Section 8.8

1. The given line has equations

$$
\begin{aligned}
& x=3+t(13-3)=3+10 t \\
& y=-2+t(3+2)=-2+5 t \\
& z=7+t(-8-7)=7-15 t
\end{aligned}
$$

The line meets the plane $y=0$ in the point $(x, 0, z)$, where $0=-2+5 t$, or $t=2 / 5$. The corresponding values for x and z are 7 and 1 , respectively.
2. $\mathbf{E}=\frac{1}{2}(\mathbf{B}+\mathbf{C}), \mathbf{F}=(1-t) \mathbf{A}+t \mathbf{E}$, where

$$
t=\frac{A F}{A E}=\frac{A F}{A F+F E}=\frac{A F / F E}{(A F / F E)+1}=\frac{2}{3}
$$

Hence

$$
\begin{aligned}
\mathbf{F} & =\frac{1}{3} \mathbf{A}+\frac{2}{3}\left(\frac{1}{2}(\mathbf{B}+\mathbf{C})\right) \\
& =\frac{1}{3} \mathbf{A}+\frac{1}{3}(\mathbf{B}+\mathbf{C}) \\
& =\frac{1}{3}(\mathbf{A}+\mathbf{B}+\mathbf{C}) .
\end{aligned}
$$

3. Let $A=(2,1,4), B=(1,-1,2), C=(3,3,6)$. Then we prove $\overrightarrow{A C}=$ $t \overrightarrow{A B}$ for some real t. We have

$$
\overrightarrow{A C}=\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right], \quad \overrightarrow{A B}=\left[\begin{array}{l}
-1 \\
-2 \\
-2
\end{array}\right] .
$$

Hence $\overrightarrow{A C}=(-1) \overrightarrow{A B}$ and consequently C is on the line $A B$. In fact A is between C and B, with $A C=A B$.
4. The points P on the line $A B$ which satisfy $A P=\frac{2}{5} P B$ are given by $\mathbf{P}=\mathbf{A}+t \overrightarrow{A B}$, where $|t /(1-t)|=2 / 5$. Hence $t /(1-t)= \pm 2 / 5$.

The equation $t /(1-t)=2 / 5$ gives $t=2 / 7$ and hence

$$
\mathbf{P}=\left[\begin{array}{r}
2 \\
3 \\
-1
\end{array}\right]+\frac{2}{7}\left[\begin{array}{l}
1 \\
4 \\
5
\end{array}\right]=\left[\begin{array}{r}
16 / 7 \\
29 / 7 \\
3 / 7
\end{array}\right]
$$

Hence $P=(16 / 7,29 / 7,3 / 7)$.
The equation $t /(1-t)=-2 / 5$ gives $t=-2 / 3$ and hence

$$
\mathbf{P}=\left[\begin{array}{r}
2 \\
3 \\
-1
\end{array}\right]-\frac{2}{3}\left[\begin{array}{l}
1 \\
4 \\
5
\end{array}\right]=\left[\begin{array}{r}
4 / 3 \\
1 / 3 \\
-13 / 3
\end{array}\right] .
$$

Hence $P=(4 / 3,1 / 3,-13 / 3)$.
5. An equation for \mathcal{M} is $\mathbf{P}=\mathbf{A}+t \overrightarrow{B C}$, which reduces to

$$
\begin{aligned}
& x=1+6 t \\
& y=2-3 t \\
& z=3+7 t .
\end{aligned}
$$

An equation for \mathcal{N} is $\mathbf{Q}=\mathbf{E}+s \overrightarrow{E F}$, which reduces to

$$
\begin{aligned}
x & =1+9 s \\
y & =-1 \\
z & =8+3 s
\end{aligned}
$$

To find if and where \mathcal{M} and \mathcal{N} intersect, we set $P=Q$ and attempt to solve for s and t. We find the unique solution $t=1, s=2 / 3$, proving that the lines meet in the point

$$
(x, y, z)=(1+6,2-3,3+7)=(7,-1,10) .
$$

6. Let $A=(-3,5,6), B=(-2,7,9), C=(2,1,7)$. Then
(i)

$$
\cos \angle A B C=(\overrightarrow{B A} \cdot \overrightarrow{B C}) /(B A \cdot B C)
$$

where $\overrightarrow{B A}=[-1,-2,-3]^{t}$ and $\overrightarrow{B C}=[4,-6,-2]^{t}$. Hence

$$
\cos \angle A B C=\frac{-4+12+6}{\sqrt{14} \sqrt{56}}=\frac{14}{\sqrt{14} \sqrt{56}}=\frac{1}{2} .
$$

