
CMAT USER GUIDE

K. R. MATTHEWS

5th July 2010



1 A brief description of cmat

cmat is an exact arithmetic calculator program, written in C and designed to run
on computers which support UNIX, or 386/486 PC’s. cmat performs many of the
standard arithmetical operations that can be carried out exactly, without approxi-
mations, on matrices and polynomials whose coefficients are either rational numbers,
complex rational numbers, or elements of Zp, the finite field of p elements, where p
is a prime less than 216 = 65536.

There are three calculator programs within cmat and these can be accessed di-
rectly:

cmatr, cmatcr and cmatm (UNIX).

cmatr.exe, cmatcr.exe and cmatm.exe (MSDOS).

cmatr works over the field Q of rational numbers, cmatcr over the field Q(i) of
complex rational numbers – numbers of the form a+ ib, where a and b are rationals,
while cmatm works over Zp.

The programs use multiple precision arithmetic routines based on those in [4,
pages 342–357, 175–185].

The program allows for the creation and storage of up to M0 objects of the
following type (M0 is usually set to 30).

1. cR: rational numbers: R[0], . . . , R[M0− 1];

2. cRM: matrices with rational coefficients: RM [0], . . . , RM [M0− 1];

3. cPR: polynomials with rational coefficients: PR[0], . . . , PR[M0− 1];

4. cPRM: matrices with polynomial rational coefficients:

PRM [0], . . . , PRM [M0− 1];

5. cCR: complex rational numbers: CR[0], . . . , CR[M0− 1];

6. cCRM: matrices with complex rational coefficients: CRM [0], . . . , CRM [M0−1];

7. cPCR: polynomials with complex rational coefficients: PCR[0], . . . , PCR[M0−
1];

1



8. cPCRM: matrices with polynomial complex rational coefficients:

PCRM [0], . . . , PCRM [M0− 1];

9. cmM: matrices with mod p coefficients: mM [0], . . . ,mM [M0− 1];

10. cPm: polynomials with mod p coefficients: Pm[0], . . . , Pm[M0− 1];

11. cPmM: matrices with polynomial mod p coefficients:

PmM [0], . . . , PmM [M0− 1];

These arrays always contain the appropriate zero object until replaced by either
an object entered by the user, or one resulting from a calculation.

Storage limitations and execution times of algorithms are much less when calcu-
lating with matrices over Zp.

2 Routines available

• The familiar arithmetical operations of addition, subtraction, multiplication,
inverse, ratio and exponentiation, are available for rationals, complex rationals
and elements of Zp. Complex conjugation of complex numbers is also available.
The m–th root of a rational number can be computed to a given number of
decimal places.

• For polynomials, there are the usual operations of addition, subtraction, multi-
plication, scalar multiplication, exponentiation, derivative, evaluation, quotient,
remainder, greatest common divisor, expressing the greatest common divisor as
a linear combination of the polynomials involved.

The resultant of two polynomials over Z[x] and the discriminant of a polynomial
over Z[x] can be calculated.

• There is modular exponentiation for polynomials in Zp[x] (modP [j]). The
squarefree decomposition of a polynomial can be found. Polynomials over
Q,Q(i) or Zp can be factorized into irreducibles. The Berlekamp matrix of
a squarefree polynomial f ∈ Zp[x] is available. This is the transpose of the
usual Berlekamp matrix that is described in [6, pages 420–429] and is the n×n
matrix Q = [qij] over Zp defined by the congruence

xpj ≡
n−1∑
i=0

qijx
i (mod f), 0 ≤ j ≤ n− 1,

2



where n = deg f .

An irreducible polynomial of given degree over Zp[x] can be constructed.

The cyclotomic polynomial Φn(x) can be calculated over Z[x] and Zp[x].

• For matrices, there are the usual operations of addition, subtraction, multipli-
cation, scalar multiplication, exponentiation, Kronecker product, direct sum of
two matrices, evaluation of a matrix polynomial.

• The standard elementary row and column operations can be performed on all
types of matrices.

• The entries of a stored matrix can be changed, either individually, or by row or
column. A single row or column can be deleted.

