Section 8.8

1. The given line has equations

$$\begin{array}{rcl} x & = & 3+t(13-3)=3+10t, \\ y & = & -2+t(3+2)=-2+5t, \\ z & = & 7+t(-8-7)=7-15t. \end{array}$$

The line meets the plane y = 0 in the point (x, 0, z), where 0 = -2 + 5t, or t = 2/5. The corresponding values for x and z are 7 and 1, respectively.

2.
$$\mathbf{E} = \frac{1}{2}(\mathbf{B} + \mathbf{C}), \mathbf{F} = (1 - t)\mathbf{A} + t\mathbf{E}$$
, where

$$t = \frac{AF}{AE} = \frac{AF}{AF + FE} = \frac{AF/FE}{(AF/FE) + 1} = \frac{2}{3}.$$

Hence

$$\mathbf{F} = \frac{1}{3}\mathbf{A} + \frac{2}{3}\left(\frac{1}{2}(\mathbf{B} + \mathbf{C})\right)$$
$$= \frac{1}{3}\mathbf{A} + \frac{1}{3}(\mathbf{B} + \mathbf{C})$$
$$= \frac{1}{3}(\mathbf{A} + \mathbf{B} + \mathbf{C}).$$

3. Let A = (2, 1, 4), B = (1, -1, 2), C = (3, 3, 6). Then we prove $\overrightarrow{AC} = t \overrightarrow{AB}$ for some real t. We have

$$\overline{AC} = \begin{bmatrix} 1\\2\\2 \end{bmatrix}, \quad \overline{AB} = \begin{bmatrix} -1\\-2\\-2 \end{bmatrix}.$$

Hence $\overrightarrow{AC} = (-1) \overrightarrow{AB}$ and consequently *C* is on the line *AB*. In fact *A* is between *C* and *B*, with AC = AB.

4. The points P on the line AB which satisfy $AP = \frac{2}{5}PB$ are given by $\mathbf{P} = \mathbf{A} + t \ \overrightarrow{AB}$, where |t/(1-t)| = 2/5. Hence $t/(1-t) = \pm 2/5$. The equation t/(1-t) = 2/5 gives t = 2/7 and hence

$$\mathbf{P} = \begin{bmatrix} 2\\3\\-1 \end{bmatrix} + \frac{2}{7} \begin{bmatrix} 1\\4\\5 \end{bmatrix} = \begin{bmatrix} 16/7\\29/7\\3/7 \end{bmatrix}.$$

Hence P = (16/7, 29/7, 3/7).

The equation t/(1-t) = -2/5 gives t = -2/3 and hence

$$\mathbf{P} = \begin{bmatrix} 2\\3\\-1 \end{bmatrix} - \frac{2}{3} \begin{bmatrix} 1\\4\\5 \end{bmatrix} = \begin{bmatrix} 4/3\\1/3\\-13/3 \end{bmatrix}.$$

Hence P = (4/3, 1/3, -13/3).

5. An equation for \mathcal{M} is $\mathbf{P} = \mathbf{A} + t \overrightarrow{BC}$, which reduces to

$$x = 1 + 6t$$
$$y = 2 - 3t$$
$$z = 3 + 7t.$$

An equation for \mathcal{N} is $\mathbf{Q} = \mathbf{E} + s \overrightarrow{EF}$, which reduces to

$$x = 1 + 9s$$
$$y = -1$$
$$z = 8 + 3s$$

To find if and where \mathcal{M} and \mathcal{N} intersect, we set P = Q and attempt to solve for s and t. We find the unique solution t = 1, s = 2/3, proving that the lines meet in the point

$$(x, y, z) = (1+6, 2-3, 3+7) = (7, -1, 10).$$

6. Let A = (-3, 5, 6), B = (-2, 7, 9), C = (2, 1, 7). Then (i)

$$\cos \angle ABC = (\overrightarrow{BA} \cdot \overrightarrow{BC}) / (BA \cdot BC),$$

where $\overrightarrow{BA} = [-1, -2, -3]^t$ and $\overrightarrow{BC} = [4, -6, -2]^t$. Hence

$$\cos \angle ABC = \frac{-4 + 12 + 6}{\sqrt{14}\sqrt{56}} = \frac{14}{\sqrt{14}\sqrt{56}} = \frac{1}{2}.$$

Hence $\angle ABC = \pi/3$ radians or 60°.

$$\cos \angle BAC = (\overrightarrow{AB} \cdot \overrightarrow{AC}) / (AB \cdot AC),$$

where $\overrightarrow{AB} = [1, 2, 3]^t$ and $\overrightarrow{AC} = [5, -4, 1]^t$. Hence

$$\cos \angle BAC = \frac{5-8+3}{\sqrt{14}\sqrt{42}} = 0$$

Hence $\angle ABC = \pi/2$ radians or 90°.