Hence $\angle A B C=\pi / 3$ radians or 60°.
(ii)

$$
\cos \angle B A C=(\overrightarrow{A B} \cdot \overrightarrow{A C}) /(A B \cdot A C)
$$

where $\overrightarrow{A B}=[1,2,3]^{t}$ and $\overrightarrow{A C}=[5,-4,1]^{t}$. Hence

$$
\cos \angle B A C=\frac{5-8+3}{\sqrt{14} \sqrt{42}}=0
$$

Hence $\angle A B C=\pi / 2$ radians or 90°.
(iii)

$$
\cos \angle A C B=(\overrightarrow{C A} \cdot \overrightarrow{C B}) /(C A \cdot C B)
$$

where $\overrightarrow{C A}=[-5,4,-1]^{t}$ and $\overrightarrow{C B}=[-4,6,2]^{t}$. Hence

$$
\cos \angle A C B=\frac{20+24-2}{\sqrt{42} \sqrt{56}}=\frac{42}{\sqrt{42} \sqrt{56}}=\frac{\sqrt{42}}{\sqrt{56}}=\frac{\sqrt{3}}{2} .
$$

Hence $\angle A C B=\pi / 6$ radians or 30°.
7. By Theorem 8.5.2, the closest point P on the line $A B$ to the origin O is given by $\mathbf{P}=\mathbf{A}+t \overrightarrow{A B}$, where

$$
t=\frac{\overrightarrow{A O} \cdot \overrightarrow{A B}}{A B^{2}}=\frac{-\mathbf{A} \cdot \overrightarrow{A B}}{A B^{2}}
$$

Now

$$
\mathbf{A} \cdot \overrightarrow{A B}=\left[\begin{array}{r}
-2 \\
1 \\
3
\end{array}\right] \cdot\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right]=-2
$$

Hence $t=2 / 11$ and

$$
\mathbf{P}=\left[\begin{array}{r}
-2 \\
1 \\
3
\end{array}\right]+\frac{2}{11}\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{r}
-16 / 11 \\
13 / 11 \\
35 / 11
\end{array}\right]
$$

and $P=(-16 / 11,13 / 11,35 / 11)$.
Consequently the shortest distance $O P$ is given by

$$
\sqrt{\left(\frac{-16}{11}\right)^{2}+\left(\frac{13}{11}\right)^{2}+\left(\frac{35}{11}\right)^{2}}=\frac{\sqrt{1650}}{11}=\frac{\sqrt{15 \times 11 \times 10}}{11}=\frac{\sqrt{150}}{\sqrt{11}}
$$

Alternatively, we can calculate the distance $O P^{2}$, where P is an arbitrary point on the line $A B$ and then minimize $O P^{2}$:

$$
\mathbf{P}=\mathbf{A}+t \overrightarrow{A B}=\left[\begin{array}{r}
-2 \\
1 \\
3
\end{array}\right]+t\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-2+3 t \\
1+t \\
3+t
\end{array}\right] .
$$

Hence

$$
\begin{aligned}
O P^{2} & =(-2+3 t)^{2}+(1+t)^{2}+(3+t)^{2} \\
& =11 t^{2}-4 t+14 \\
& =11\left(t^{2}-\frac{4}{11} t+\frac{14}{11}\right) \\
& =11\left(\left\{t-\frac{2}{11}\right\}^{2}+\frac{14}{11}-\frac{4}{121}\right) \\
& =11\left(\left\{t-\frac{2}{11}\right\}^{2}+\frac{150}{121}\right) .
\end{aligned}
$$

Consequently

$$
O P^{2} \geq 11 \times \frac{150}{121}
$$

for all t; moreover

$$
O P^{2}=11 \times \frac{150}{121}
$$

when $t=2 / 11$.
8. We first find parametric equations for \mathcal{N} by solving the equations

$$
\begin{aligned}
& x+y-2 z=1 \\
& x+3 y-z=4
\end{aligned}
$$

The augmented matrix is

$$
\left[\begin{array}{llll}
1 & 1 & -2 & 1 \\
1 & 3 & -1 & 4
\end{array}\right],
$$

which reduces to

$$
\left[\begin{array}{rrrr}
1 & 0 & -5 / 2 & -1 / 2 \\
0 & 1 & 1 / 2 & 3 / 2
\end{array}\right] .
$$

Hence $x=-\frac{1}{2}+\frac{5}{2} z, y=\frac{3}{2}-\frac{z}{2}$, with z arbitrary. Taking $z=0$ gives a point $A=\left(-\frac{1}{2}, \frac{3}{2}, 0\right)$, while $z=1$ gives a point $B=(2,1,1)$.

