
CMAT DOCUMENTATION

K. R. MATTHEWS

5th July 2010



1 cmat installation

cmat is an exact arithmetic calculator program, written in ANSI C. It is designed to
perform many of the standard arithmetical operations that can be carried out exactly,
without approximations, on matrices and polynomials whose coefficients are either
rational numbers, complex rational numbers, or elements of Zp – the finite field of p
elements, where p is a prime less than R0= 216 = 65536.

The file config.h contains default paths which are set up for the Linux version
on the assumption that the four executable programs and the *.dat files live in the
current directory “.”

To change the number M0 of stored global variables of each arithmetical type, the
file integer.h should be edited and the programs recompiled.

2 Documentation

1. Files. There are various *.h files:

(a) integer.h contains declarations of various arithmetic data structures:

(i) MPI, MPR, MPCI, MPCR;

(ii) MPMATI, MPMATR, MPMATR, MPMATCR, MPMATm;

(iii) POLYI, POLYR, POLYR, POLYCR, POLYm;

(iv) MPMATPI, MPMATPR, MPMATPCI, MPMATPCR, MPMATPm.

as well as definitions of constants R0, T0, M0, Z0, Y0, BUFLEN and some ab-
breviations.

(b) cmat.h contains declarations of functions defined in files util.c, spawn.c

(Linux) and menu.c, as well as external declarations of variables used in the
files.

(c) config.h contains system dependent #defines.

(d) primes.h contains an array of global variables corresponding to the first 2048
primes, together with a two–dimensional global array which provides a table–
lookup for the inverses mod m of all residues a, 1 ≤ a ≤ m, (a, m) = 1, where
m ≤ 99.

1



(e) fun.h contains declarations of all functions in all .c files residing in all three
directories.

There are various *.dat files:

(a) info.dat contains information about cmat;

(b) menuR.dat contains the menus for cmatr;

(c) menuCR.dat contains the menus for cmatcr;

(d) menum.dat contains the menus for cmatm.

Under Linux, .cmatrc sets up the directory paths: cmat=. for the executable
programs and datpath=. for the *.dat files.

If the variable DEBUG in integer.h is defined, an overall count of the number of
bytes remaining as unfreed memory is printed on exiting the component programs
cmatr, cmatcr and cmatm. Care has been taken to ensure this number should always
be zero. If not, then this indicates that space was not freed at some stage in at least
one of the algorithms; consequently an unwelcome buildup of used memory could
result if the program is run repeatedly.

parse.y is a yacc file which produces a file parse.c for use in parsing simple
arithmetic expressions suitable for use as formulae for the (i, j)th element of a matrix.
This was initially used to produce parse.c.

2. Makefiles. There are two types: Makefile (Linux) and Makefile_Windows (Win-
dows).

To compile under Linux, type make -f Makefile all, while to compile under
cygwyn, type nmake -f Makefile_Windows all. This assumes one has nmake.exe

present and the lib facility.

3. The arithmetic data types.

The basic structure is the MPI (multiple precision integer) M which has three
components: an unsigned integer M.D, a variable array of M.D+1 unsigned integers:

M.V[0], . . . , M.V[M.D],

where each of these array elements must be less than R0= 216 = 65536. There is a
third structure component M.S, which records the sign. If m is the integer represented
by the MPI M, there is a corresponding representation of m to base R0:

m = M.S
M.D∑
i=0

M.V[i](R0)i.

2



A rational number is represented by a structure M called an MPR. Here M.N and M.D
are pointers to MPI’s representing the numerator and denominator, respectively. The
denominator must be positive and the numerator and denominator relatively prime.

A complex rational number m is represented by a structure M called an MPCR.
Here M.R and M.I are pointers to MPR’s representing the real and imaginary parts
of m.

Polynomials are represented by linked lists along the lines of Scientific Pascal by
H. Flanders:

POLYI, POLYR, POLYCI, POLYCR, POLYm,

each terminated by the NULL pointer. Only the non–zero terms of the polynomial
are recorded. The zero polynomial is represented by the NULL pointer.

Matrices of scalars are represented by structures:

MPMATI, MPMATR, MPMATCI, MPMATCR, MPMATm.

If M is such a structure, the components M.R and M.C record the number of rows
and columns, while the component M.V corresponds to a two– dimensional array of
scalars of variable size.

There are also correspondingly matrices with polynomial elements:

MPMATPI, MPMATPR, MPMATPCI, MPMATPCR, MPMATPm.

It is important to remember that for the polynomial structure POLYm and matri-
ces MPMATm and MPMATPm, the coefficients are always understood to be unsigned
integers less than a prime p (the modulus), with p < R0. It is the user’s responsibility
to keep track of the various moduli used and to perform calculations with arithmetic
objects only having the same prime modulus.

4. Other Global Variables.

Up to M0= 30 (say) objects of each type can be created and stored as global
variables:

1. rational numbers: R[0], . . . , R[M0 − 1];

2. matrices with rational coefficients:

RM[0], . . . , RM[M0 − 1];

3



3. polynomials with rational coefficients:

PR[0], . . . , PR[M0 − 1];

4. matrices with polynomial rational coefficients: PRM[0], . . . , PRM[M0 − 1];

5. complex rational numbers: CR[0], . . . , CR[M0 − 1];

6. matrices with complex rational coefficients:

CRM[0], . . . , CRM[M0 − 1];

7. polynomials with complex rational coefficients:

PCR[0], . . . , PCR[M0 − 1];

8. matrices with polynomial complex rational coefficients:

PCRM[0], . . . , PCRM[M0 − 1];

9. matrices with coefficients (mod p): mM[0], . . . , mM[M0 − 1];

10. polynomials with coefficients (mod p): Pm[0], . . . , Pm[M0 − 1];

11. matrices with polynomial coefficients (mod p):

PmM[0], . . . , PmM[M0 − 1];

These arrays always contain the appropriate zero object until replaced by either
an object entered by the user or one resulting from a calculation.

5. Saving for future sessions.

When each of the programs cmatr, cmatcr, cmatm is run, the following files are
respectively opened in the user’s current directory:

(i) cR, cPR, cRM, cPRM;

(ii) cCR, cPCR, cCRM, cPCRM;

(iii) cPm, cmM, cPmM.

If these files do not already exist, they are created, with contents corresponding to
appropriate zero arithmetic objects. At the end of each computing session, the user
is given the option of saving data for further re–use in future sessions.

4



6. Memory bank. We use a memory banking algorithm implemented by Peter
Adams. Previously, MPI’s and other data structures were malloced and freed when-
ever they were required, which proved to be very time consuming. About 50% of the
execution time was spent in calls to malloc() and free().

Now, rather than freeing when we have finished using them, we place them on a
list of free MPI’s (and corresponding lists for other data structures). When another
MPI is required, if there is one of an appropriate size on the list, it can be used,
rather than calling malloc().

Any suggestions for improvement, as well as uncovering of bugs, should be re-
ported to the author,
Keith Matthews
http://www.numbertheory.org/keith.html

5th July 2010

5