(iii)

$$\cos \angle ACB = (\overrightarrow{CA} \cdot \overrightarrow{CB}) / (CA \cdot CB),$$

where $\overrightarrow{CA} = [-5, 4, -1]^t$ and $\overrightarrow{CB} = [-4, 6, 2]^t$. Hence

$$\cos \angle ACB = \frac{20 + 24 - 2}{\sqrt{42}\sqrt{56}} = \frac{42}{\sqrt{42}\sqrt{56}} = \frac{\sqrt{42}}{\sqrt{56}} = \frac{\sqrt{3}}{2}$$

Hence $\angle ACB = \pi/6$ radians or 30° .

7. By Theorem 8.5.2, the closest point P on the line AB to the origin O is given by $\mathbf{P} = \mathbf{A} + t \overrightarrow{AB}$, where

$$t = \frac{\overrightarrow{AO} \cdot \overrightarrow{AB}}{AB^2} = \frac{-\mathbf{A} \cdot \overrightarrow{AB}}{AB^2}$$

Now

$$\mathbf{A} \cdot \overrightarrow{AB} = \begin{bmatrix} -2\\1\\3 \end{bmatrix} \cdot \begin{bmatrix} 3\\1\\1 \end{bmatrix} = -2.$$

Hence t = 2/11 and

$$\mathbf{P} = \begin{bmatrix} -2\\1\\3 \end{bmatrix} + \frac{2}{11} \begin{bmatrix} 3\\1\\1 \end{bmatrix} = \begin{bmatrix} -16/11\\13/11\\35/11 \end{bmatrix}$$

and P = (-16/11, 13/11, 35/11).

Consequently the shortest distance OP is given by

$$\sqrt{\left(\frac{-16}{11}\right)^2 + \left(\frac{13}{11}\right)^2 + \left(\frac{35}{11}\right)^2} = \frac{\sqrt{1650}}{11} = \frac{\sqrt{15 \times 11 \times 10}}{11} = \frac{\sqrt{150}}{\sqrt{11}}.$$

(ii)

Alternatively, we can calculate the distance OP^2 , where P is an arbitrary point on the line AB and then minimize OP^2 :

$$\mathbf{P} = \mathbf{A} + t \overrightarrow{AB} = \begin{bmatrix} -2\\1\\3 \end{bmatrix} + t \begin{bmatrix} 3\\1\\1 \end{bmatrix} = \begin{bmatrix} -2+3t\\1+t\\3+t \end{bmatrix}.$$

Hence

$$OP^{2} = (-2+3t)^{2} + (1+t)^{2} + (3+t)^{2}$$

= $11t^{2} - 4t + 14$
= $11\left(t^{2} - \frac{4}{11}t + \frac{14}{11}\right)$
= $11\left(\left\{t - \frac{2}{11}\right\}^{2} + \frac{14}{11} - \frac{4}{121}\right)$
= $11\left(\left\{t - \frac{2}{11}\right\}^{2} + \frac{150}{121}\right).$

Consequently

$$OP^2 \ge 11 \times \frac{150}{121}$$

for all t; moreover

$$OP^2 = 11 \times \frac{150}{121}$$

when t = 2/11.

8. We first find parametric equations for \mathcal{N} by solving the equations

$$\begin{array}{rcl} x+y-2z &=& 1\\ x+3y-z &=& 4. \end{array}$$

The augmented matrix is

$$\left[\begin{array}{rrrr} 1 & 1 & -2 & 1 \\ 1 & 3 & -1 & 4 \end{array}\right],$$

which reduces to

$$\left[\begin{array}{rrrr} 1 & 0 & -5/2 & -1/2 \\ 0 & 1 & 1/2 & 3/2 \end{array}\right].$$

Hence $x = -\frac{1}{2} + \frac{5}{2}z$, $y = \frac{3}{2} - \frac{z}{2}$, with z arbitrary. Taking z = 0 gives a point $A = (-\frac{1}{2}, \frac{3}{2}, 0)$, while z = 1 gives a point B = (2, 1, 1).

