for perusal before examination begins.

Attempt five (5) questions only. Question 8 is compulsory for MP274 students. All questions carry the same number of marks. Candidates must not remove this paper from the examination room. Pocket calculators allowed.

- 1. (a) Define the terms null-space N(A) of A, column-space C(A) of A, rank A, nullity A, where $A \in M_{m \times n}(\mathbb{R})$.
 - (b) For the following matrix A, find the reduced row-echelon form of A, a basis for N(A) and rank A and nullity A:

$$A = \begin{bmatrix} 1 & -1 & 2 & 0 \\ 2 & -2 & 1 & 3 \\ -2 & 2 & -7 & 3 \end{bmatrix}.$$

Also explain why $(1, 5, 1)^t$ and $(0, 3, 3)^t$ form a basis for C(A).

- 2. (a) Let v_1, \ldots, v_n belong to a vector space V. Explain what is meant by the statements (i) v_1, \ldots, v_n are linearly dependent, (ii) v_1, \ldots, v_n form a basis for V, $\dim V = n$.
 - (b) Let $A = \begin{bmatrix} 1 & 1 & k \\ 1 & 2 & 1 \\ 2 & 2 & 0 \\ 1 & 1 & 0 \end{bmatrix}$. Find all $k \in \mathbb{R}$ for which the columns of A are

- (c) State the subspace axioms for a subset W of a vector space V and show that N(A) is a subspace of \mathbb{R}^n if $A \in M_{m \times n}(\mathbb{R})$.
- (d) Show that the set $W = \{(x_1, x_2, x_3, x_4)^t \mid x_2 = x_4 \text{ and } x_1 = x_3\}$ forms a subspace of \mathbb{R}^4 . Find dim W.

Questions 3–6 on next page **COPYRIGHT RESERVED**

TURN OVER

First Semester Examination – MP204/MP274 – Linear Algebra II/IIH (Unit Courses) – continued.

- 3. (a) Let U and V be vector spaces and $T: U \to V$ be a linear transformation. Define the terms Ker T, Im T, rank T, nullity T and state a connection between rank T and nullity T.
 - (b) Let $V = M_{2 \times 2}(\mathbb{R})$ and let $T: V \to \mathbb{R}$ be the mapping defined by

$$T(A) = a_{11} + a_{22}$$
, where $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$.

- (i) Prove that T is a linear transformation.
- (ii) Find a basis for $\operatorname{Ker} T$.
- (iii) Determine rank T and nullity T.
- 4. (a) Define the terms eigenvalue, eigenvector, eigenspace, geometric multiplicity, algebraic multiplicity.

(b) Let
$$A = \begin{bmatrix} 9 & 4 & -3 \\ -2 & 0 & 6 \\ -1 & -4 & 11 \end{bmatrix} \in M_{3 \times 3}(\mathbb{R}).$$

- (i) Verify that $ch_A(x) = (x-8)^2(x-4)$.
- (ii) Prove that A is diagonisable over \mathbb{R} .
- (iii) Find a non-singular matrix $P \in M_{3\times 3}(\mathbb{R})$ such that $P^{-1}AP = \text{diag}(4, 8, 8)$.

5. (a) Let
$$A = \begin{bmatrix} 0 & 4 & -3 \\ -1 & -5 & 3 \\ -1 & -4 & 2 \end{bmatrix} \in M_{3 \times 3}(\mathbb{R}).$$

- (i) Given that $ch_A(x) = (x+1)^3$, prove that A is not diagonizable over \mathbb{R} .
- (ii) Find a 3×3 non-singular matrix P and a block upper triangular matrix B over \mathbb{R} , such that $P^{-1}AP = B$. (Note: $(A + I_3)^2 = 0$.)
- (b) Also find the Jordan canonical form J_A , together with a non-singular matrix P such that $P^{-1}AP = J_A$.
- 6. A mapping $T: P_2[\mathbb{R}] \to \mathbb{R}^3$ is defined by

$$T(a+bx+cx^{2}) = \begin{bmatrix} a+b+c\\a\\a-b+c \end{bmatrix},$$

where $P_2[\mathbb{R}]$ is the vector space of polynomials $a + bx + cx^2$.

- (a) Prove that T is a linear transformation.
- (b) Prove that T is an isomorphism between $P_2[\mathbb{R}]$ and \mathbb{R}^3 .
- (c) If $S : \mathbb{R}^3 \to P_2[\mathbb{R}]$ is the inverse linear transformation, find a formula for S(X), when $X = [a, b, c]^t$.

Question 7–8 on next page

COPYRIGHT RESERVED

TURN OVER

First Semester Examination – MP204/MP274 – Linear Algebra II/IIH (Unit Courses) – continued.

- 7. (a) If u and v are non-zero orthogonal vectors in a real inner product space V, prove that u and v are linearly independent.
 - (b) Find an orthonormal basis for the subspace of \mathbb{R}^4 spanned by the vectors $u_1 = (1, 1, 0, 1)^t, (3, 1, 1, -1)^t, (0, 1, -1, 1)^t$.
- 8. (Compulsory question for MP274 students, but may be attempted by MP204 students)
 - (a) Let A, P, Q be matrices of sizes, $m \times n, m \times m$ and $n \times n$, where P and Q are non-singular. Let B = PAQ.
 - (i) If $Y = Q^{-1}X$ and $X \in N(A)$, show that $Y \in N(B)$.
 - (ii) Let $T : N(A) \to N(B)$ be the linear mapping defined by $T(X) = Q^{-1}X$. Prove that T is an isomorphism between N(A) and N(B) and deduce that rank $A = \operatorname{rank} B$.
 - (b) If λ_1, λ_2 are distinct eigenvalues of a matrix A and X_1, X_2 are corresponding eigenvectors, prove that X_1 and X_2 are linearly independent.