Hence if $C=(1,0,1)$, then the closest point on \mathcal{N} to C is given by $\mathbf{P}=\mathbf{A}+t \overrightarrow{A B}$, where $t=(\overrightarrow{A C} \cdot \overrightarrow{A B}) / A B^{2}$.

Now

$$
\overrightarrow{A C}=\left[\begin{array}{c}
3 / 2 \\
-3 / 2 \\
1
\end{array}\right] \quad \text { and } \quad \overrightarrow{A B}=\left[\begin{array}{c}
5 / 2 \\
-1 / 2 \\
1
\end{array}\right]
$$

so

$$
t=\frac{\frac{3}{2} \times \frac{5}{2}+\frac{-3}{2} \times \frac{-1}{2}+1 \times 1}{\left(\frac{5}{2}\right)^{2}+\left(\frac{-1}{2}\right)^{2}+1^{2}}=\frac{11}{15} .
$$

Hence

$$
\mathbf{P}=\left[\begin{array}{r}
-1 / 2 \\
3 / 2 \\
0
\end{array}\right]+\frac{11}{15}\left[\begin{array}{c}
5 / 2 \\
-1 / 2 \\
1
\end{array}\right]=\left[\begin{array}{c}
4 / 3 \\
17 / 15 \\
11 / 15
\end{array}\right]
$$

so $P=(4 / 3,17 / 15,11 / 15)$.
Also the shortest distance $P C$ is given by

$$
P C=\sqrt{\left(1-\frac{4}{3}\right)^{2}+\left(0-\frac{17}{15}\right)^{2}+\left(1-\frac{11}{15}\right)^{2}}=\frac{\sqrt{330}}{15} .
$$

9. The intersection of the planes $x+y-2 z=4$ and $3 x-2 y+z=1$ is the line given by the equations

$$
x=\frac{9}{5}+\frac{3}{5} z, y=\frac{11}{5}+\frac{7}{5} z
$$

where z is arbitrary. Hence the line \mathcal{L} has a direction vector $[3 / 5,7 / 5,1]^{t}$ or the simpler $[3,7,5]^{t}$. Then any plane of the form $3 x+7 y+5 z=d$ will be perpendicualr to \mathcal{L}. The required plane has to pass through the point $(6,0,2)$, so this determines d :

$$
3 \times 6+7 \times 0+5 \times 2=d=28
$$

10. The length of the projection of the segment $A B$ onto the line $C D$ is given by the formula

$$
\frac{|\overrightarrow{C D} \cdot \overrightarrow{A B}|}{C D}
$$

Here $\overrightarrow{C D}=[-8,4,-1]^{t}$ and $\overrightarrow{A B}=[4,-4,3]^{t}$, so

$$
\begin{aligned}
\frac{|\overrightarrow{C D} \cdot \overrightarrow{A B}|}{C D} & =\frac{|(-8) \times 4+4 \times(-4)+(-1) \times 3|}{\sqrt{(-8)^{2}+4^{2}+(-1)^{2}}} \\
& =\frac{|-51|}{\sqrt{81}}=\frac{51}{9}=\frac{17}{3}
\end{aligned}
$$

11. A direction vector for \mathcal{L} is given by $\overrightarrow{B C}=[-5,-2,3]^{t}$. Hence the plane through A perpendicular to \mathcal{L} is given by

$$
-5 x-2 y+3 z=(-5) \times 3+(-2) \times(-1)+3 \times 2=-7 .
$$

The position vector \mathbf{P} of an arbitrary point P on \mathcal{L} is given by $\mathbf{P}=\mathbf{B}+t \overrightarrow{B C}$, or