Hence if C = (1, 0, 1), then the closest point on \mathcal{N} to C is given by $\mathbf{P} = \mathbf{A} + t \ \overrightarrow{AB}$, where $t = (\overrightarrow{AC} \cdot \overrightarrow{AB})/AB^2$.

Now

$$\overrightarrow{AC} = \begin{bmatrix} 3/2 \\ -3/2 \\ 1 \end{bmatrix} \text{ and } \overrightarrow{AB} = \begin{bmatrix} 5/2 \\ -1/2 \\ 1 \end{bmatrix},$$

 \mathbf{SO}

$$t = \frac{\frac{3}{2} \times \frac{5}{2} + \frac{-3}{2} \times \frac{-1}{2} + 1 \times 1}{\left(\frac{5}{2}\right)^2 + \left(\frac{-1}{2}\right)^2 + 1^2} = \frac{11}{15}.$$

Hence

$$\mathbf{P} = \begin{bmatrix} -1/2\\ 3/2\\ 0 \end{bmatrix} + \frac{11}{15} \begin{bmatrix} 5/2\\ -1/2\\ 1 \end{bmatrix} = \begin{bmatrix} 4/3\\ 17/15\\ 11/15 \end{bmatrix},$$

so P = (4/3, 17/15, 11/15).

Also the shortest distance PC is given by

$$PC = \sqrt{\left(1 - \frac{4}{3}\right)^2 + \left(0 - \frac{17}{15}\right)^2 + \left(1 - \frac{11}{15}\right)^2} = \frac{\sqrt{330}}{15}.$$

9. The intersection of the planes x + y - 2z = 4 and 3x - 2y + z = 1 is the line given by the equations

$$x = \frac{9}{5} + \frac{3}{5}z, \ y = \frac{11}{5} + \frac{7}{5}z,$$

where z is arbitrary. Hence the line \mathcal{L} has a direction vector $[3/5, 7/5, 1]^t$ or the simpler $[3, 7, 5]^t$. Then any plane of the form 3x + 7y + 5z = d will be perpendicual to \mathcal{L} . The required plane has to pass through the point (6, 0, 2), so this determines d:

$$3 \times 6 + 7 \times 0 + 5 \times 2 = d = 28.$$

10. The length of the projection of the segment AB onto the line CD is given by the formula

$$\frac{|\overrightarrow{CD}\cdot\overrightarrow{AB}|}{CD}.$$

Here $\overrightarrow{CD} = [-8, 4, -1]^t$ and $\overrightarrow{AB} = [4, -4, 3]^t$, so

$$\frac{|\overline{CD} \cdot \overline{AB}|}{CD} = \frac{|(-8) \times 4 + 4 \times (-4) + (-1) \times 3|}{\sqrt{(-8)^2 + 4^2 + (-1)^2}} \\ = \frac{|-51|}{\sqrt{81}} = \frac{51}{9} = \frac{17}{3}.$$

11. A direction vector for \mathcal{L} is given by $\overrightarrow{BC} = [-5, -2, 3]^t$. Hence the plane through A perpendicular to \mathcal{L} is given by

$$-5x - 2y + 3z = (-5) \times 3 + (-2) \times (-1) + 3 \times 2 = -7.$$

The position vector \mathbf{P} of an arbitrary point P on \mathcal{L} is given by $\mathbf{P} = \mathbf{B} + t \ \overrightarrow{BC}$, or

Γ	x		$\begin{bmatrix} 2 \end{bmatrix}$		[-5]	
	y	=	1	+t	-2	,
	z		4		3	
	_	•				

or equivalently x = 2 - 5t, y = 1 - 2t, z = 4 + 3t.