• A single row or column vector can be selected from a stored matrix. More
generally, a submatrix of a stored matrix can be formed by selecting a subfamily
of rows or columns, respectively.

• Two matrices can be joined by rows or columns. The partitioned matrix [A|I]
can be formed from A. A matrix can be unwrapped into a column vector (a
process useful for finding the minimum polynomial of a matrix).

• The matrix A−λI can be formed from A and λ; this is important when finding
a basis for the eigenspace of A corresponding to the eigenvalue λ.

• Special matrices such as band matrices, the identity matrix, the elementary
Jordan matrix and the companion matrix of a polynomial, can be created.

• Files of matrices (rational, floating point, complex rational or mod p), prepared
by the user, can be read into the cmat program. The floating point numbers can
only be used in the rational program and are converted internally to rational
numbers in lowest terms.

• Matrices whose (i, j)th element has real and imaginary parts given by simple
arithmetical expressions such as iˆ2+3*j for the numerators and denominators,
may be created wholly within cmat.

• The inverse, adjoint, determinant, characteristic polynomial and minimum poly-
nomial of a matrix of scalars can be found. The adjoint and determinant can

3



also be found for matrices with polynomial elements. Also P−1AP can be
calculated.

and minimum polynomial of a matrix of scalars, P−1AP . The Cholesky decom-
position of a positive definite matrix is found: A = LtDL, where L is upper unit
triangular and D is a diagonal matrix. The output has the diagonal elements
of D on its diagonal and its above diagonal elements are those of L.

The inverse of a matrix M of integers mod m can be found, when m is a positive
integer relatively prime to detM .

• The reduced row–echelon form of a matrix can be found. Also systems of linear
equations can be solved.

• Bases can be found for the null–space N(A) and column–space C(A) of a matrix
A.

Both bases are associated with the reduced row–echelon form B of the given
matrix A: if the non–zero rows of B have leading entries 1 in columns c1, . . . , cr,
then X in N(A) is found by expressing the unknowns xc1 , . . . , xcr in terms of
the remaining unknowns xcr+1 , . . . , xcn , which are taken to be arbitrary. This
results in expressing X as a linear combination

X = xcr+1X1 + · · ·xcnXn−r

and X1, . . . , Xn−r form the basis for N(A) that is selected by cmat.

The column vectors of A in columns c1, . . . , cr form a basis for C(A) that is
selected by cmat. This basis is known as the left–to–right basis for the column–
space.

The left–to–right basis is especially useful for extending a given linearly inde-
pendent family of column vectors X1, . . . , Xs in a vector space V , to a basis for
V , where a spanning family Y1, . . . , Yt is given. For

V = 〈X1, . . . , Xs, Y1, . . . , Yt〉

and applying the left–to–right algorithm to the spanning family will select
X1, . . . , Xs, together with a subfamily of Y1, . . . , Yt as a basis for V . This proce-
dure is very useful in one of the algorithms for finding the Jordan canonical form
or more generally, the rational canonical form of a square matrix. (See[10].)

4



• The dot product and length of vectors with rational or complex rational entries
can be calculated. The Gram–Schmidt process is also available. The cross–
product of two vectors with rational components can be found. There is also
a generalisation to the cross–product of the rows of an (n − 1) × n matrix of
rationals.

• The Smith canonical form of a matrix B with polynomial elements can be
found. When applied to the matrix B = xI−A, where A is a matrix of scalars,
this gives the similarity invariants of A; in particular, we obtain the minimum
polynomial of A as the invariant of highest degree. Polynomial matrices P and
Q, whose determinants are constant polynomials, are also found such that PBQ
is in Smith canonical form.

• All data currently stored in the above arrays can be printed either on the
screen or on a line printer. If desired, matrices of rational and complex rational
coefficients can be printed to a file or the screen, to a nominated number of
decimal places.

3 Calculating with cmat

• The user can successively descend deeper into the program by selecting various
displayed screen options. To ascend through the various levels, type q when
this is an option. When leaving the program, the user is given the option of
saving data for re–use in future sessions.

• The menus are somewhat tersely organized and are listed at the end of this
guide. The menus are interpreted as follows:

To enter a rational number and store the number as RM [0] say, one selects the
appropriate menu (number R14 at the end of this guide) and types n 0.