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
4
\end{array}\right]+t\left[\begin{array}{r}
-5 \\
-2 \\
3
\end{array}\right]
$$

or equivalently $x=2-5 t, y=1-2 t, z=4+3 t$.
To find the intersection of line \mathcal{L} and the given plane, we substitute the expressions for x, y, z found in terms of t into the plane equation and solve the resulting linear equation for t :

$$
-5(2-5 t)-2(1-2 t)+3(4+3 t)=-7
$$

which gives $t=-7 / 38$. Hence $P=\left(\frac{111}{38}, \frac{52}{38}, \frac{131}{38}\right)$ and

$$
\begin{aligned}
A P & =\sqrt{\left(3-\frac{111}{38}\right)^{2}+\left(-1-\frac{52}{38}\right)^{2}+\left(2-\frac{131}{38}\right)^{2}} \\
& =\frac{\sqrt{11134}}{38}=\frac{\sqrt{293 \times 38}}{38}=\frac{\sqrt{293}}{\sqrt{38}} .
\end{aligned}
$$

12. Let P be a point inside the triangle $A B C$. Then the line through P and parallel to $A C$ will meet the segments $A B$ and $B C$ in D and E, respectively. Then

$$
\begin{array}{rll}
\mathbf{P} & =(1-r) \mathbf{D}+r \mathbf{E}, & 0<r<1 ; \\
\mathbf{D} & =(1-s) \mathbf{B}+s \mathbf{A}, & 0<s<1 ; \\
\mathbf{E}=(1-t) \mathbf{B}+t \mathbf{C}, & 0<t<1
\end{array}
$$

Hence

$$
\begin{aligned}
\mathbf{P} & =(1-r)\{(1-s) \mathbf{B}+s \mathbf{A}\}+r\{(1-t) \mathbf{B}+t \mathbf{C}\} \\
& =(1-r) s \mathbf{A}+\{(1-r)(1-s)+r(1-t)\} \mathbf{B}+r t \mathbf{C} \\
& =\alpha \mathbf{A}+\beta \mathbf{B}+\gamma \mathbf{C},
\end{aligned}
$$

where

$$
\alpha=(1-r) s, \quad \beta=(1-r)(1-s)+r(1-t), \quad \gamma=r t .
$$

Then $0<\alpha<1,0<\gamma<1,0<\beta<(1-r)+r=1$. Also

$$
\alpha+\beta+\gamma=(1-r) s+(1-r)(1-s)+r(1-t)+r t=1 .
$$

13. The line $A B$ is given by $\mathbf{P}=\mathbf{A}+t[3,4,5]^{t}$, or

$$
x=6+3 t, \quad y=-1+4 t, \quad z=11+5 t .
$$

Then B is found by substituting these expressions in the plane equation

$$
3 x+4 y+5 z=10
$$

We find $t=-59 / 50$ and consequently

$$
B=\left(6-\frac{177}{50},-1-\frac{236}{50}, 11-\frac{295}{50}\right)=\left(\frac{123}{50}, \frac{-286}{50}, \frac{255}{50}\right) .
$$

Then

$$
\begin{aligned}
A B & =\|\overrightarrow{A B}\|=\left\|t\left[\begin{array}{l}
3 \\
4 \\
5
\end{array}\right]\right\| \\
& =|t| \sqrt{3^{2}+4^{2}+5^{2}}=\frac{59}{50} \times \sqrt{50}=\frac{59}{\sqrt{50}} .
\end{aligned}
$$

14. Let $A=(-3,0,2), B=(6,1,4), C=(-5,1,0)$. Then the area of triangle $A B C$ is $\frac{1}{2}\|\overrightarrow{A B} \times \overrightarrow{A C}\|$. Now

$$
\overrightarrow{A B} \times \overrightarrow{A C}=\left[\begin{array}{l}
9 \\
1 \\
2
\end{array}\right] \times\left[\begin{array}{r}
-2 \\
1 \\
-2
\end{array}\right]=\left[\begin{array}{r}
-4 \\
14 \\
11
\end{array}\right] .
$$

Hence $\|\overrightarrow{A B} \times \overrightarrow{A C}\|=\sqrt{333}$.
15. Let $A_{1}=(2,1,4), A_{2}=(1,-1,2), A_{3}=(4,-1,1)$. Then the point $P=(x, y, z)$ lies on the plane $A_{1} A_{2} A_{3}$ if and only if

$$
\overrightarrow{A_{1} P} \cdot\left(\overrightarrow{\vec{A}_{1} A_{2}} \times \overrightarrow{A_{1} A_{3}}\right)=0,
$$

or

$$
\left|\begin{array}{ccc}
x-2 & y-1 & z-4 \\
-1 & -2 & -2 \\
2 & -2 & -3
\end{array}\right|=2 x-7 y+6 z-21=0
$$