To find the intersection of line \mathcal{L} and the given plane, we substitute the expressions for x, y, z found in terms of t into the plane equation and solve the resulting linear equation for t:

$$-5(2-5t) - 2(1-2t) + 3(4+3t) = -7,$$

which gives t = -7/38. Hence $P = \left(\frac{111}{38}, \frac{52}{38}, \frac{131}{38}\right)$ and

$$AP = \sqrt{\left(3 - \frac{111}{38}\right)^2 + \left(-1 - \frac{52}{38}\right)^2 + \left(2 - \frac{131}{38}\right)^2} = \frac{\sqrt{11134}}{38} = \frac{\sqrt{293 \times 38}}{38} = \frac{\sqrt{293}}{\sqrt{38}}.$$

12. Let P be a point inside the triangle ABC. Then the line through P and parallel to AC will meet the segments AB and BC in D and E, respectively. Then

$$\mathbf{P} = (1-r)\mathbf{D} + r\mathbf{E}, \quad 0 < r < 1; \mathbf{D} = (1-s)\mathbf{B} + s\mathbf{A}, \quad 0 < s < 1; \mathbf{E} = (1-t)\mathbf{B} + t\mathbf{C}, \quad 0 < t < 1.$$

Hence

$$\mathbf{P} = (1-r) \{ (1-s)\mathbf{B} + s\mathbf{A} \} + r \{ (1-t)\mathbf{B} + t\mathbf{C} \}$$

= $(1-r)s\mathbf{A} + \{ (1-r)(1-s) + r(1-t) \} \mathbf{B} + rt\mathbf{C}$
= $\alpha \mathbf{A} + \beta \mathbf{B} + \gamma \mathbf{C},$

where

$$\alpha = (1-r)s, \quad \beta = (1-r)(1-s) + r(1-t), \quad \gamma = rt.$$

Then $0<\alpha<1,\ 0<\gamma<1,\ 0<\beta<(1-r)+r=1.$ Also

$$\alpha + \beta + \gamma = (1 - r)s + (1 - r)(1 - s) + r(1 - t) + rt = 1.$$

13. The line AB is given by $\mathbf{P} = \mathbf{A} + t[3, 4, 5]^t$, or

$$x = 6 + 3t$$
, $y = -1 + 4t$, $z = 11 + 5t$.

Then B is found by substituting these expressions in the plane equation

$$3x + 4y + 5z = 10.$$

We find t = -59/50 and consequently

$$B = \left(6 - \frac{177}{50}, -1 - \frac{236}{50}, 11 - \frac{295}{50}\right) = \left(\frac{123}{50}, \frac{-286}{50}, \frac{255}{50}\right).$$

Then

$$AB = || \overrightarrow{AB} || = ||t \begin{bmatrix} 3\\4\\5 \end{bmatrix} ||$$
$$= |t|\sqrt{3^2 + 4^2 + 5^2} = \frac{59}{50} \times \sqrt{50} = \frac{59}{\sqrt{50}}.$$

14. Let A = (-3, 0, 2), B = (6, 1, 4), C = (-5, 1, 0). Then the area of triangle ABC is $\frac{1}{2} || \overrightarrow{AB} \times \overrightarrow{AC} ||$. Now

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{bmatrix} 9\\1\\2 \end{bmatrix} \times \begin{bmatrix} -2\\1\\-2 \end{bmatrix} = \begin{bmatrix} -4\\14\\11 \end{bmatrix}.$$

Hence $|| \overrightarrow{AB} \times \overrightarrow{AC} || = \sqrt{333}$.

15. Let $A_1 = (2, 1, 4), A_2 = (1, -1, 2), A_3 = (4, -1, 1)$. Then the point P = (x, y, z) lies on the plane $A_1A_2A_3$ if and only if

$$\overrightarrow{A_1P} \cdot (\overrightarrow{A_1A_2} \times \overrightarrow{A_1A_3}) = 0,$$

or

$$\begin{vmatrix} x-2 & y-1 & z-4 \\ -1 & -2 & -2 \\ 2 & -2 & -3 \end{vmatrix} = 2x - 7y + 6z - 21 = 0.$$