NOTE: Use CONTROL-H, not the backspace key, to backspace over
characters.

• Integers are entered as usual, while non–integer rationals are entered with a
slash as integer/positive integer: e.g. -71/2, while complex numbers with non–
zero imaginary part must end with an i: e.g. 1/2i represents (1/2)i. No
brackets are to be used when entering numbers. Rational numbers are outputted
in ’lowest terms’, with positive denominator.

5



• Some latitude is allowed as regards spacing. For example, 1-i, 1- i, 1 - i

represent the same complex rational. However 1 -i represents the two numbers
1 and -i.

• Matrices are entered row by row, the end of a row being marked by a carriage
return. Spaces separate entries of a row.

• To discontinue entering a polynomial or matrix from the keyboard, type q or any
non–alphanumeric character when entering a coefficient. A default polynomial
or matrix is then stored.

• To perform calculations with stored data, one has to select the appropriate
menu. For example, having entered matrices RM [0] and RM [1], the product
RM [0] ∗ RM [1] is sent to RM [2] (or RM [0] or RM [1]) by selecting the multi-
plication option t from menu R7, reproduced below, typing t 0 1 2 :

Rational Matrix Arithmetic R7

a j k l : RM[j] + RM[k] -> RM[l]

t j k l : RM[j] * RM[k] -> RM[l]

s j k l : RM[j] - RM[k] -> RM[l]

m j k : -RM[j] -> RM[k]

f j k l : R[j](RM[k]) -> RM[l]

* j k : (RM[j])* -> RM[k]

e n j k : RM[j]^n -> RM[k]

z j k l : RM[j] - R[k]I -> RM[l]

p : print numbers and matrices

x : to enter data

q : to exit

• To calculate the 10th power of RM [0], select the exponentiation option e from
the above menu, typing e 10 0 3 to send the output to RM [3].

• The situation is somewhat simpler with modular arithmetic calculations. Here
no numbers are stored and non–negative numbers less than the relevant modulus
are entered directly, instead of being stored. For example to multiply the matrix
mM [0] by 5 (mod 7) and to store the result as mM [1], select menu m7 below
and type

f 5 0 1 7.

6



• It is important to remember that when using the modular arithmetic section of
cmat, operations should be carried out only on stored objects having the same
modulus.

• To terminate input prematurely after entering the first letter of a menu option,
type q followed by RETURN.

• To input a file of r (<= M0− j) prepared matrices of the same type (rational,
floating point, complex rational or modular) into array positions j, . . . , j+r−1
, the first line of the file should contain the number r; the next line consists of
the row and column number of the first matrix, followed by the respective rows
of the matrix.

For example, the following file represents two rational matrices, the first being
3× 3, the second being 2× 2:

/* rational matrix file */

2

3 3

2/3 5 -7/8

1/2 12 -5

7 6 4

2 2

1 0

0 1

4 Comments on algorithms used in cmat

• The tricks of P. Henrici mentioned in [1, pages 200–201] are used to speed up
addition and multiplication of rationals.

• The Gauss–Jordan method is used to find the reduced row–echelon form and
to solve system of linear equations over all three fields.

• The adjoint, inverse, determinant and characteristic polynomial of a matrix of
rationals or complex rationals are found by the Faddeeva–Leverrier method.
See the book [3, pages 177–181].

The method is also valid for matrices over Zp or Zp[x] if p > n, the size of the
matrix.

7



In fact, for matrices over Zp, we use instead a modification of an algorithm due to
Frobenius (see [11, pages 168–175]) to find the characteristic polynomial. Also
over Zp, the Gauss–Jordan algorithm is used to find the inverse and determinant
of a matrix. The adjoint is found using the fact that adjA = 0 if rankA ≤ n−2,
rank (adjA) = 1 if rankA = n− 1 and adjA = (detA) · A−1 otherwise.

• The inverse of an integer matrix mod m is found by using the adjoint matrix
and multiplying mod m by the inverse of determinant mod m.