16. Non-parallel lines \mathcal{L} and \mathcal{M} in three dimensional space are given by equations

$$
\mathbf{P}=\mathbf{A}+s X, \quad \mathbf{Q}=\mathbf{B}+t Y
$$

(i) Suppose $\overrightarrow{P Q}$ is orthogonal to both X and Y. Now

$$
\overrightarrow{P Q}=\mathbf{Q}-\mathbf{P}=(\mathbf{B}+t Y)-(\mathbf{A}+s X)=\overrightarrow{A B}+t Y-s X
$$

Hence

$$
\begin{aligned}
& (\overrightarrow{A B}+t Y+s X) \cdot X=0 \\
& (\overrightarrow{A B}+t Y+s X) \cdot Y=0
\end{aligned}
$$

More explicitly

$$
\begin{aligned}
t(Y \cdot X)-s(X \cdot X) & =-\overrightarrow{A B} \cdot X \\
t(Y \cdot Y)-s(X \cdot Y) & =-\overrightarrow{A B} \cdot Y
\end{aligned}
$$

However the coefficient determinant of this system of linear equations in t and s is equal to

$$
\begin{aligned}
\left|\begin{array}{rr}
Y \cdot X & -X \cdot X \\
Y \cdot Y & -X \cdot Y
\end{array}\right| & =-(X \cdot Y)^{2}+(X \cdot X)(Y \cdot Y) \\
& =\|X \times Y\|^{2} \neq 0
\end{aligned}
$$

as $X \neq 0, Y \neq 0$ and X and Y are not proportional $(\mathcal{L}$ and \mathcal{M} are not parallel).
(ii) P and Q can be viewed as the projections of C and D onto the line $P Q$, where C and D are arbitrary points on the lines \mathcal{L} and \mathcal{M}, respectively. Hence by equation (8.14) of Theorem 8.5.3, we have

$$
P Q \leq C D
$$

Finally we derive a useful formula for $P Q$. Again by Theorem 8.5.3

$$
P Q=\frac{|\overrightarrow{A B} \cdot \overrightarrow{P Q}|}{P Q}=|\overrightarrow{A B} \cdot \hat{n}|
$$

where $\hat{n}=\frac{1}{P Q} \overrightarrow{P Q}$ is a unit vector which is orthogonal to X and Y. Hence

$$
\hat{n}=t(X \times Y),
$$

where $t= \pm 1 /\|X \times Y\|$. Hence

$$
P Q=\frac{|\overrightarrow{A B} \cdot(X \times Y)|}{\|X \times Y\|}
$$

17. We use the formula of the previous question.

Line \mathcal{L} has the equation $\mathbf{P}=\mathbf{A}+s X$, where

$$
X=\overrightarrow{A C}=\left[\begin{array}{r}
2 \\
-3 \\
3
\end{array}\right]
$$

Line \mathcal{M} has the equation $\mathbf{Q}=\mathbf{B}+t Y$, where

$$
Y=\overrightarrow{B D}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Hence $X \times Y=[-6,1,5]^{t}$ and $\|X \times Y\|=\sqrt{62}$.

Hence the shortest distance between lines $A C$ and $B D$ is equal to

$$
\frac{|\overrightarrow{A B} \cdot(X \times Y)|}{\|X \times Y\|}=\frac{\left|\left[\begin{array}{r}
0 \\
-2 \\
1
\end{array}\right] \cdot\left[\begin{array}{r}
-6 \\
1 \\
5
\end{array}\right]\right|}{\sqrt{62}}=\frac{3}{\sqrt{62}}
$$

18. Let E be the foot of the perpendicular from A_{4} to the plane $A_{1} A_{2} A_{3}$. Then

$$
\operatorname{vol} A_{1} A_{2} A_{3} A_{4}=\frac{1}{3}\left(\operatorname{area} \Delta A_{1} A_{2} A_{3}\right) \cdot A_{4} E .
$$

Now

$$
\text { area } \Delta A_{1} A_{2} A_{3}=\frac{1}{2}\left\|{\overrightarrow{A_{1}}}_{2} \times{\overrightarrow{A_{1} A}}_{3}\right\| .
$$

Also $A_{4} E$ is the length of the projection of $A_{1} A_{4}$ onto the line $A_{4} E$. (See figure above.)