16. Non–parallel lines \mathcal{L} and \mathcal{M} in three dimensional space are given by equations

$$\mathbf{P} = \mathbf{A} + sX, \quad \mathbf{Q} = \mathbf{B} + tY.$$

(i) Suppose \overrightarrow{PQ} is orthogonal to both X and Y. Now

$$\overrightarrow{PQ} = \mathbf{Q} - \mathbf{P} = (\mathbf{B} + tY) - (\mathbf{A} + sX) = \overrightarrow{AB} + tY - sX$$

Hence

$$(\overrightarrow{AB} + tY + sX) \cdot X = 0$$
$$(\overrightarrow{AB} + tY + sX) \cdot Y = 0.$$

More explicitly

$$t(Y \cdot X) - s(X \cdot X) = -\overline{AB} \cdot X$$

$$t(Y \cdot Y) - s(X \cdot Y) = -\overline{AB} \cdot Y.$$

However the coefficient determinant of this system of linear equations in t and s is equal to

$$\begin{vmatrix} Y \cdot X & -X \cdot X \\ Y \cdot Y & -X \cdot Y \end{vmatrix} = -(X \cdot Y)^2 + (X \cdot X)(Y \cdot Y)$$
$$= ||X \times Y||^2 \neq 0,$$

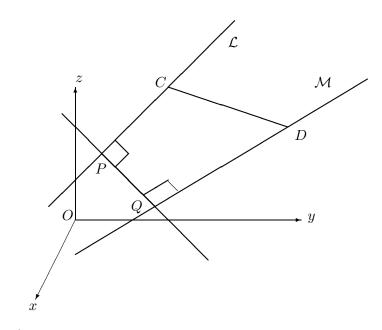
as $X \neq 0$, $Y \neq 0$ and X and Y are not proportional (\mathcal{L} and \mathcal{M} are not parallel).

(ii) P and Q can be viewed as the projections of C and D onto the line PQ, where C and D are arbitrary points on the lines \mathcal{L} and \mathcal{M} , respectively. Hence by equation (8.14) of Theorem 8.5.3, we have

$$PQ \leq CD.$$

Finally we derive a useful formula for PQ. Again by Theorem 8.5.3

$$PQ = \frac{|\overrightarrow{AB} \cdot \overrightarrow{PQ}|}{PQ} = |\overrightarrow{AB} \cdot \hat{n}|,$$



where $\hat{n} = \frac{1}{PQ} \overrightarrow{PQ}$ is a unit vector which is orthogonal to X and Y. Hence

$$\hat{n} = t(X \times Y),$$

where $t = \pm 1/||X \times Y||$. Hence

$$PQ = \frac{|\overline{AB} \cdot (X \times Y)|}{||X \times Y||}.$$

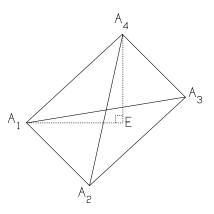
17. We use the formula of the previous question. Line \mathcal{L} has the equation $\mathbf{P} = \mathbf{A} + sX$, where

$$X = \overrightarrow{AC} = \begin{bmatrix} 2\\ -3\\ 3 \end{bmatrix}.$$

Line \mathcal{M} has the equation $\mathbf{Q} = \mathbf{B} + tY$, where

$$Y = \overrightarrow{BD} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}.$$

Hence $X \times Y = [-6, 1, 5]^t$ and $||X \times Y|| = \sqrt{62}$.



Hence the shortest distance between lines AC and BD is equal to

$$\frac{|\overrightarrow{AB} \cdot (X \times Y)|}{||X \times Y||} = \frac{\left| \begin{bmatrix} 0\\-2\\1 \end{bmatrix} \cdot \begin{bmatrix} -6\\1\\5 \end{bmatrix} \right|}{\sqrt{62}} = \frac{3}{\sqrt{62}}$$

18. Let E be the foot of the perpendicular from A_4 to the plane $A_1A_2A_3$. Then

vol
$$A_1 A_2 A_3 A_4 = \frac{1}{3} (\operatorname{area} \Delta A_1 A_2 A_3) \cdot A_4 E.$$

Now

area
$$\Delta A_1 A_2 A_3 = \frac{1}{2} || \overrightarrow{A_1 A_2} \times \overrightarrow{A_1 A_3} ||.$$

Also A_4E is the length of the projection of A_1A_4 onto the line A_4E . (See figure above.)