• The minimum polynomial of an n × n matrix A is found by finding the least
m ≥ 1 such that Am is expressible as a linear combination of In, . . . , A

m−1.
This is done by unwrapping the matrices In, . . . , Ar into column vectors for
1 ≤ r ≤ m and solving the equation

x0I + · · ·+ xr−1A
r−1 = Ar

as a system of n2 equations in r unknowns. The system will be inconsistent for
1 ≤ r < m, but will have a unique solution when r = m, giving the minimum
polynomial mA = xm − xm−1x

m−1 − · · · − x0.

• The Smith canonical form is found by the algorithm in [5, pages 111–113].
Faster algorithms exist (see [8]).

• Factorization of polynomials in Zp[x] is accomplished using a method of finding
a non–trivial factor due to P. Camion (see [2]). This is used in conjunction with
the Berlekamp matrix of a polynomial. For information on this matrix see [6,
pages 420–429]. (Our Berlekamp matrix is the transpose of Knuth’s.)

• Factorization of a polynomial in Z[x] is accomplished using an algorithm out-
lined in [12]. The algorithm uses the degree–set testing procedure which some-
times uncovers irreducibility before more complicated tests are employed. The
Hensel–Zassenhaus quadratic and linear liftings are used to obtain a factoriza-
tion of f(x) modulo a high power of a prime. The degree–set test also has
the effect of reducing the number of test divisions needed to determine possible
factors over Z[x] after the liftings are completed.

• Factorization of a polynomial in Q(i)[x] is accomplished using an algorithm
outlined in [13].

• A squarefree decomposition algorithm for polynomials due to D.Y.Y. Yun and
described in [6, pages 631–632] is used.

8



• Irreducible polynomials of given degree (mod p) are constructed using a prob-
abilistic algorithm from [8, pages 145–149].

• The algorithm used for calculating the resultant of two polynomials with integer
coefficients is outlined in the article by R. Loos in [1, page 130].

• The cyclotomic polynomial Φn(x) is calculated using an algorithm from [8, pages
354–356], which in turn is based on an account in [7, pages 58–63]. Factoring
Φpn−1(x) over Zp[x] gives the φ(pn−1)/n monic primitive polynomials of degree
n over Zp.

• The m–th root of a rational number is calculated using the algorithm from [9].

Any suggestions for improvement, as well as uncovering of bugs, should be com-
municated to Keith Matthews, http://www.numbertheory.org/keith.html

References

[1] B. Buchberger, G.E. Collins and R. Loos (Editors). Computer Algebra, Symbolic
and Algebraic Computation. 1972, Springer–Verlag Wien, New York.

[2] P. Camion. A Deterministic Algorithm for Factorizing Polynomials of Fq[x]. An-
nals of Discrete Mathematics 17 (1983) 149–157.

[3] V.N. Faddeeva. Computational Methods in Linear Algebra. 1959, Dover, New
York.

[4] H. Flanders. Scientific Pascal. 1984, Reston Publishing Company, Reston, Vir-
ginia.

[5] B. Hartley and T.O. Hawkes. Rings, Modules and Linear Algebra. 1970, Chap-
man and Hall, London.

[6] D.E. Knuth. The Art of Computer Programming, Volume 2. Second Edition
1981, Addison–Wesley Publishing Company, Reading, Massachusetts.

[7] H. Lüneburg. Galoisfelder, Kreisteilungskörper und Schieberegisterfolgen. 1979,
B.I. Wissenschaftsverlag, Mannheim/Wien/Zürich.

[8] H. Lüneburg. On the Rational Normal Form of Endomorphisms. 1987, B.I. Wis-
senschaftsverlag, Mannheim/Wien/Zürich. J.A.C.M. 22 (1975) 291–308.

9



[9] K.R. Matthews. Computing mth roots. College Mathematics Journal 19 (1988)
174–176.

[10] K.R. Matthews. A Rational Canonical Form Algorithm. Mathematica Bohemica
117 (1992) 315–324.

[11] W.A. McWorter, Jr. An Algorithm for the Characteristic Polynomial.

[12] D.R. Musser. Multivariate Polynomial Factorization. Mathematics Magazine 56
(1983) 168–175.

[13] B.M. Trager. Algebraic Factoring and Rational Function Integration. Proceedings
of the 1976 ACM Symposium on Symbolic and Algebraic Computation, 219–226.

10