Hence $A_{4} E=\left|\overrightarrow{A_{1} A_{4}} \cdot X\right|$, where X is a unit direction vector for the line $A_{4} E$. We can take

$$
X=\frac{{\overrightarrow{A_{1} A_{2}}}_{2} \times \overrightarrow{A_{1} A_{3}}}{\left\|\overrightarrow{A_{1} A_{2}} \times \overrightarrow{A_{1} A_{3}}\right\|}
$$

Hence

$$
\begin{aligned}
\operatorname{vol} A_{1} A_{2} A_{3} A_{4} & =\frac{1}{6}| | \overrightarrow{A_{1} A_{2}} \times{\overrightarrow{A_{1} A}}_{3}| | \frac{\left|\overrightarrow{A_{1} A_{4}} \cdot\left(\overrightarrow{A_{1} A_{2}} \times \overrightarrow{A_{1} A_{3}}\right)\right|}{| | \overrightarrow{A_{1} \vec{A}_{2}} \times \overrightarrow{A_{1} \vec{A}_{3}}| |} \\
& =\frac{1}{6}\left|\overrightarrow{A_{1} A_{4}} \cdot\left(\overrightarrow{A_{1} \vec{A}_{2}} \times \overrightarrow{A_{1} \vec{A}_{3}}\right)\right|
\end{aligned}
$$

$$
=\frac{1}{6}\left|\left({\overrightarrow{A_{1} A}}_{2} \times{\overrightarrow{A_{1} A}}_{3}\right) \cdot{\overrightarrow{A_{1} A}}_{4}\right|
$$

19. We have $\overrightarrow{C B}=[1,4,-1]^{t}, \overrightarrow{C D}=[-3,3,0]^{t}, \overrightarrow{A D}=[3,0,3]^{t}$. Hence

$$
\overrightarrow{C B} \times \overrightarrow{C D}=3 \mathbf{i}+3 \mathbf{j}+15 \mathbf{k},
$$

so the vector $\mathbf{i}+\mathbf{j}+5 \mathbf{k}$ is perpendicular to the plane $B C D$.
Now the plane $B C D$ has equation $x+y+5 z=9$, as $B=(2,2,1)$ is on the plane.

Also the line through A normal to plane $B C D$ has equation

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
5
\end{array}\right]+t\left[\begin{array}{l}
1 \\
1 \\
5
\end{array}\right]=(1+t)\left[\begin{array}{l}
1 \\
1 \\
5
\end{array}\right] .
$$

Hence $x=1+t, y=1+t, z=5(1+t)$.
[We remark that this line meets plane $B C D$ in a point E which is given by a value of t found by solving

$$
(1+t)+(1+t)+5(5+5 t)=9 .
$$

So $t=-2 / 3$ and $E=(1 / 3,1 / 3,5 / 3)$.]
The distance from A to plane $B C D$ is

$$
\frac{|1 \times 1+1 \times 1+5 \times 5-9|}{1^{2}+1^{2}+5^{2}}=\frac{18}{\sqrt{27}}=2 \sqrt{3} .
$$

To find the distance between lines $A D$ and $B C$, we first note that
(a) The equation of $A D$ is

$$
\mathbf{P}=\left[\begin{array}{l}
1 \\
1 \\
5
\end{array}\right]+t\left[\begin{array}{l}
3 \\
0 \\
3
\end{array}\right]=\left[\begin{array}{c}
1+3 t \\
1 \\
5+3 t
\end{array}\right] ;
$$

(b) The equation of $B C$ is

$$
\mathbf{Q}=\left[\begin{array}{l}
2 \\
2 \\
1
\end{array}\right]+s\left[\begin{array}{r}
1 \\
4 \\
-1
\end{array}\right]=\left[\begin{array}{c}
2+s \\
2+4 s \\
1-s
\end{array}\right] .
$$

Then $\overrightarrow{P Q}=[1+s-3 t, 1+4 s,-4-s-3 t]^{t}$ and we find s and t by solving the equations $\overrightarrow{P Q} \cdot \overrightarrow{A D}=0$ and $\overrightarrow{P Q} \cdot \overrightarrow{B C}=0$, or

$$
\begin{array}{r}
(1+s-3 t) 3+(1+4 s) 0+(-4-s-3 t) 3=0 \\
(1+s-3 t)+4(1+4 s)-(-4-s-3 t)=0 .
\end{array}
$$

Hence $t=-1 / 2=s$.
Correspondingly, $P=(-1 / 2,1,7 / 2)$ and $Q=(3 / 2,0,3 / 2)$.
Thus we have found the closest points P and Q on the respective lines $A D$ and $B C$. Finally the shortest distance between the lines is

$$
P Q=\|\overrightarrow{P Q}\|=3 .
$$