Hence $A_4E = |\overrightarrow{A_1A_4} \cdot X|$, where X is a unit direction vector for the line A_4E . We can take

$$X = \frac{\overrightarrow{A_1 A_2} \times \overrightarrow{A_1 A_3}}{|| \overrightarrow{A_1 A_2} \times \overrightarrow{A_1 A_3} ||}.$$

Hence

$$\operatorname{vol} A_1 A_2 A_3 A_4 = \frac{1}{6} || \overrightarrow{A_1 A_2} \times \overrightarrow{A_1 A_3} || \frac{| \overrightarrow{A_1 A_4} \cdot (\overrightarrow{A_1 A_2} \times \overrightarrow{A_1 A_3})|}{|| \overrightarrow{A_1 A_2} \times \overrightarrow{A_1 A_3} ||}$$
$$= \frac{1}{6} | \overrightarrow{A_1 A_4} \cdot (\overrightarrow{A_1 A_2} \times \overrightarrow{A_1 A_3})|$$

$$= \frac{1}{6} |(\overrightarrow{A_1 A_2} \times \overrightarrow{A_1 A_3}) \cdot \overrightarrow{A_1 A_4}|.$$

19. We have $\overrightarrow{CB} = [1, 4, -1]^t$, $\overrightarrow{CD} = [-3, 3, 0]^t$, $\overrightarrow{AD} = [3, 0, 3]^t$. Hence

$$\overrightarrow{CB} \times \overrightarrow{CD} = 3\mathbf{i} + 3\mathbf{j} + 15\mathbf{k},$$

so the vector $\mathbf{i} + \mathbf{j} + 5\mathbf{k}$ is perpendicular to the plane *BCD*.

Now the plane BCD has equation x + y + 5z = 9, as B = (2, 2, 1) is on the plane.

Also the line through A normal to plane BCD has equation

$\begin{bmatrix} x \end{bmatrix}$]	[1]		[1]		$\lceil 1 \rceil$	
y	=	1	+t	1	= (1+t)	1	.
$\lfloor z$]	5		5	= (1+t)	5	

Hence x = 1 + t, y = 1 + t, z = 5(1 + t).

[We remark that this line meets plane BCD in a point E which is given by a value of t found by solving

$$(1+t) + (1+t) + 5(5+5t) = 9.$$

So t = -2/3 and E = (1/3, 1/3, 5/3).]

The distance from A to plane BCD is

$$\frac{|1 \times 1 + 1 \times 1 + 5 \times 5 - 9|}{1^2 + 1^2 + 5^2} = \frac{18}{\sqrt{27}} = 2\sqrt{3}.$$

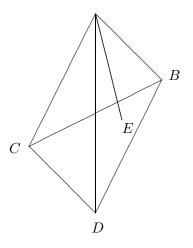
To find the distance between lines AD and BC, we first note that

(a) The equation of AD is

$$\mathbf{P} = \begin{bmatrix} 1\\1\\5 \end{bmatrix} + t \begin{bmatrix} 3\\0\\3 \end{bmatrix} = \begin{bmatrix} 1+3t\\1\\5+3t \end{bmatrix};$$

(b) The equation of BC is

$$\mathbf{Q} = \begin{bmatrix} 2\\2\\1 \end{bmatrix} + s \begin{bmatrix} 1\\4\\-1 \end{bmatrix} = \begin{bmatrix} 2+s\\2+4s\\1-s \end{bmatrix}.$$



Then $\overrightarrow{PQ} = [1 + s - 3t, 1 + 4s, -4 - s - 3t]^t$ and we find s and t by solving the equations $\overrightarrow{PQ} \cdot \overrightarrow{AD} = 0$ and $\overrightarrow{PQ} \cdot \overrightarrow{BC} = 0$, or

$$\begin{array}{rcl} (1+s-3t)3+(1+4s)0+(-4-s-3t)3&=&0\\ (1+s-3t)+4(1+4s)-(-4-s-3t)&=&0. \end{array}$$

Hence t = -1/2 = s.

Correspondingly, P = (-1/2, 1, 7/2) and Q = (3/2, 0, 3/2).

Thus we have found the closest points P and Q on the respective lines AD and BC. Finally the shortest distance between the lines is

$$PQ = || \overrightarrow{PQ} || = 3.$$